The Peer Effect on Future Wages in the Workplace

Long Hong¹ Salvatore Lattanzio²

¹University of Wisconsin - Madison

²Bank of Italy

EEA-ESEM 2022, Bocconi University, Milan August 22-26, 2022

Workplace interaction is a critical component of human capital accumulation

Workplace interaction is a critical component of human capital accumulation

- Network effects
- Peer pressure
- Learning spillovers

Workplace interaction is a critical component of human capital accumulation

- Network effects
- Peer pressure
- Learning spillovers

Sorting among coworkers may explain how wages grow differently for different workers

• Little evidence that quantifies empirically this contribution

Workplace interaction is a critical component of human capital accumulation

- Network effects
- Peer pressure
- Learning spillovers

Sorting among coworkers may explain how wages grow differently for different workers

• Little evidence that quantifies empirically this contribution

Research questions

- 1. How much do coworkers contribute to future wages?
- 2. What are the channels through which this contribution is identified?

Literature review

Coworker quality and wage levels

- Specific workplace (via field experiments) [e.g., Mas and Moretti (2009)]
- Local labor market (using population data) [e.g., Cornelissen et al. (2017); Battisti (2017)]

Coworker quality and wage growth

- Herkenhoff et al. (2018); Jarosch et al. (2019); Nix (2020)
- Limitation: use observables (wage or education) as a measure of quality

Firms as learning environments

• Gregory (2019); Arellano-Bover and Saltiel (2021)

Estimation

• Arcidiacono et al. (2012)

Contribution

• Go beyond contemporaneous effects and analyze dynamics

Contribution

- Go beyond contemporaneous effects and analyze dynamics
- Provide evidence on the channels that identify this contribution
 - **1**. Peers joining the firm
 - 2. Peers leaving the firm
 - 3. Worker moving into different peer group

Effect of peer quality on future wages

Data: Veneto Worker History

Worker records

- \sim 3 million private-sector workers from 1982 to 2001 \rightarrow entire working history
- information on gender, birth year, region or country of birth

Data: Veneto Worker History

Worker records

- \sim 3 million private-sector workers from 1982 to 2001 ightarrow entire working history
- information on gender, birth year, region or country of birth

Firm records

- all firms where any worker has worked across Italy
- information on tax number, location, start and closure dates, industry

Data: Veneto Worker History

Worker records

- \sim 3 million private-sector workers from 1982 to 2001 \rightarrow entire working history
- information on gender, birth year, region or country of birth

Firm records

- all firms where any worker has worked across Italy
- information on tax number, location, start and closure dates, industry

Contribution (wage) records

- wages from each labor contract, without top coding
- weeks worked, basic contract info (e.g., full/part-time), qualification (e.g. blue, white)

Summary statistics

Baseline regression:

$$\mathbf{w}_{i,t+h} = \alpha_i + \beta \bar{\alpha}_{-i,t} + \mathbf{x}'_{it} \gamma + \psi_{jt} + \eta_{ot} + \theta_{oj} + \varepsilon_{it}, \tag{1}$$

• $w_{i,t+h}$ is the log weekly earnings at time t + h, where $h \ge 0$

Baseline regression:

$$\mathbf{w}_{i,t+h} = \alpha_i + \beta \bar{\alpha}_{-i,t} + \mathbf{x}'_{it} \gamma + \psi_{jt} + \eta_{ot} + \theta_{oj} + \varepsilon_{it}, \tag{1}$$

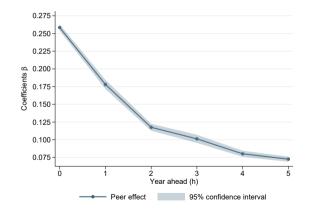
- $w_{i,t+h}$ is the log weekly earnings at time t + h, where $h \ge 0$
- α_i is the worker fixed effect
- $\bar{\alpha}_{-i,t}$ is the *average* coworker's quality at time *t*

Baseline regression:

$$\mathbf{w}_{i,t+h} = \alpha_i + \beta \bar{\alpha}_{-i,t} + \mathbf{x}'_{it} \gamma + \psi_{jt} + \eta_{ot} + \theta_{oj} + \varepsilon_{it}, \tag{1}$$

- $w_{i,t+h}$ is the log weekly earnings at time t + h, where $h \ge 0$
- α_i is the worker fixed effect
- $\bar{\alpha}_{-i,t}$ is the *average* coworker's quality at time *t*
 - Peer group: workers employed in same firm & occupation in a year.

Baseline regression:


$$\mathbf{w}_{i,t+h} = \alpha_i + \beta \bar{\alpha}_{-i,t} + \mathbf{x}'_{it} \gamma + \psi_{jt} + \eta_{ot} + \theta_{oj} + \varepsilon_{it}, \tag{1}$$

- $w_{i,t+h}$ is the log weekly earnings at time t + h, where $h \ge 0$
- α_i is the worker fixed effect
- $\bar{\alpha}_{-i,t}$ is the *average* coworker's quality at time *t*
 - Peer group: workers employed in same firm & occupation in a year.
- **x**_{it} is a set of individual time-varying characteristics
- ψ_{jt} , η_{ot} , θ_{oj} are firm-year, occupation-year, firm-occupation fixed effects

Baseline results

Effects of coworker's quality on future wages (β)

$$\mathbf{w}_{i,t+\mathbf{h}} = \alpha_i + \beta \bar{\alpha}_{-i,t} + \mathbf{x}'_{it}\gamma + \phi_{jt} + \delta_{ot} + \theta_{oj} + \varepsilon_{it},$$

Mechanisms that identify β : An event-study approach

The effect of coworker quality β is identified through three mechanisms

1. job stayers: changes in peer when a worker enters

The effect of coworker quality β is identified through three mechanisms

- 1. job stayers: changes in peer when a worker enters
- 2. job stayers: changes in peer when a worker leaves

The effect of coworker quality β is identified through three mechanisms

- 1. job stayers: changes in peer when a worker enters
- 2. job stayers: changes in peer when a worker leaves
- 3. job switchers: changes in peer quality when moving to another firm

The effect of coworker quality β is identified through three mechanisms

- 1. job stayers: changes in peer when a worker enters
- 2. job stayers: changes in peer when a worker leaves
- 3. job switchers: changes in peer quality when moving to another firm

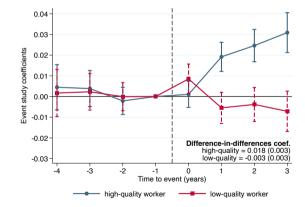
We provide an event-study analysis of these job changes

When a high/low-quality worker enters/leaves:

- Evolution of coworkers' wages in the origin and destination firm when worker joins/leaves
- Compare firms hiring/separating from high- and low-quality workers w/ average-quality workers Diagram
- Ex-ante propensity score matching at the firm-level PS matching hire PS matching leave

When a high/low-quality worker enters/leaves:

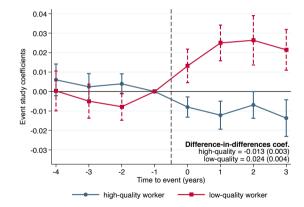
- Evolution of coworkers' wages in the origin and destination firm when worker joins/leaves
- Compare firms hiring/separating from high- and low-quality workers w/ average-quality workers Diagram
- Ex-ante propensity score matching at the firm-level PS matching hire PS matching leave


When a worker joins high-/low-quality peers:

- Evolution of mover's wages when she moves into peer groups of different quality
- Compare workers moving into high- and low-quality peers w.r.t. average-quality peers Diagram
- Ex-ante propensity score matching at the worker-level PS matching

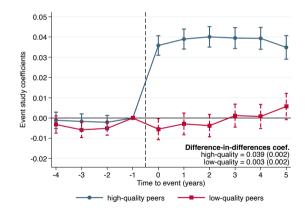
Event-study results

When a high-/low-quality worker enters


$$w_{-i,t}^{new} = \delta_t + \phi_{j(i)} + \sum_{k \neq -1} \beta_k (\textit{Treat}_{j(i)} \times \mathbf{1}\{t = k\}) + \epsilon_{-i,t}$$

Event-study results

When a high-/low-quality worker leaves


$$w_{-i,t}^{old} = \delta_t + \phi_{j(i)} + \sum_{k \neq -1} \beta_k (\textit{Treat}_{j(i)} \times \mathbf{1}\{t = k\}) + \epsilon_{-i,t}$$

Event-study results

When a worker moves into high-/low-quality peer group

$$\mathsf{w}_{i,t} = \delta_t + \eta_i + \sum_{k \neq -1} \gamma_k(\mathit{Treat}_i \times \mathbf{1}\{t = k\}) + \epsilon_{i,t}$$

Conclusion

Key takeaways

- Explore an under-studied component of wage growth: coworker quality
- Coworkers play an important role in generating future wages
- Better peers are associated w/higher wages even after 5 years
- Hiring high-quality workers, separating from low-quality workers and moving into high-quality peers imply the highest wage gains

Next steps: Disentangle the mechanisms (structural)

Data: Summary statistics

	(1)	(2)	(3)
	Mean	S.D.	Median
Annual earnings	33350.06	40250.33	31730
Weekly wage	744.38	1652.81	652
Weeks worked	42.41	15.24	52
Age	34.54	10.69	32
Tenure	2.45	2.58	2
Firm size	17	75	6
Movers per firm	4	26	1
Peer group size	12	54	4
Mover	0.61	0.49	
Woman	0.36	0.48	
Blue-collar	0.70	0.46	
Manufacturing	0.53	0.50	
Person-year observations	17,723,260		
Number of workers	2,531,411		
Number of firms	168,613		

back

Estimation

We follow the methodology developed by Hong and Sølvsten (in progress)

Rewrite Equation 1 in a matrix form:

$$\mathbf{w} = \mathbf{X}\delta + \mathbf{C}\delta\boldsymbol{\beta} + \varepsilon$$

where

- $w \in \mathbb{R}^n$ and $X, C \in \mathbb{R}^{n \times k}$ are observed: (the construction of the coworker matrix C)
- $\delta \in \mathbb{R}^k$ and $\beta \in \mathcal{B}$, where \mathcal{B} is compact.

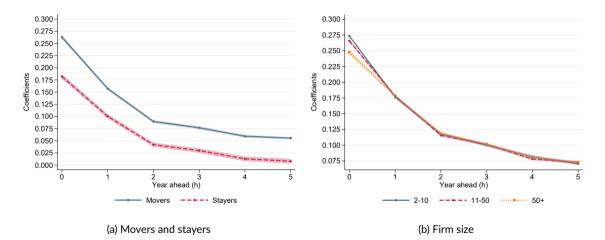
Assumptions

- exogeneity, E[ε|X, C] = 0,
- homoskedasticity, $\mathbb{E}[\varepsilon \varepsilon' | X, C] = \sigma^2 I_n$ where $\sigma^2 > 0$ is unknown.

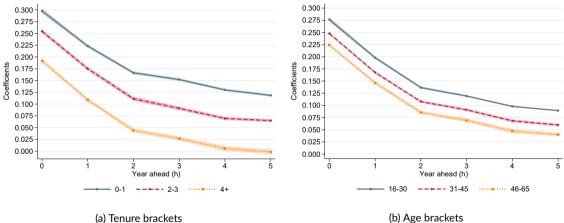
Estimation

The non-linear least squares estimator β is as follows.

$$\hat{\beta} = \min_{\beta \in B} \mathsf{Q}_{\mathsf{n}}(\beta) = \arg\min_{\beta \in B} \left\{ \min_{\delta \in \mathbb{R}^k} \| \mathsf{w} - \mathsf{X}\delta - \mathsf{C}\delta\beta \|^2 / \mathsf{n} \right\}$$


- β is the unique minimizer of sample analogue to Q_n → √ consistency (ensured by the exogeneity and homoskedasticity assumptions)
- Taking FOC of δ and β in Equation 2 \Rightarrow moment condition for β

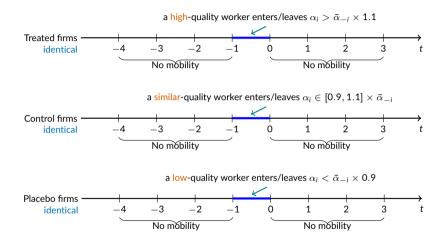
$$S_n(\beta) = w'MC (R'R)^{-1} R'w/n = 0,$$


$$R = X + C\beta$$

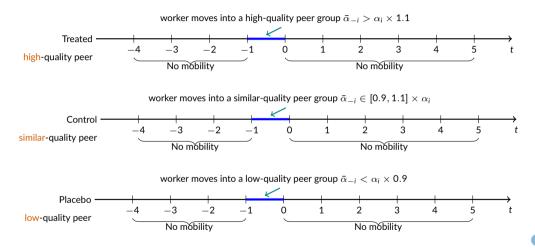
 $M = I_n - P$, and $P = R(R'R)^{-1}R'$

(2)

Heterogeneous effects/1



Heterogeneous effects/2


(b) Age brackets

When a high/low-quality worker enters/leaves

back

When a worker joins high-/low-quality peers

Event-study

Sample sizes

	Treatment	Matched control	Total observations
Panel A: Hiring design	(# of firms)	(# of firms)	(person-year)
High-quality worker	2,164	2,164	285,350
Low-quality worker	1,848	1,848	238,046
Panel B: Leaver design	(# of firms)	(# of firms)	(person-year)
High-quality worker	2,905	2,905	390,135
Low-quality worker	1,885	1,885	234,016
Panel C: Mover design	(# of workers)	(# of workers)	(person-year)
High-quality peers	15,551	15,551	310,220
Low-quality peers	12,778	12,778	255,560

The construction of the coworker matrix C

A (simple) example of the coworker matrix C:

• 5 workers, 2 peer groups, and 1 period: data =
$$\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 2 \\ 4 & 2 \\ 5 & 2 \end{pmatrix}$$

• The averaging matrix $\tilde{C} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 & 0 \end{pmatrix}$

• $C = [\tilde{C}, \mathbf{0}]$ so that C has the same dimension as X.

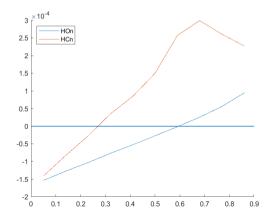
See the next (backup) slide for more details.

The construction of the coworker matrix C

For each worker *i* at time *t* (for convenience, we suppress *it* to *i*)

$$c_i = egin{pmatrix} 1 \ 0 \ 0 \ 1 \ dots \ 1 \ dots \ 1 \ dots \ \end{pmatrix} - egin{pmatrix} 0 \ 0 \ 0 \ 0 \ dots \ dots \ dots \ \end{pmatrix} = egin{pmatrix} 1 \ 0 \ 0 \ 1 \ dots \ 0 \ dots \ \end{pmatrix} = egin{pmatrix} 1 \ 0 \ 0 \ 1 \ dots \ 0 \ dots \ \end{pmatrix}$$

The averaging matrix \tilde{C} and the coworker matrix C are constructed as follows.


$$\tilde{c}_i = \frac{c_i}{c'_i \cdot \vec{1}} \quad \Rightarrow \quad \tilde{C} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \quad \Rightarrow \quad C = \begin{pmatrix} \tilde{C} \\ 0 \end{pmatrix}$$

where the matrix 0 has the same size as F and other covariates

Heteroskedasticity estimator

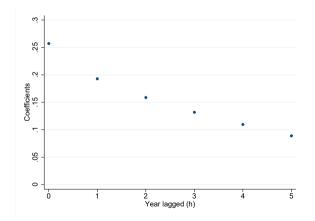

$$\mathbf{w}_{it} = \alpha_i + \beta \bar{\alpha}_{-i,t} + \phi_j + \mathbf{x}'_{it} \gamma + \varepsilon_{it},$$

Figure 1: Behaviors of the objective functions of HOn and HCn

Alternative baseline specification

$$\mathbf{w}_{i,t} = \alpha_i + \beta \bar{\alpha}_{-i,t-h} + \mathbf{x}'_{it}\gamma + \phi_{jt} + \delta_{ot} + \theta_{oj} + \varepsilon_{it},$$

back 12/32

Occupations with low/high learning content

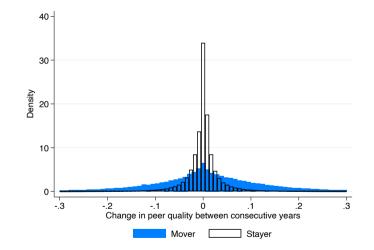
based on Cornelissen et al. (2017) Table F.3

Occupations with low learning content

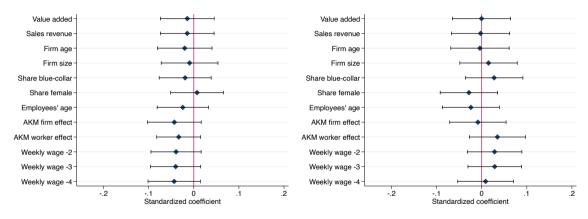
- Land transport drivers
- Cargo handling and storage
- Laundry, dry cleaning
- Waste disposal
- Packers
- Typists

• ...

- Sales persons
- Ready-meal preparers
- Restaurant waiters
- Construction machine attendants

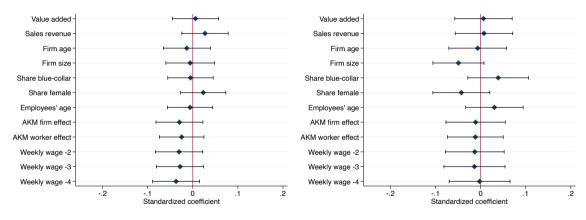

Occupations with high learning content

- Research in sciences/engineering
- Legal services
- Accounting and tax consultants
- Architects
- Entrepreneurs
- Medical services
- Dentists
- Pharmacist
- Civil engineers
- .


Summary statistics after estimation

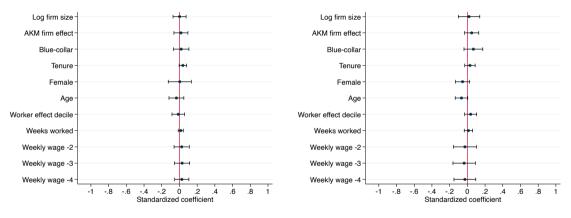
Statistic	Value
Standard deviation log weekly wages	0.436
Standard deviation worker fixed effect	0.269
Standard deviation peer fixed effect	0.178
Standard deviation occupation-time fixed effect	0.065
Standard deviation firm-occupation fixed effect	0.103
Standard deviation firm-time fixed effect	0.137
Standard deviation change of peer fixed effect between t and $t-1$	0.090
Standard deviation change of peer fixed effect between t and $t - 1$ for movers	0.173
Standard deviation change of peer fixed effect between t and $t - 1$ for stayers	0.066
Correlation worker fixed effect/peer fixed effect	0.551

Summary statistics after estimation


Balance test of covariates (t = -3) - Hiring design

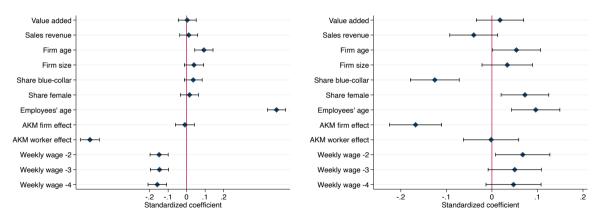
Matched Control and Treatment 1

Matched Control and Treatment 2


Balance test of covariates (t = -3) - Leaver design

Matched Control and Treatment 1

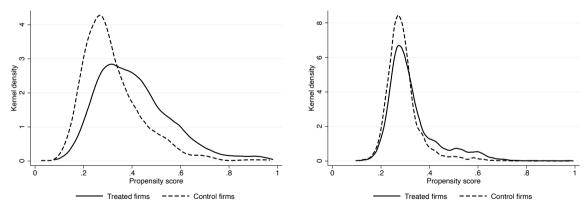
Matched Control and Treatment 2


Balance test of covariates (t = -3) - Mover design

Matched Control and Treatment 1

Matched Control and Treatment 2

Propensity score matching Hiring design

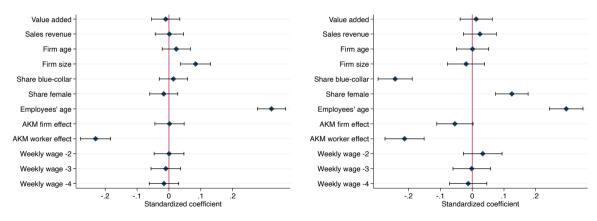


[Unmatched Control and Treatment 1]

[Unmatched Control and Treatment 2]

back 19/32

Hiring design

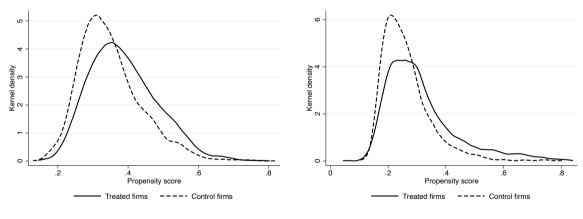


[Matched Control and Treatment 1]

[Matched Control and Treatment 2]

back 20/32

Leaver design

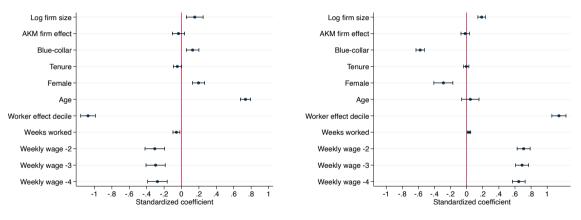


[Unmatched Control and Treatment 1]

[Unmatched Control and Treatment 2]

back 21/32

Leaver design

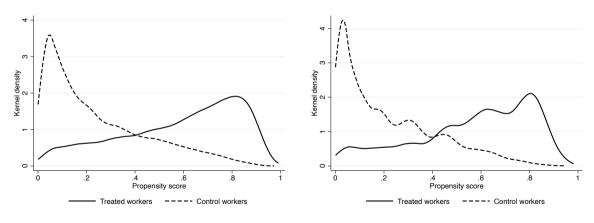


[Matched Control and Treatment 1]

[Matched Control and Treatment 2]

back 22/32

Worker-level design

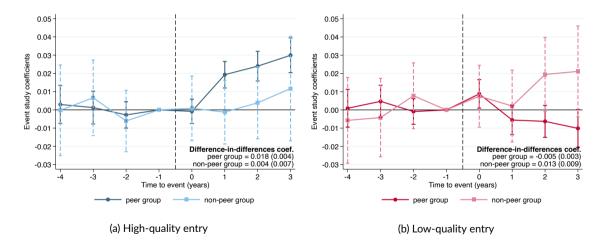


[Unmatched Control and Treatment 1]

[Unmatched Control and Treatment 2]

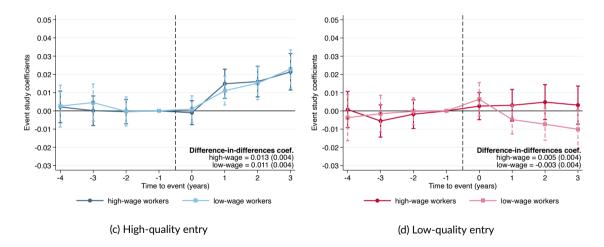
back 23/32

Worker-level design

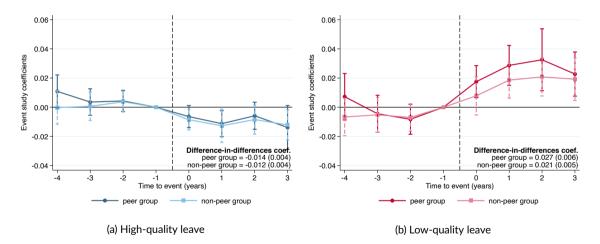

[Matched Control and Treatment 1]

[Matched Control and Treatment 2]

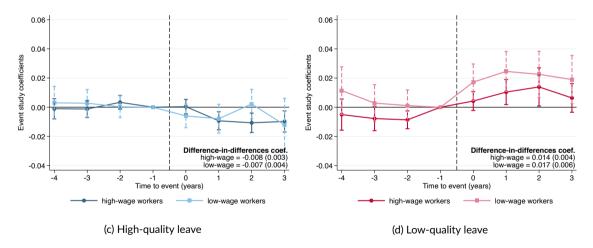
back 24/32


Heterogeneity - Hire design

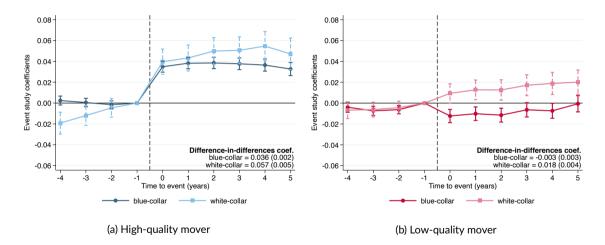
Peers vs non-peers


Heterogeneity - Hire design

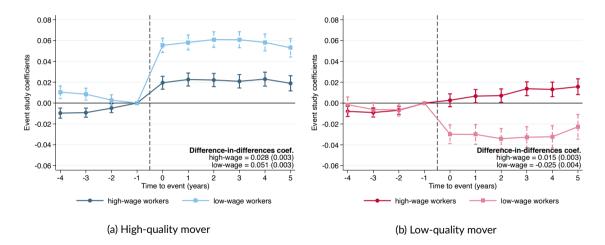
High- vs low-wage workers


Heterogeneity - Leaver design

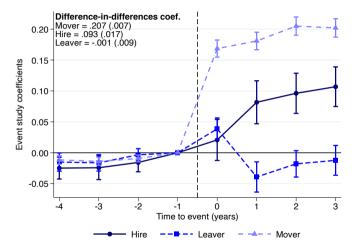
Peers vs non-peers


Heterogeneity - Leaver design

High- vs low-wage workers

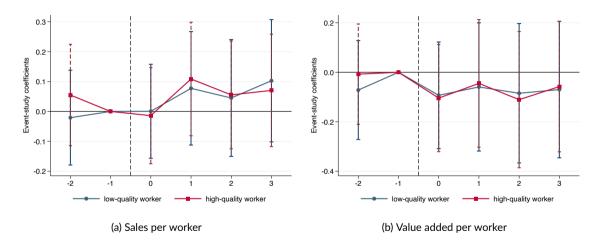

Heterogeneity - Mover design

Blue- vs white-collar workers


Heterogeneity - Mover design

High- vs low-wage workers

Event study - Robustness


Continuous treatment

back 31/32

Event study - Robustness

Firms' value added and sales

