The Bias of the ECB Inflation Projections: a State Dependent Analysis

E. Granziera P. Jalasjoki Norges Bank Bank of Finland

M. Paloviita
Bank of Finland

August, 2022

The views expressed are those of the authors and do not necessarily reflect those of Norges Bank, the Bank of Finland or the Eurosystem.

▶ Inflation forecasts at the core of central bank communication especially for monetary authorities targeting inflation

- ► Inflation forecasts at the core of central bank communication especially for monetary authorities targeting inflation
 - Central banks forecasts can affect private sector's expectations (Fujuwara 2005, Hubert 2015, Lyziak and Paloviita 2017, 2018, D'Acunto, Fuster and Weber 2022, Granziera, Larsen, Meggiorini 2022)

- Inflation forecasts at the core of central bank communication especially for monetary authorities targeting inflation
 - Central banks forecasts can affect private sector's expectations (Fujuwara 2005, Hubert 2015, Lyziak and Paloviita 2017, 2018, D'Acunto, Fuster and Weber 2022, Granziera, Larsen, Meggiorini 2022)
- ▶ Inflation projections by monetary authorities to gain further prominence in expectations management and serve as an additional policy tool:
 - with low interest rates and low inflation to stabilize economic conditions (Coibion et al., 2020).

- ▶ Inflation forecasts at the core of central bank communication especially for monetary authorities targeting inflation
 - Central banks forecasts can affect private sector's expectations (Fujuwara 2005, Hubert 2015, Lyziak and Paloviita 2017, 2018, D'Acunto, Fuster and Weber 2022, Granziera, Larsen, Meggiorini 2022)
- ▶ Inflation projections by monetary authorities to gain further prominence in expectations management and serve as an additional policy tool:
 - with low interest rates and low inflation to stabilize economic conditions (Coibion et al., 2020).
 - in make up strategies create the expectation that inflation will over(under)shoot its target

- ► Inflation forecasts at the core of central bank communication especially for monetary authorities targeting inflation
 - Central banks forecasts can affect private sector's expectations (Fujuwara 2005, Hubert 2015, Lyziak and Paloviita 2017, 2018, D'Acunto, Fuster and Weber 2022, Granziera, Larsen, Meggiorini 2022)
- ▶ Inflation projections by monetary authorities to gain further prominence in expectations management and serve as an additional policy tool:
 - with low interest rates and low inflation to stabilize economic conditions (Coibion et al., 2020).
 - in make up strategies create the expectation that inflation will over(under)shoot its target
 - in anchoring of inflation expectations when inflation surges

- ► Inflation forecasts at the core of central bank communication especially for monetary authorities targeting inflation
 - Central banks forecasts can affect private sector's expectations (Fujuwara 2005, Hubert 2015, Lyziak and Paloviita 2017, 2018, D'Acunto, Fuster and Weber 2022, Granziera, Larsen, Meggiorini 2022)
- ▶ Inflation projections by monetary authorities to gain further prominence in expectations management and serve as an additional policy tool:
 - with low interest rates and low inflation to stabilize economic conditions (Coibion et al., 2020).
 - in make up strategies create the expectation that inflation will over(under)shoot its target
 - in anchoring of inflation expectations when inflation surges

- Accuracy of published forecasts deteriorated during the financial crisis (NY FED: Potter 2012, ECB and NY FED: Alessi, Ghysel Onorante Peach and Potter 2014, MPC BoE: Stockton 2012, BoE DSGE: Fawcett, Koerber Masolo and Waldron 2015)
- ▶ Following the 2007-2008 financial crisis many monetary authorities consistently overestimated inflation (Riksbank: Iversen Laseen Lundvall and Soderstrom 2016, ECB: Kontogeorgos and Lambrias 2019)
- Repeated large and systematic projection errors may:
 - increase the risk of deanchoring of inflation expectations
 - deteriorate the credibility of the monetary authority

ECB Projections Under Scrutiny

ECB Forecasting Is A Joke

Jan. 21, 2019 6:48 AM ET | FXE, VGK, EUO

Bruegel: ECB's huge forecasting errors undermine credibility of current forecasts

In the past five years ECB forecasts have proven to be systematically incorrect. Such forecast errors raise serious doubts about the reliability of the ECB's current forecast. By Konstantinos Efstathiou and Francesco Papadia
12 December 2018

ECB Projections 1999Q1-2021Q4

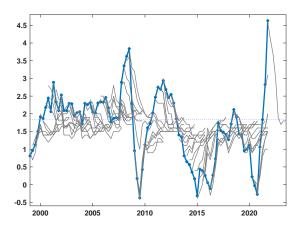


Figure: Actual year-over -year Harmonized Index of Consumer Prices Inflation (HICP), solid blue line with marker, and ECB Quarterly Projections for 1999Q1-2021Q4, grey lines. Projections are produced for the current and following two calendar years, i.e. up to eleven quarters ahead in Q1 and for at most eight quarters ahead in Q4.

ECB Inflation Projections

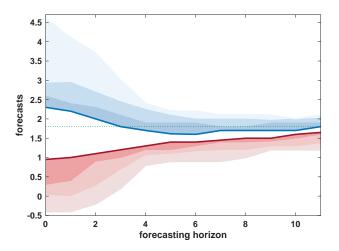


Figure: ECB Projections for HICP Inflation 1999Q1-2021Q4. Shaded areas mark the maximum (blue) and minimum (red) projections, 10^{th} and 25^{th} (75^{th} and 90^{th}) percentiles and the medians (solid lines) conditional on whether inflation was above or below 1.8% (green dotted line) during each projection exercise.

▶ Are Eurosystem/ECB staff projections for inflation unbiased?

- ► Are Eurosystem/ECB staff projections for inflation unbiased?
 - ► Yes, on average

- ▶ Are Eurosystem/ECB staff projections for inflation unbiased?
 - ► Yes, on average
- Are properties of the projections state dependent (on the level of inflation)?

- ► Are Eurosystem/ECB staff projections for inflation unbiased?
 - ► Yes, on average
- Are properties of the projections state dependent (on the level of inflation)?
 - ▶ apply a new test for state dependent forecast accuracy/unbiasedness (Odendhals et al. 2022)
 - state is defined on level of inflation at the time of forecasting

- ► Are Eurosystem/ECB staff projections for inflation unbiased?
 - ► Yes, on average
- Are properties of the projections state dependent (on the level of inflation)?
 - ▶ apply a new test for state dependent forecast accuracy/unbiasedness (Odendhals et al. 2022)
 - state is defined on level of inflation at the time of forecasting
 - ▶ ECB overpredicts (underpredicts) when inflation is below (above) target
- Can exogenous assumptions explain these properties of forecasts?

- ► Are Eurosystem/ECB staff projections for inflation unbiased?
 - ► Yes, on average
- Are properties of the projections state dependent (on the level of inflation)?
 - ▶ apply a new test for state dependent forecast accuracy/unbiasedness (Odendhals et al. 2022)
 - state is defined on level of inflation at the time of forecasting
 - ightharpoonup ECB overpredicts (underpredicts) when inflation is below (above) target
- Can exogenous assumptions explain these properties of forecasts?
 - ▶ Partially, but not fully account for bias

- ► Are Eurosystem/ECB staff projections for inflation unbiased?
 - ► Yes, on average
- Are properties of the projections state dependent (on the level of inflation)?
 - apply a new test for state dependent forecast accuracy/unbiasedness (Odendhals et al. 2022)
 - state is defined on level of inflation at the time of forecasting
 - ▶ ECB overpredicts (underpredicts) when inflation is below (above) target
- Can exogenous assumptions explain these properties of forecasts?
 - ▶ Partially, but not fully account for bias

- ► Testing for bias (methodological):
 - Mincer and Zarnowitz (1969), Holden and Peel (1990), Odendhals, Rossi and Sekhposyan (2022)

- ► Testing for bias (methodological):
 - Mincer and Zarnowitz (1969), Holden and Peel (1990), Odendhals, Rossi and Sekhposyan (2022)
- Evaluation of central banks' forecasts:
 - Romer and Romer (2000), Clements et al. (2007), Capistran (2008), Sinclair et al. (2010), Charemza and Ladley (2016), El Shagi et al. (2016), Gomez-Barrero and Parra-Polania (2014), KL (2019), Messina et al. (2015), Arai (2016)

- ► Testing for bias (methodological):
 - Mincer and Zarnowitz (1969), Holden and Peel (1990), Odendhals, Rossi and Sekhposyan (2022)
- Evaluation of central banks' forecasts:
 - Romer and Romer (2000), Clements et al. (2007), Capistran (2008),
 Sinclair et al. (2010), Charemza and Ladley (2016), El Shagi et al. (2016),
 Gomez-Barrero and Parra-Polania (2014), KL (2019), Messina et al. (2015), Arai (2016)
- ▶ Time varying or state dependent properties of central banks' forecasts:
 - Capistran (2008), El Shagi et al. (2016), Rossi and Sekhposyan (2016), Kontogeorgos and Lambrias (2019)
 - Sinclair et al. (2010), Messina et al. (2015), Herbert (2021)

- ► Testing for bias (methodological):
 - Mincer and Zarnowitz (1969), Holden and Peel (1990), Odendhals, Rossi and Sekhposyan (2022)
- Evaluation of central banks' forecasts:
 - Romer and Romer (2000), Clements et al. (2007), Capistran (2008),
 Sinclair et al. (2010), Charemza and Ladley (2016), El Shagi et al. (2016),
 Gomez-Barrero and Parra-Polania (2014), KL (2019), Messina et al. (2015), Arai (2016)
- ▶ Time varying or state dependent properties of central banks' forecasts:
 - Capistran (2008), El Shagi et al. (2016), Rossi and Sekhposyan (2016), Kontogeorgos and Lambrias (2019)
 - Sinclair et al. (2010), Messina et al. (2015), Herbert (2021)
- ► Analysis of ECB forecasts:
 - ▶ time varying: Fisher et al. (2009), Alessi et al. (2014), Angelini et al. (2019), Kontogeorgos and Lambrias (2019) ▶ ECB vs FED

- ► Testing for bias (methodological):
 - Mincer and Zarnowitz (1969), Holden and Peel (1990), Odendhals, Rossi and Sekhposyan (2022)
- Evaluation of central banks' forecasts:
 - Romer and Romer (2000), Clements et al. (2007), Capistran (2008),
 Sinclair et al. (2010), Charemza and Ladley (2016), El Shagi et al. (2016),
 Gomez-Barrero and Parra-Polania (2014), KL (2019), Messina et al. (2015), Arai (2016)
- ▶ Time varying or state dependent properties of central banks' forecasts:
 - Capistran (2008), El Shagi et al. (2016), Rossi and Sekhposyan (2016), Kontogeorgos and Lambrias (2019)
 - Sinclair et al. (2010), Messina et al. (2015), Herbert (2021)
- ► Analysis of ECB forecasts:
 - ▶ time varying: Fisher et al. (2009), Alessi et al. (2014), Angelini et al. (2019), Kontogeorgos and Lambrias (2019) ▶ ECB vs FED

Testing for State Dependent Forecast Performance

Test of state dependent forecast performance by Odendahl et al. (2022)

$$Loss_{t,h} = X_t' \mu_h + X_t' \theta_h G(S_t; \gamma_h) + u_{t+h|t}$$
(1)

with X_t a $(k_1 \times 1)$ vector of explanatory variables, S_t observable variable introducing state dependence, γ_h a parameter, $G(\cdot)$ a nonlinear function.

Null hypothesis of unbiasedness:

$$E\left(Loss_{t,h}\right) = 0\tag{2}$$

Alternative

$$E\left(Loss_{t,h}\right) = X_t' \mu_h + X_t' \theta_h G\left(S_t; \gamma_h\right) \tag{3}$$

$$H_0: \mu_h = \theta_h = 0 \qquad H_A: \mu_h \neq 0, \theta_h \neq 0$$
 (4)

- Advantages
 - Other tests lack power against the alternative of parametric state dependence (Giacomini and Rossi, 2010: Amisano and Giacomini, 2007)
- Inference:
 - Problem of a nuisance parameter (threshold) that is present only under the alternative, which makes standard asymptotic inference invalid

Testing for Bias

Loss function:

$$Loss_{t,h} = y_{t+h} - y_{t+h|t} = \epsilon_{t,h} \tag{5}$$

▶ Linear Model (Holden and Peel, 1990):

$$\epsilon_{t,h} = \mu_h + u_{t+h|t} \tag{6}$$

with X_t set to 1. Then, the null of unbiasedness is simply $\mu_h = 0$.

- Overall, does the ECB systematically under(over) predict inflation?
- State Dependent Model

$$\epsilon_{t,h} = \mu_h + \theta_h G(S_t; \gamma_h) + u_{t+h|t} \tag{7}$$

• We assume $G(S_t; \gamma_h)$ is a threshold regression model:

$$G\left(S_{t};\gamma_{h}\right) = \mathbb{1}\left(S_{t} \geq \gamma_{h}\right). \tag{8}$$

i.e. expected value of $\epsilon_{t,h}$ might differ according on whether S_t is above or below the unknown threshold γ_h

 \triangleright Given the functional form assumed for $G(\cdot)$, the state dependent model leads to:

$$E\left(\epsilon_{t,h}\right) = \left\{ \begin{array}{cc} \mu_h & \text{if } S_t < \gamma_h \\ \mu_h + \theta_h & \text{if } S_t \ge \gamma_h \end{array} \right.$$

Does ECB under(over) predict inflation when inflation is above/below a certain value?

Testing for State Dependent Bias: Previous Studies

► Same null hypothesis of unbiasedness:

$$E\left(\epsilon_{t,h}\right) = 0\tag{9}$$

Alternative

$$E\left(\epsilon_{t,h}\right) = \mu_h + \theta_h G\left(S_{t+h}; \gamma^*\right) \tag{10}$$

- Differences with our approach
 - S_{t+h}, variable that defines the state observed when target variable is realized
 - \triangleright S_{t+h} usually output
 - ▶ $G(S_{t+h}; \gamma^*)$ is a dummy variable that takes value one if $S_{t+h} \ge \gamma^*$ with γ^* chosen by the researcher
- ▶ Questions:
 - previous studies: did the FED under/over predict inflation in its projections made in 2008Q1 for 2009Q1, given that we observe a negative output gap in 2009Q1?
 - our study: will the ECB under/over predict inflation for 2009Q1 in its projections made in 2008Q1, given that in 2008Q1 the ECB observes that inflation is high?

Implementation

- Dataset: Quarterly Eurosystem/ECB staff projections for yoy overall HICP inflation over 1999Q1-2021Q4 from nowcasting till 8 quarters ahead
 - ▶ 92 (84) observations for nowcasting (eight quarters ahead)
 - ECB staff (March and September), ECB staff + experts in national central banks (June and December)
 - monthly inflation projections are provided by national central bank experts for up to 11 months (NIPE).
 - external assumptions, combination of models, expert knowledge, judgement
 - forecasts evaluated against latest available vintage (2022Q1) as revisions for inflation series negligible
- \triangleright State variable S_t :
 - approximate the information set available to the staff at the time of forecasting
 - cutoff dates approximately between week 6 and 8 of the quarter
 - ECB observes: previous quarter yoy inflation rate (π_{t-1}^Q) , first month yoy inflation of current quarter (π_t^{M1})

Results: Bias

$$\epsilon_{t,h} = y_{t+h} - y_{t+h|t} = \mu_h + \theta_h G(S_t; \gamma_h) + u_{t+h|t}$$
 (11)

	Forecast Horizon									
	Single							Pooled		
h =	0	1	2	3	4	5	0 - 5	0 - 8		
	Panel A: Linear Model									
u_h	-0.02	0.04	0.09	0.14	0.16	0.18	0.10**	0.09*		
	(0.01)	(0.04)	(0.07)	(0.10)	(0.13)	(0.14)	(0.05)	(0.05)		
R^2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
			Panel	B: State	Depende	nt Mode	el.			
μ_h	0.01	-0.03	-0.07	-0.07	-0.09	-0.07	-0.05	-0.03		
	(0.04)	(0.05)	(0.10)	(0.14)	(0.17)	(0.18)	(0.05)	(0.06)		
θ_h	-0.08*	0.14*	0.29**	0.39**	0.46*	0.45	0.28***	0.22***		
	(0.04)	(0.08)	(0.14)	(0.19)	(0.26)	(0.29)	(0.08)	(0.08)		
γ_h	2.27	1.80	1.80	1.80	1.80	1.80	1.80	1.80		
p - val	0.14	0.16	0.06	0.06	0.16	0.14	0.05	0.06		
R^2	0.07	0.02	0.06	0.07	0.06	0.05	0.05	0.02		

Table: Note: R^2 is the adjusted R^2 . Newey-West standard errors are in parenthesis. Stars denote the 10% (*), 5% (**) and 1% (***) significance level.

Bias Results: Discussion

- No bias in the linear model
- ▶ Evidence of bias in the state dependent model:
 - ▶ ECB systematically overpredicts (underpredicts) inflation when inflation is below (above) the target
 - negative and positive errors cancel out so no bias on average
- ▶ Bias is larger in absolute value when inflation is above target
 - \blacktriangleright μ average of -0.05 when $S_t < \gamma$
 - $\mu + \theta$ average of 0.23 when $S_t \ge \gamma$
- ▶ Evidence of bias stronger at the medium horizon
 - bias is larger for intermediate horizons 3, 4, 5
 - $\mu + \theta$ average of 0.36 over h = 3, 4, 5 latest surveys
- Threshold value γ consistent with ECB implicit target estimated by Hartmann and Smets (2018), Rostagno et al. (2019) threshold

Bias in the Literature

- No Bias: Greenbook (Clements et al. 2007); FOMC 2009-2015 (Arai 2016); Greenbook over 1986-2006 (El Shagi et al. 2016); Greenbook overall and conditioning on recession (Messina et al. 2015), Kontogeorgeos and Lambrias (2019)
- Bias: Greenbook, underprediction till 1975, overprediction after 1979 (Capistran 2008); Greenbook over recessions and/or inflation cycles Sinclair et al. (2010); Greenbook over rolling samples El Shagi et al. (2016); positive bias of BMPE forecasts (Fisher et al. 2009); six small open economies 2000-2013 (Gomez-Barrero and Parra-Polania 2014); 12-24 months forecasts of core from 10 small open economies (Charemza and Ladley 2016); Kontogeorgeos and Lambrias (2019) for intermediate horizons under prediction in early part of the sample, over-prediction during 2010-2013
- Biased forecast not necessarily irrational. Theoretical models attribute empirical bias to:
 - ▶ asymmetric loss function: Capistran (2008)
 - ▶ strategic communication: Gomez-Barrero and Parra-Polania (2014)
 - ▶ heterogeneous agents beliefs: Herbert (2020)
 - ▶ distortion from MPC voting system: Charemza and Ladley (2016)

ECB External Assumptions

- ► ECB/Eurosystem projections rely on set of assumptions on international environment: can the errors in these exogenous variables drive the errors in inflation forecasts?
- External assumptions:
 - short term interest rates (3month Euribor): constant through the forecast horizons till 2006Q1, afterwards market expectations derived from futures rates
 - exchange rates (EUR/USD): random walk, average over previous two weeks
 - oil prices: average futures price of Brent crude oil over previous two weeks
- ► Exogenous conditioning assumptions, not affected by ECB inflation projections published in the same quarter
- Dataset:
 - not publicly available at the quarterly frequency
 - ▶ sample starts in 2001Q3 for oil prices

Bias: The Role of External Assumptions

- Are the forecast errors in the external assumptions driving the state dependent bias?
- Ideally re-run the models conditioning on realized values for the external assumptions
- But, unable to construct such counterfactual series based on the forecasting models used in real time or to include the ECB expert judgement.
- ▶ Feasible alternative: test whether bias still present after controlling for the errors in the external assumptions

$$\epsilon_{t,h} = \mu_{1,h} + \mu_{2,h}\zeta_{t,h} + \theta_h G(S_t; \gamma_h) + u_{t+h|t}$$
 (12)

with $\zeta^i_{t,h}=z^i_t-z^i_{t|t-h}$ and z^i_t the realization and $z^i_{t|t-h}$ assumed value

▶ Rationale: if systematic errors in the external assumptions were driving the forecast errors, then the nonlinear term should not have additional explanatory power. ▶ bias in external

Results: Bias and External Assumptions

$$\epsilon_{t,h} = \mu_{1,h} + \mu_{2,h}\zeta_{t,h} + \theta_h G(S_t; \gamma) + u_{t+h|t}$$

(13)

h =	0	1	2	3	4	5	0 - 5	0 - 8
			Pa	anel A: Int	erest Rate	es		
$u_{1,h}$	0.00	-0.04	-0.08	-0.09	-0.12	-0.11	-0.07	-0.04
-,	(0.02)	(0.05)	(0.10)	(0.15)	(0.19)	(0.21)	(0.06)	(0.07)
9_h	-0.03	0.16***	0.33***	0.45***	0.55***	0.55**	0.32***	0.30***
- 11	(0.03)	(0.07)	(0.14)	(0.20)	(0.25)	(0.27)	(0.09)	(0.09)
$\mu_{2,h}$	-0.11	0.22	0.27*	0.26	0.23	0.15	0.17**	0.19***
-,	(0.21)	(0.15)	(0.17)	(0.17)	(0.18)	(0.17)	(0.08)	(0.06)
R^2	0.00	0.04	0.11	0.11	0.10	0.08	0.08	0.08
			Pa	nel B: Exc	hange Ra	te		
$u_{1,h}$	0.00	-0.05	-0.08	-0.10	-0.13	-0.10	-0.07	-0.03
-,	(0.02)	(0.06)	(0.10)	(0.15)	(0.19)	(0.20)	(0.06)	(0.07)
θ_h	-0.03	0.16***	0.30***	0.42**	0.48*	0.41	0.28***	0.15*
	(0.03)	(0.08)	(0.14)	(0.20)	(0.26)	(0.29)	(0.09)	(0.09)
$\iota_{2,h}$	-0.39	-0.93	0.12	-0.02	-0.50	1.17	0.66	1.72**
2,70	(1.01)	(0.71)	(0.83)	(1.02)	(1.14)	(1.17)	(0.49)	(0.42)
R^2	0.00	0.03	0.06	0.06	0.07	0.09	0.07	0.09
				Panel C: 0	Oil Prices			
$\iota_{1,h}$	0.00	-0.03	-0.10	-0.14	-0.19	-0.21	-0.11*	-0.11
	(0.02)	(0.04)	(0.09)	(0.14)	(0.19)	(0.20)	(0.06)	(0.07)
θ_h	-0.02	0.08	0.26**	0.40**	0.50**	0.56**	0.29***	0.26***
	(0.03)	(0.06)	(0.13)	(0.19)	(0.25)	(0.27)	(0.08)	(0.09)
$\mu_{2,h}$	0.01***	0.01***	0.01***	0.01*	0.01	0.01	0.01***	0.01***
	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)
\mathbb{R}^2	0.07	0.41	0.21	0.14	0.12	0.13	0.15	0.09

Table: Note: R^2 is the adjusted R^2 . Newey-West standard errors are in parenthesis. Stars denote the 10% (*), 5% (**) and 1% (***) significance level. The state dependent model assumes that the threshold γ_h is known and fixed at 1.80

Bias and Exogenous Assumptions Results: Discussion

- Evidence of state dependent bias after controlling for the errors in exogenous assumptions:
 - magnitude unaffected
 - significance unaltered
- ▶ When conditioning on interest rates:
 - ▶ significance of non-linear term for all horizons except nowcast
 - interest rates errors significant only for h=2
- ▶ When conditioning on exchange rate:
 - significance of non-linear term at short and intermediate horizons for h = 1 4 and pooled
 - exchange rates errors significant only when all horizons are pooled
- When conditioning on oil prices:
 - ▶ significance of non-linear term from h=2, and pooled
 - rrors in oil prices significant in the short horizons h = 0 3

Robustness Analysis

- Results are robust to:
 - ▶ alternative assumptions on the information set available to the ECB at the time of forecasting: ▶ infoset
 - nowcast
 - actual inflation
 - first month only
 - last three months
 - ▶ using a known threshold, $\gamma \leq 1.8$ ▶ known gamma
 - conditioning on when inflation is realized timing dummy
 - ► exclusion of COVID period ► sample

Conclusions

- ▶ We document three novel findings regarding the ECB inflation forecasts:
 - ▶ a systematic bias towards the target, which implies over (under) prediction when inflation is low (high);
 - a larger bias when inflation is above the target
 - bias larger at medium horizons
- Results robust to:
 - assumption on information set
 - excluding COVID sample
- ▶ How can we explain the state dependent bias?
 - external assumptions not enough
- ► Further Investigation
 - dynamics of forecasting models
 - expert judgement/strategic communication motives

- ► Mandate
 - ► ECB: price stability
 - ► FED: dual mandate

- ► Mandate
 - ► ECB: price stability
 - ► FED: dual mandate
- ► Inflation Target:
 - ▶ ECB (till July 2021): keep inflation below, but close to 2%.
 - ▶ FED (formally since 2012): low and stable inflation at the rate of 2%

- ► Mandate
 - ► ECB: price stability
 - ► FED: dual mandate
- ► Inflation Target:
 - ▶ ECB (till July 2021): keep inflation below, but close to 2%.
 - ▶ FED (formally since 2012): low and stable inflation at the rate of 2%

- ► Mandate
 - ► ECB: price stability
 - ► FED: dual mandate
- ► Inflation Target:
 - ► ECB (till July 2021): keep inflation below, but close to 2%.
 - ▶ FED (formally since 2012): low and stable inflation at the rate of 2%
- ► Forecasts:
 - ▶ ECB publishes staff forecasts, released in the same quarter, which are presented to the GC before the policy rate deliberations
 - ► FED produces two sets of forecasts: staff forecasts (Tealbook) confidential for 5 years; FOMC forecasts released same quarter

- ► Mandate
 - ► ECB: price stability
 - ► FED: dual mandate
- ► Inflation Target:
 - ► ECB (till July 2021): keep inflation below, but close to 2%.
 - ▶ FED (formally since 2012): low and stable inflation at the rate of 2%
- ► Forecasts:
 - ▶ ECB publishes staff forecasts, released in the same quarter, which are presented to the GC before the policy rate deliberations
 - ► FED produces two sets of forecasts: staff forecasts (Tealbook) confidential for 5 years; FOMC forecasts released same quarter

▶ Back

Inflation Above Threshold

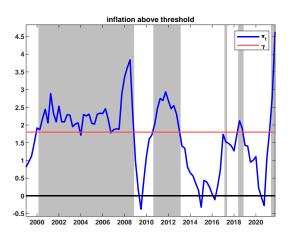


Figure: Actual year-over -year Harmonized Index of Consumer Prices Inflation (HICP), solid blue line, estimated threshold, red solid line, quarters in which observed inflation S_t is above the threshold, grey shaded areas.

SPF Long Term Inflation Expectations

Longer-term inflation expectations

(annual percentage changes) Average point forecast Median point forecast Mean of the aggregate probability distribution 2.1 2.0 1.9 1.7 1.6 1.5 2021 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

Outline

- ► Testing Framework
 - ► State Dependent Bias and Efficiency
 - ► Alternative Tests
- ► Implementation Details
- ► Bias:
 - Results
 - ► External Assumptions
 - ► Robustness
- ► Efficiency:
 - ► Results
 - Discussion
- Conclusions

Bias Sample 1999Q4-2019Q4

				Forecas	t Horizon			
			Single				Poo	oled
h =	0	1	2	3	4	5	0 - 5	0 - 8
			Pa	anel A: L	ınear M	odel		
μ_h	-0.02	0.05	0.10	0.14	0.16	0.17	0.10**	0.10*
	(0.01)	(0.04)	(0.07)	(0.11)	(0.14)	(0.14)	(0.05)	(0.05)
R^2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				3: State	-			
μ_h	0.01	0.00	-0.02	-0.06	-0.07	-0.08	-0.04	-0.03
	(0.04)	(0.05)	(0.09)	(0.13)	(0.16)	(0.18)	(0.05)	(0.05)
θ_h	-0.08**	0.10	0.23*	0.38*	0.42	0.46	0.25***	0.19***
	(0.04)	(0.08)	(0.14)	(0.20)	(0.27)	(0.29)	(0.08)	(0.08)
γ_h	2.27	1.81	1.81	1.81	1.81	1.80	1.81	1.81
p - val	0.14	0.27	0.10	0.08	0.22	0.14	0.00	0.02
R^2	0.07	0.00	0.03	0.05	0.05	0.02	0.04	0.01

Bias: Known Threshold

$$\epsilon_{t,h} = y_{t+h} - y_{t+h|t} = \mu_h + \theta_h d\left(S_t > \gamma^*\right) + u_{t+h|t} \tag{14}$$

				Forecas	t Horizon	ı		
			Single				Poo	oled
h =	0	1	2	3	4	5	0 - 5	0 - 8
		Р	anel A: S	tate Dep	endent N	Model: γ	= 1.8	
μ	0.00	-0.03	-0.07	-0.07	-0.09	-0.07	-0.05	-0.03
	(0.02)	(0.05)	(0.10)	(0.14)	(0.18)	(0.20)	(0.06)	(0.07)
θ	-0.03	0.14*	0.29**	0.39**	0.46*	0.45*	0.28***	0.22***
	(0.03)	(0.07)	(0.13)	(0.19)	(0.25)	(0.27)	(0.08)	(0.09)
R^2	0.00	0.02	0.06	0.07	0.06	0.05	0.05	0.02
		Р	anel B: S	tate Dep	endent N	Model: γ	= 1.9	
μ	0.00	0.02	0.04	0.07	0.14	0.15	0.07	0.07
	(0.02)	(0.05)	(0.09)	(0.14)	(0.18)	(0.20)	(0.06)	(0.06)
θ	-0.04	0.05	0.11	0.17	0.06	0.07	0.07	0.05
	(0.03)	(0.07)	(0.14)	(0.21)	(0.27)	(0.29)	(0.09)	(0.10)
R^2	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		P	anel C: S	tate Dep	endent N	Model: γ	= 1.7	
μ	0.00	-0.03	-0.06	-0.08	-0.09	-0.09	-0.06	-0.04
	(0.02)	(0.05)	(0.10)	(0.15)	(0.19)	(0.20)	(0.06)	(0.07)
θ	-0.03	0.13*	0.28**	0.39**	0.45*	0.48*	0.28***	0.24***
	(0.03)	(0.07)	(0.13)	(0.20)	(0.25)	(0.27)	(0.08)	(0.09)
R^2	0.00	0.02	0.06	0.07	0.05	0.06	0.05	0.03

Results: Bias When Inflation Realized

$$\epsilon_{t,h} = y_{t+h} - y_{t+h|t} = \mu_h + \theta_h G(S_{t+h}; \gamma) + u_{t+h|t}$$
 (15)

				Foreca	st Horizon			
			\mathbf{Single}				Poo	oled
h =	0	1	2	3	4	5	0 - 5	0 - 8
				Panel A: l	Linear Mo	del		
μ	-0.02	0.04	0.09	0.14	0.16	0.18	0.10**	0.09*
	(0.01)	(0.04)	(0.07)	(0.10)	(0.13)	(0.14)	(0.05)	(0.05)
R^2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				l B: State	•		0.00	o a a de de de de
μ	0.01 (0.04)	-0.06 (0.08)	-0.20 (0.14)	-0.32 (0.21)	-0.44* (0.28)	-0.51* (0.31)	-0.28*** (0.08)	-0.44*** (0.08)
θ	-0.08*	0.24***	0.60***	0.96***	1.28***	1.41***	0.74***	0.99***
	(0.04)	(0.08)	(0.12)	(0.17)	(0.20)	(0.20)	(0.08)	(0.08)
γ	2.27	1.87	1.84	1.89	1.94	1.94	1.84	1.81
p-val	0.14	0.03	0.00	0.00	0.00	0.00	0.00	0.00
R^2	0.07	0.07	0.21	0.36	0.45	0.52	0.27	0.37

Bias: Alternative Observed Inflation: I

			Sir	ıgle			Poo	oled
h =	0	1	2	3	4	5	0 - 5	0 - 8
				Panel A	: Nowca	st		
μ	0.00	-0.02	-0.07	-0.09	-0.09	-0.11	-0.06***	-0.04***
	(0.04)	(0.06)	(0.10)	(0.14)	(0.17)	(0.18)	(0.05)	(0.06)
θ	-0.06	0.11	0.29***	0.42***	0.46*	0.52**	0.29***	0.24***
	(0.04)	(0.08)	(0.13)	(0.18)	(0.24)	(0.26)	(0.07)	(0.08)
γ	2.30	1.80	1.80	1.80	1.80	1.80	1.80	1.80
p_{val}	0.25	0.23	0.05	0.03	0.14	0.10	0.00	0.01
R^2	0.03	0.01	0.07	0.08	0.06	0.08	0.06	0.03
			Pa	nel B: Ex	-Post Re	alized		
μ	0.00	-0.03	-0.06	-0.07	-0.07	-0.05	-0.05	-0.00
	(0.03)	(0.06)	(0.10)	(0.14)	(0.17)	(0.17)	(0.05)	(0.05)
θ	-0.04	0.14*	0.30***	0.43***	0.46*	0.44*	0.28***	0.20***
	(0.03)	(0.08)	(0.13)	(0.18)	(0.24)	(0.25)	(0.07)	(0.08)
γ	1.88	1.87	1.87	1.87	1.87	1.87	1.87	1.92
p_{val}	0.33	0.18	0.05	0.03	0.15	0.14	0.00	0.00
R^2	0.01	0.03	0.07	0.09	0.06	0.05	0.06	0.02

Bias: Alternative Observed Inflation: II

			Sing	gle			Poo	oled
h =	0	1	2	3	4	5	0 - 5	0 - 8
		Pa	anel C: Fi	rst Month	of Curr	ent Quar	ter	
и	0.00	-0.02	-0.05	-0.07	-0.05	-0.05	-0.04	-0.00
	(0.03)	(0.05)	(0.09)	(0.13)	(0.16)	(0.17)	(0.05)	(0.05)
9	-0.05*	0.12*	0.27***	0.40***	0.39	0.42	0.26***	0.19***
	(0.02)	(0.07)	(0.13)	(0.18)	(0.25)	(0.27)	(0.07)	(0.08)
γ	2.22	1.76	1.76	1.76	1.76	1.71	1.76	1.79
p_{val}	0.28	0.22	0.07	0.04	0.20	0.15	0.00	0.01
R^2	0.01	0.12	0.23	0.38	0.48	0.56	0.28	0.38
			Panel	D: Last	Three M	onths		
и	0.01	-0.03	-0.08	-0.09	-0.07	-0.01	-0.05	-0.03
	(0.04)	(0.05)	(0.10)	(0.14)	(0.18)	(0.19)	(0.05)	(0.06)
9	-0.08***	0.14*	0.31***	0.43***	0.46*	0.45	0.28***	0.22***
	(0.04)	(0.07)	(0.13)	(0.19)	(0.25)	(0.28)	(0.08)	(0.08)
γ	2.23	1.67	1.67	1.67	1.78	1.78	1.78	1.78
p_{val}	0.11	0.15	0.04	0.04	0.15	0.14	0.00	0.01
R^2	0.01	0.01	0.05	0.07	0.04	0.04	0.04	0.02

Bias in Exogenous Assumptions: Short Term Rate

$$\zeta_{t,h} = y_{t+h} - y_{t+h|t} = \mu_h + \theta_h G(S_t; \gamma_h) + u_{t+h|t}$$
(16)

				Forecas	t Horizon			
			Single				Poo	oled
h =	0	1	2	3	4	5	0 - 5	0 - 8
			,	Panel A: I	incon Ma	adal		
h.	-0.01	-0.03	-0.05	-0.10	-0.19	-0.26	-0.11***	-0.24***
**	(0.01)	(0.03)	(0.06)	(0.09)	(0.12)	(0.14)	(0.04)	(0.06)
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		1	Panel B: S	State Depe	endent M	odel, Fiz	$\mathbf{ced} \ \gamma$	
h	0.00	0.00	-0.01	-0.03	-0.08	-0.15	-0.04	-0.15*
	(0.01)	(0.05)	(0.10)	(0.14)	(0.18)	(0.21)	(0.06)	(0.09)
h	-0.03	-0.06	-0.07	-0.13	-0.19	-0.19	-0.11	-0.16
	(0.02)	(0.07)	(0.13)	(0.18)	(0.23)	(0.28)	(0.08)	(0.12)
\mathbb{R}^2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Pa	nel C: Sta	ate Depen	dent Mod	del, Unk	nown γ	
ι_h	0.01	0.02	0.02	0.03	0.00	-0.07	0.00	-0.11
	(0.02)	(0.07)	(0.13)	(0.19)	(0.27)	(0.34)	(0.09)	(0.12)
h	-0.03*	-0.12*	-0.20**	-0.36**	-0.53*	-0.55	-0.29***	-0.38***
	(0.01)	(0.08)	(0.14)	(0.18)	(0.24)	(0.29)	(0.08)	(0.10)
'h	1.81	2.01	2.10	2.13	2.13	2.13	2.13	2.13
-val	0.47	0.43	0.53	0.30	0.16	0.19	0.01	0.00
\mathcal{E}^2	0.03	0.03	0.03	0.07	0.11	0.08	0.07	0.05

Bias in Exogenous Assumptions: Exchange Rate

$$\zeta_{t,h} = y_{t+h} - y_{t+h|t} = \mu_h + \theta_h G(S_t; \gamma_h) + u_{t+h|t}$$
(17)

				Forec	ast Horizo	n		
			Single				Poo	oled
h =	0	1	2	3	4	5	0 - 5	0 - 8
					Linear N			
μ_h	0.00	0.00	0.01	0.01	0.01	0.02	0.01	0.01
	(0.00)	(0.01)	(0.01)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)
R^2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Panel B:	State Dep	pendent I	Model, Fix	$ed \gamma$	
μ_h	0.00	-0.01	-0.01	-0.03	-0.02	-0.03	-0.02***	-0.03***
	(0.00)	(0.01)	(0.02)	(0.02)	(0.03)	(0.03)	(0.01)	(0.01)
θ_h	0.00	0.02*	0.03	0.07***	0.07**	0.09***	0.05***	0.07***
	(0.00)	(0.01)	(0.02)	(0.03)	(0.03)	(0.03)	(0.01)	(0.01)
R^2	0.00	0.02	$0.02^{'}$	0.08	0.07	0.11	0.07	0.10
		P	anel C: S	tate Depe	ndent Mo	odel, Unkr	nown γ	
u_h	0.00	-0.01	-0.01	-0.02	-0.02	-0.03	-0.01	-0.02*
	(0.00)	(0.01)	(0.02)	(0.02)	(0.03)	(0.03)	(0.01)	(0.01)
θ_h	0.01*	0.02*	0.04	0.06**	0.07*	0.09**	0.04***	0.07***
	(0.00)	(0.01)	(0.02)	(0.03)	(0.04)	(0.04)	(0.01)	(0.01)
γ_h	1.83	1.80	1.81	1.81	1.81	1.81	1.83	1.83
p - val	0.30	0.34	0.39	0.20	0.21	0.13	0.00	0.00
R^2	0.02	0.02	0.02	0.06	0.07	0.12	0.05	0.09

Bias in Exogenous Assumptions: Oil Prices

$$\zeta_{t,h} = y_{t+h} - y_{t+h|t} = \mu_h + \theta_h G(S_t; \gamma_h) + u_{t+h|t}$$
 (18)

				Foreca	st Horizon	1		
			Single				Poo	oled
ı =	0	1	2	3	4	5	0 - 5	0 - 8
	0.50	1 00	_	Panel A:			1.01	1 10*
h	0.50	1.62	1.13	0.99	1.01	0.87	1.01	1.10*
2	(0.47)	(1.75)	(2.00)	(1.98)	(2.15)	(2.22)	(0.76)	(0.65)
l^2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				tate Dep				
h	0.43	-1.20	-2.10	-2.36	-0.84	-0.12	-1.00	-0.24
	(0.70)	(2.39)	(2.77)	(2.82)	(3.19)	(3.33)	(1.08)	(0.94)
h	0.12	5.22	5.91	5.89	3.35	1.79	3.65***	2.40*
	(0.94)	(3.26)	(3.75)	(3.73)	(4.28)	(4.47)	(1.45)	(1.26)
\mathbb{R}^2	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00
		Pan	el C: Sta	te Depen	dent Mo	del, Unk	$\mathbf{nown} \gamma$	
ι_h	1.10	-1.88	-2.10	-1.90	2.46	-1.38	-1.00	-0.33
	(0.00)	(0.01)	(0.02)	(0.02)	(0.03)	(0.03)	(0.01)	(0.01)
h	-1.98	6.34*	5.91	5.34**	-5.35*	4.39**	3.65***	2.85***
	(0.00)	(0.01)	(0.02)	(0.03)	(0.04)	(0.04)	(0.01)	(0.01)
/h	2.18	1.71	1.81	1.83	2.20	1.84	1.81	1.84
-val	0.17	0.08	0.39	0.53	0.67	0.42	0.02	0.03
\mathbb{R}^2	0.02	0.02	0.00	0.00	0.00	0.00	0.01	0.01

Results: Bias and External Assumptions: Unknown Gamma

h =	0	1	2	3	4	5	0 - 5	0 - 8
				Panel A: I	nterest Ra	ites		
<i>u</i> ₁	0.01	-0.06	-0.16	-0.26	-0.39	-0.43	-0.23	-0.34
	(0.15)	(0.59)	(0.72)	(0.88)	(1.17)	(1.24)	(0.31)	(0.31)
7	-0.07	0.28	0.59	0.93*	1.27**	1.38***	0.73***	0.95***
	(0.12)	(0.46)	(0.55)	(0.53)	(0.61)	(0.61)	(0.18)	(0.15)
ι ₂	-0.15***	0.47*	0.46	0.37	0.34	0.28	0.33***	0.24*
	(0.06)	(0.25)	(0.31)	(0.36)	(0.47)	(0.49)	(0.13)	(0.13)
Y	2.101	1.868	1.840	1.895	1.895	1.895	1.840	1.840
\mathcal{R}^2	0.04	0.16	0.35	0.47	0.55	0.59	0.36	0.43
				Panel B: E	xchange F	late		
ι1	0.01	-0.07	-0.23	-0.36	-0.48	-0.53	-0.30	-0.42
	(0.40)	(0.23)	(0.54)	(1.47)	(3.18)	(2.53)	(0.82)	(0.70)
)	-0.08	0.25*	0.63**	1.00	1.33	1.43	0.77	1.00**
	(0.36)	(0.13)	(0.30)	(0.93)	(2.30)	(1.72)	(0.56)	(0.45)
ι ₂	-0.36***	-0.03	-0.03	-0.87	-2.27*	-1.60*	-1.15***	-1.10**
-	(0.13)	(0.10)	(0.23)	(0.56)	(1.18)	(0.92)	(0.32)	(0.26)
Y	2.268	1.868	1.840	1.895	1.935	1.935	1.840	1.868
R^2	0.07	0.05	0.25	0.39	0.48	0.49	0.29	0.38
				Panel C	: Oil Price	s		
ι ₁	0.00	-0.03	-0.23	-0.36	-0.49	-0.99	-0.31	-0.48
	(0.06)	(0.28)	(0.53)	(0.84)	(1.20)	(1.24)	(0.32)	(0.33)
)	-0.04	0.29*	0.58*	0.97***	1.32***	1.61*	0.74***	1.01***
	(0.04)	(0.15)	(0.30)	(0.41)	(0.56)	(0.92)	(0.15)	(0.16)
ι_2	0.01	0.02	0.01	0.01	0.01	0.00	0.01	0.01
-	(0.02)	(0.10)	(0.22)	(0.33)	(0.46)	(0.60)	(0.13)	(0.13)
y	2.101	2.361	1.840	1.895	1.935	1.304	1.840	1.814
\mathbb{R}^2	0.09	0.48	0.31	0.37	0.45	0.57	0.31	0.39

Bias: Output as State

				Fo	orecast Ho	orizon				
			Sir	ngle			Poo	Pooled		
h =	0	1	2	3	4	5	0 - 5	0 - 8		
			P	anel A:	Linear M	Iodel				
μ	-0.02	0.03	0.07	0.11	0.13	0.14	0.06	0.07		
	(0.01)	(0.06)	(0.09)	(0.12)	(0.16)	(0.16)	(0.05)	(0.05)		
\mathbb{R}^2	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01		
			Panel	B: State	Depende	ent Mod	el			
μ	0.03	-0.02	-0.01	-0.05	0.01	-0.01	-0.01	-0.03		
	(0.02)	(0.19)	(0.30)	(0.22)	(0.42)	(0.47)	(0.14)	(0.12)		
θ	-0.05	0.31*	0.46	0.41*	0.63	$0.72^{'}$	0.42***	0.50***		
	(0.03)	(0.18)	(0.28)	(0.19)	(0.21)	(0.40)	(0.13)	(0.12)		
γ	-0.10	0.60	0.60	0.40	0.60	0.60	0.60	0.60		
R^2	0.00	0.08	0.07	0.04	0.05	0.06	0.06	0.06		

ECB Projections during COVID

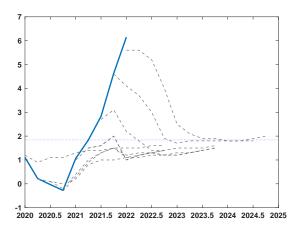


Figure: Actual year-over -year Harmonized Index of Consumer Prices Inflation (HICP), solid blue line with marker, and ECB Quarterly Projections for 2020Q1-2022Q1, grey lines. Projections are produced for the current and following two calendar years, i.e. up to eleven quarters ahead in Q1 and for at most eight quarters ahead in Q4.

Results: Bias in Survey Data, 4 Quarters Ahead

$$\epsilon_{t,h} = \mu_h + \theta_h G(S_t; \gamma) + u_{t+h|t} \tag{19}$$

Source	E0	СВ	SPF	Consensus
		Panel A:	Linear Model	I
μ	0.15		0.11	0.13
	(0.15)		(0.09)	(0.09)
R^2	0.00		0.00	0.00
RMSFE	0.95		0.86	0.86
	Par	nel B: State	Dependent M	Model .
μ	-0.44	-0.51*	-0.47*	-0.36*
	(0.28)	(0.27)	(0.25)	(0.21)
9	1.28***	1.30***	1.17***	0.99***
	(0.20)	(0.19)	(0.18)	(0.19)
γ	1.935	1.839	1.839	1.839
R^2	0.20	0.46	0.38	0.52
$\mu + \theta$	0.84	0.79	0.70	0.63

Table: Note: R^2 is the adjusted R^2 . Newey-West standard errors are in parenthesis. Stars denote the 10% (*), 5% (**) and 1% (***) significance level. RMSFE of naive 1.8% forecast is 0.99. The SPF survey is usually conducted in the second half of the first month of each quarter.

Testing for Efficiency

- Was there additional information readily available to the forecasters that could have been used to improve the accuracy of the projections?
- For $h \ge 1$, define forecast revision between t and t+1 as: $r_{t,h} = y_{t+h|t+1} y_{t+h|t}$,
- Linear Model (Nordhaus, 1987, Coibion and Gorodnichenko 2015):

$$\epsilon_{t,h} = \mu_{1,h} + \mu_{2,h} r_{t,h} + u_{t+h|t} \tag{20}$$

- ▶ Is the forecast error uncorrelated with the previous forecast revision?
- ▶ State Dependent Efficiency Test (Odendhals, Rossi and Sekhposyan 2022):

$$\epsilon_{t,h} = \mu_{1,h} + \mu_{2,h} r_{t,h} + \left(\theta_{1,h} + \theta_{2,h} r_{t,h}\right) G(S_t; \gamma) + u_{t+h|t}$$
 (21)

where $X'_t = [1, r_{t,h}]$

non-linear term: allows for the possibility that ECB revises forecasts differently during high vs low inflation episodes.

Results: Efficiency

$$\epsilon_{t,h} = \mu_{1,h} + \mu_{2,h} r_{t,h} + \left(\theta_{1,h} + \theta_{2,h} r_{t,h}\right) G\left(S_t; \gamma\right) + u_{t+h|t}$$
 (22)

h	= 0	1	2	3	4	5	0 - 4	0 - 7
			Pa	nel A: Lin	ear Mod	lel		
	0.04	0.21*	0.22	0.37	0.04	0.15	0.19	0.13
	(0.04)	(0.11)	(0.21)	(0.30)	(0.78)	(0.95)	(0.14)	(0.17)
	-0.02	0.05	0.09	0.11	0.13	0.13	0.07	0.08
	(0.01)	(0.05)	(0.09)	(0.12)	(0.16)	(0.17)	(0.05)	(0.05)
	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
			B 15					
				3: State De	-			
	0.01	0.06	0.14	0.21	0.26	0.13	0.14*	0.17*
	(0.04)	(0.09)	(0.16)	(0.15)	(0.27)	(0.21)	(0.09)	(0.08)
	0.02	0.09	028	0.45***	0.54	1.23	0.25**	0.24**
	(0.06)	(0.32)	(0.25)	(0.18)	(0.93)	(1.05)	(0.13)	(0.13)
	-0.09***	-0.09	-0.14	-0.22	-0.27	0.11	-0.15	-0.19*
	(0.04)	(0.11)	(0.19)	(0.25)	(0.35)	(0.39)	(0.11)	(0.10)
	0.09	0.34	-0.03	-0.08	-1.36	-2.66	-0.08	-0.18
	(0.08)	(0.40)	(0.28)	(0.32)	(0.94)	(1.61)	(0.16)	(0.16)
	2.101	1.971	2.061	2.101	2.131	1.804	2.101	2.131
2	0.12	0.07	0.03	0.04	0.04	0.07	0.03	0.02

Efficiency Results: Discussion

- No evidence of inefficiency or information rigidities in the linear model
- Some evidence of inefficiency in the state dependent model:
 - $\mu_2 > 0, \, \theta_2 < 0, \, \text{but } \mu_2 + \theta_2 > 0$
 - evidence of underreaction to news
- Smoothing
 - reputational concerns: avoid large and frequent revisions (Scotese (1994), Tillman (2011))
 - when inflation is volatile staff may only partially revise its previous forecast in order to avoid having to reverse the changes incorporated into the new forecast, if subsequent data reverse the earlier movements.
- ► Information rigidities
 - consistent with models of information rigidities, e.g. noisy information model (Coibion and Gorodnichenko (2015)
 - forecasts are weighted average of new information (weight = W) and previous forecasts
 - pooled h, $W = 1/(1 + \mu_2) = 0.80$
 - \blacktriangleright in these models W=1: signal perfectly revealing of state

