Optimal Exit Policy with Uncertain Demand

Michele Bisceglia Jorge Padilla Joe Perkins Salvatore Piccolo

EEA-ESEM Congress 2022
August 24, 2022

Motivation: Exit Policy

- Economics literature and policy debate has primarily focused on barriers to entry and their impact on competition

Motivation: Exit Policy

- Economics literature and policy debate has primarily focused on barriers to entry and their impact on competition
- Effective competition is also shaped by exit

Motivation: Exit Policy

- Economics literature and policy debate has primarily focused on barriers to entry and their impact on competition
- Effective competition is also shaped by exit
- Market entry and exit are two sides of the same coin

Motivation: Exit Policy

- Economics literature and policy debate has primarily focused on barriers to entry and their impact on competition
- Effective competition is also shaped by exit
- Market entry and exit are two sides of the same coin

Most guidelines link exit barriers to entry barriers, as exit costs can deter entry if firms can anticipate them before entering (OECD, 2019)

Motivation: Exit Policy

- Economics literature and policy debate has primarily focused on barriers to entry and their impact on competition
- Effective competition is also shaped by exit
- Market entry and exit are two sides of the same coin

Most guidelines link exit barriers to entry barriers, as exit costs can deter entry if firms can anticipate them before entering (OECD, 2019)

- Does this tell the whole story about exit?

Our Paper

- Firms often need to make investments in advance of demand realisation (e.g., 5G technology, pharmaceuticals development)

Our Paper

- Firms often need to make investments in advance of demand realisation (e.g., 5G technology, pharmaceuticals development)
- If demand is lower than expected, firms may wish to exit, for instance through bankruptcy or merger

Our Paper

- Firms often need to make investments in advance of demand realisation (e.g., 5G technology, pharmaceuticals development)
- If demand is lower than expected, firms may wish to exit, for instance through bankruptcy or merger
- Terms of exit can therefore have an important effect on ex ante investment incentives of market newcomers

Our Paper

- Firms often need to make investments in advance of demand realisation (e.g., 5G technology, pharmaceuticals development)
- If demand is lower than expected, firms may wish to exit, for instance through bankruptcy or merger
- Terms of exit can therefore have an important effect on ex ante investment incentives of market newcomers
- Q: How does exit policy affect investment incentives and consumer welfare when investments are sunk and demand is uncertain?
- Exit has a selection effect with strategic implications

Preview of the Results

- Exit has a selection effect with strategic implications
- Inverted-U shaped relationship between a challenger's ability to exit and its incentive to invest

Preview of the Results

- Exit has a selection effect with strategic implications
- Inverted-U shaped relationship between a challenger's ability to exit and its incentive to invest
- Under-investment problem can be solved by a lenient exit policy

Preview of the Results

- Exit has a selection effect with strategic implications
- Inverted-U shaped relationship between a challenger's ability to exit and its incentive to invest
- Under-investment problem can be solved by a lenient exit policy
- With higher demand uncertainty, consumer welfare maximization requires lower exit barriers

Preview of the Results

- Exit has a selection effect with strategic implications
- Inverted-U shaped relationship between a challenger's ability to exit and its incentive to invest
- Under-investment problem can be solved by a lenient exit policy
- With higher demand uncertainty, consumer welfare maximization requires lower exit barriers
- Application: Mergers

Literature

- Exit in oligopoly. Telser (1965), Ghemawat-Nalebuff (1985), Fudenberg-Tirole (1986): No investments \& exogenous exit value

Literature

- Exit in oligopoly. Telser (1965), Ghemawat-Nalebuff (1985), Fudenberg-Tirole (1986): No investments \& exogenous exit value
- Mergers and innovation. Federico et al. (2018), Motta-Tarantino (2021), Bourreau et al. (2021): Incumbents merger \& post-merger investments

Literature

- Exit in oligopoly. Telser (1965), Ghemawat-Nalebuff (1985), Fudenberg-Tirole (1986): No investments \& exogenous exit value
- Mergers and innovation. Federico et al. (2018), Motta-Tarantino (2021), Bourreau et al. (2021): Incumbents merger \& post-merger investments
- Startup acquisitions. Cunningham et al. (2021), Letina et al. (2020) \& Fumagalli et al. (2020): No demand uncertainty

Literature

- Exit in oligopoly. Telser (1965), Ghemawat-Nalebuff (1985), Fudenberg-Tirole (1986): No investments \& exogenous exit value
- Mergers and innovation. Federico et al. (2018), Motta-Tarantino (2021), Bourreau et al. (2021): Incumbents merger \& post-merger investments
- Startup acquisitions. Cunningham et al. (2021), Letina et al. (2020) \& Fumagalli et al. (2020): No demand uncertainty
- Dynamic merger policy. Mermelstein et al. (2020), Gilbert-Katz (2021), Mason-Weeds (2013): Symmetric information in takeover game

Model

Cournot industry. Two firms:

Model

Cournot industry. Two firms:

- Firm 1: Incumbent

Model

Cournot industry. Two firms:

- Firm 1: Incumbent
- Already invested and no exit option

Model

Cournot industry. Two firms:

- Firm 1: Incumbent
- Already invested and no exit option
- Inverse demand: $p_{1}\left(x_{1}, x_{0}\right) \triangleq \max \left\{0, \mu-x_{1}-b x_{0}\right\}$

Model

Cournot industry. Two firms:

- Firm 1: Incumbent
- Already invested and no exit option
- Inverse demand: $p_{1}\left(x_{1}, x_{0}\right) \triangleq \max \left\{0, \mu-x_{1}-b x_{0}\right\}$
- Firm 0: Challenger

Model

Cournot industry. Two firms:

- Firm 1: Incumbent
- Already invested and no exit option
- Inverse demand: $p_{1}\left(x_{1}, x_{0}\right) \triangleq \max \left\{0, \mu-x_{1}-b x_{0}\right\}$
- Firm 0: Challenger
- Demand-enhancing investment $I \in\{0,1\}$ at cost ψI

Model

Cournot industry. Two firms:

- Firm 1: Incumbent
- Already invested and no exit option
- Inverse demand: $p_{1}\left(x_{1}, x_{0}\right) \triangleq \max \left\{0, \mu-x_{1}-b x_{0}\right\}$
- Firm 0: Challenger
- Demand-enhancing investment $I \in\{0,1\}$ at cost ψI
- Demand uncertainty at the investment stage: $\theta \sim \mathcal{U}[-\sigma, \sigma], \sigma \in[\underline{\sigma}, \bar{\sigma}]$

Model

Cournot industry. Two firms:

- Firm 1: Incumbent
- Already invested and no exit option
- Inverse demand: $p_{1}\left(x_{1}, x_{0}\right) \triangleq \max \left\{0, \mu-x_{1}-b x_{0}\right\}$
- Firm 0: Challenger
- Demand-enhancing investment $I \in\{0,1\}$ at cost ψI
- Demand uncertainty at the investment stage: $\theta \sim \mathcal{U}[-\sigma, \sigma], \sigma \in[\underline{\sigma}, \bar{\sigma}]$
- Inverse demand: $p_{0}\left(x_{0}, x_{1}\right) \triangleq \max \left\{0, \mu I+\theta-x_{0}-b x_{1}\right\}$

Model

Cournot industry. Two firms:

- Firm 1: Incumbent
- Already invested and no exit option
- Inverse demand: $p_{1}\left(x_{1}, x_{0}\right) \triangleq \max \left\{0, \mu-x_{1}-b x_{0}\right\}$
- Firm 0: Challenger
- Demand-enhancing investment $I \in\{0,1\}$ at cost ψI
- Demand uncertainty at the investment stage: $\theta \sim \mathcal{U}[-\sigma, \sigma], \sigma \in[\underline{\sigma}, \bar{\sigma}]$
- Inverse demand: $p_{0}\left(x_{0}, x_{1}\right) \triangleq \max \left\{0, \mu I+\theta-x_{0}-b x_{1}\right\}$
- Exit value $K \in[0, \bar{K}]$ (independent of I)

Model

Cournot industry. Two firms:

- Firm 1: Incumbent
- Already invested and no exit option
- Inverse demand: $p_{1}\left(x_{1}, x_{0}\right) \triangleq \max \left\{0, \mu-x_{1}-b x_{0}\right\}$
- Firm 0: Challenger
- Demand-enhancing investment $I \in\{0,1\}$ at cost ψI
- Demand uncertainty at the investment stage: $\theta \sim \mathcal{U}[-\sigma, \sigma], \sigma \in[\underline{\sigma}, \bar{\sigma}]$
- Inverse demand: $p_{0}\left(x_{0}, x_{1}\right) \triangleq \max \left\{0, \mu I+\theta-x_{0}-b x_{1}\right\}$
- Exit value $K \in[0, \bar{K}]$ (independent of I)

$$
t=1
$$

Firm 0:
$I \in\{0,1\}$

$$
t=2
$$

Firm 0:
Observes θ
Exit decision

$$
t=3
$$

Monopoly or
Bayes-Cournot game

Equilibrium: Output and Exit Stages

- At $t=3$:

Equilibrium: Output and Exit Stages

- At $t=3$:
- Firm 0, conditional on staying in the market, sets

$$
x_{0}^{\star}(\theta, I, K)=\frac{\mu I+\theta-b x_{1}^{\star}(I, K)}{2}
$$

Equilibrium: Output and Exit Stages

- At $t=3$:
- Firm 0, conditional on staying in the market, sets

$$
x_{0}^{\star}(\theta, I, K)=\frac{\mu I+\theta-b x_{1}^{\star}(I, K)}{2}
$$

- In this case, anticipating that firm 0 stays iff $\theta \geq \theta^{\star}(\cdot)$, firm 1 sets

$$
x_{1}^{\star}(I, K)=x^{M}-\frac{b}{2} x_{0}^{e}(I, K)=\frac{\mu}{2}-\frac{b}{2} E\left[x_{0}^{\star}(\theta, I, K) \mid \theta \geq \theta^{\star}(I, K)\right]
$$

Equilibrium: Output and Exit Stages

- At $t=3$:
- Firm 0, conditional on staying in the market, sets

$$
x_{0}^{\star}(\theta, I, K)=\frac{\mu I+\theta-b x_{1}^{\star}(I, K)}{2}
$$

- In this case, anticipating that firm 0 stays iff $\theta \geq \theta^{\star}(\cdot)$, firm 1 sets

$$
x_{1}^{\star}(I, K)=x^{M}-\frac{b}{2} x_{0}^{e}(I, K)=\frac{\mu}{2}-\frac{b}{2} E\left[x_{0}^{\star}(\theta, I, K) \mid \theta \geq \theta^{\star}(I, K)\right]
$$

- At $t=2$:

Equilibrium: Output and Exit Stages

- At $t=3$:
- Firm 0, conditional on staying in the market, sets

$$
x_{0}^{\star}(\theta, I, K)=\frac{\mu I+\theta-b x_{1}^{\star}(I, K)}{2}
$$

- In this case, anticipating that firm 0 stays iff $\theta \geq \theta^{\star}(\cdot)$, firm 1 sets

$$
x_{1}^{\star}(I, K)=x^{M}-\frac{b}{2} x_{0}^{e}(I, K)=\frac{\mu}{2}-\frac{b}{2} E\left[x_{0}^{\star}(\theta, I, K) \mid \theta \geq \theta^{\star}(I, K)\right]
$$

- At $t=2$:
- Firm 0 exits the market iff $\theta<\theta^{\star}(I, K)$, where

$$
\pi_{0}\left(\theta^{\star}, I, K\right)=x_{0}^{\star}\left(\theta^{\star}, I, K\right)^{2}=K
$$

Equilibrium: Output and Exit Stages

- At $t=3$:
- Firm 0, conditional on staying in the market, sets

$$
x_{0}^{\star}(\theta, I, K)=\frac{\mu I+\theta-b x_{1}^{\star}(I, K)}{2}
$$

- In this case, anticipating that firm 0 stays iff $\theta \geq \theta^{\star}(\cdot)$, firm 1 sets

$$
x_{1}^{\star}(I, K)=x^{M}-\frac{b}{2} x_{0}^{e}(I, K)=\frac{\mu}{2}-\frac{b}{2} E\left[x_{0}^{\star}(\theta, I, K) \mid \theta \geq \theta^{\star}(I, K)\right]
$$

- At $t=2$:
- Firm 0 exits the market iff $\theta<\theta^{\star}(I, K)$, where

$$
\pi_{0}\left(\theta^{\star}, I, K\right)=x_{0}^{\star}\left(\theta^{\star}, I, K\right)^{2}=K
$$

- $\theta^{\star}(1, K)<\theta^{\star}(0, K)$ for all K

Equilibrium: Output and Exit Stages

- At $t=3$:
- Firm 0, conditional on staying in the market, sets

$$
x_{0}^{\star}(\theta, I, K)=\frac{\mu I+\theta-b x_{1}^{\star}(I, K)}{2}
$$

- In this case, anticipating that firm 0 stays iff $\theta \geq \theta^{\star}(\cdot)$, firm 1 sets

$$
x_{1}^{\star}(I, K)=x^{M}-\frac{b}{2} x_{0}^{e}(I, K)=\frac{\mu}{2}-\frac{b}{2} E\left[x_{0}^{\star}(\theta, I, K) \mid \theta \geq \theta^{\star}(I, K)\right]
$$

- At $t=2$:
- Firm 0 exits the market iff $\theta<\theta^{\star}(I, K)$, where

$$
\pi_{0}\left(\theta^{\star}, I, K\right)=x_{0}^{\star}\left(\theta^{\star}, I, K\right)^{2}=K
$$

- $\theta^{\star}(1, K)<\theta^{\star}(0, K)$ for all K
- $\theta^{\star}(I, K)$ increasing in K for all I

Equilibrium: Investment Stage

- Firm 0's expected profit

$$
\pi_{0}^{\star}(I, K) \triangleq \underbrace{\int_{-\sigma}^{\theta^{\star}(I, K)} K \frac{d \theta}{2 \sigma}}_{\text {Exit value }}+\underbrace{\int_{\theta^{\star}(I, K)}^{\sigma} x_{0}^{\star}(\theta, I, K)^{2} \frac{d \theta}{2 \sigma}}_{\text {Market value }}
$$

Equilibrium: Investment Stage

- Firm 0's expected profit

$$
\pi_{0}^{\star}(I, K) \triangleq \underbrace{\int_{-\sigma}^{\theta^{\star}(I, K)} K \frac{d \theta}{2 \sigma}}_{\text {Exit value }}+\underbrace{\int_{\theta^{\star}(I, K)}^{\sigma} x_{0}^{\star}(\theta, I, K)^{2} \frac{d \theta}{2 \sigma}}_{\text {Market value }}
$$

- Value of investment $\Delta \pi_{0}(K)=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0, K)$:

$$
\begin{aligned}
& \Delta \pi_{0}(K)=\underbrace{\int_{\theta^{\star}(1, K)}^{\theta^{\star}(0, K)}\left[x_{0}^{\star}(\theta, 1, K)^{2}-K\right] \frac{d \theta}{2 \sigma}}_{\text {Participation effect }(+)}+ \\
& +\underbrace{\int_{\theta^{\star}(0, K)}^{\sigma}\left[x_{0}^{\star}(\theta, 1, K)^{2}-x_{0}^{\star}(\theta, 0, K)^{2}\right]}_{\text {Rivalry effect }(+)} \frac{d \theta}{2 \sigma}
\end{aligned}
$$

Equilibrium: Investment Stage

- Firm 0's expected profit

$$
\pi_{0}^{\star}(I, K) \triangleq \underbrace{\int_{-\sigma}^{\theta^{\star}(I, K)} K \frac{d \theta}{2 \sigma}}_{\text {Exit value }}+\underbrace{\int_{\theta^{\star}(I, K)}^{\sigma} x_{0}^{\star}(\theta, I, K)^{2} \frac{d \theta}{2 \sigma}}_{\text {Market value }}
$$

- Value of investment $\Delta \pi_{0}(K)=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0, K)$:

$$
\begin{aligned}
& \Delta \pi_{0}(K)=\underbrace{\int_{\theta^{\star}(1, K)}^{\theta^{\star}(0, K)}\left[x_{0}^{\star}(\theta, 1, K)^{2}-K\right] \frac{d \theta}{2 \sigma}}_{\text {Participation effect }(+)}+ \\
& +\underbrace{\int_{\theta^{\star}(0, K)}^{\sigma}\left[x_{0}^{\star}(\theta, 1, K)^{2}-x_{0}^{\star}(\theta, 0, K)^{2}\right]}_{\text {Rivalry effect }(+)} \frac{d \theta}{2 \sigma}
\end{aligned}
$$

- $\Delta \pi_{0}(\cdot)>0$ for all $K \in[0, \bar{K}] \Longrightarrow I^{\star}=1$ iff $\psi \leq \Delta \pi_{0}(K)$

Investment and Exit Value

- Differentiating $\Delta \pi_{0}(\cdot)$ w.r.t. K gives
$\underbrace{-\int_{\theta^{\star}(1, K)}^{\theta^{\star}(0, K)} \frac{d \theta}{2 \sigma}}_{\text {Exit effect }(-)}+\underbrace{\int_{\theta^{\star}(0, K)}^{\sigma} \underbrace{\frac{\partial x_{0}^{\star}(\cdot)}{\partial \theta^{\star}(\cdot)} \frac{\partial \theta^{\star}(\cdot)}{\partial K}}_{+} \underbrace{\left[x_{0}^{\star}(\theta, 1, K)-x_{0}^{\star}(\theta, 0, K)\right]}_{+} \frac{d \theta}{\sigma}}_{\text {Selection effect }(+)}$

Investment and Exit Value

- Differentiating $\Delta \pi_{0}(\cdot)$ w.r.t. K gives
$\underbrace{-\int_{\theta^{\star}(1, K)}^{\theta^{\star}(0, K)} \frac{d \theta}{2 \sigma}}_{\text {Exit effect }(-)}+\underbrace{\int_{\theta^{\star}(0, K)}^{\sigma} \underbrace{\frac{\partial x_{0}^{\star}(\cdot)}{\partial \theta^{\star}(\cdot)} \frac{\partial \theta^{\star}(\cdot)}{\partial K}}_{+} \underbrace{\left[x_{0}^{\star}(\theta, 1, K)-x_{0}^{\star}(\theta, 0, K)\right]}_{+} \frac{d \theta}{\sigma}}_{\text {Selection effect }(+)}$
- $\Delta \pi_{0}(K)$ is single peaked in K and features a maximum at

$$
K^{\star} \triangleq\left(\frac{b^{2}(2 \sigma+\mu(1-b))}{8\left(4-b^{2}\right)}\right)^{2} \in(0, \bar{K})
$$

Investment and Exit Value

- Differentiating $\Delta \pi_{0}(\cdot)$ w.r.t. K gives
$\underbrace{-\int_{\theta^{\star}(1, K)}^{\theta^{\star}(0, K)} \frac{d \theta}{2 \sigma}}_{\text {Exit effect }(-)}+\underbrace{\int_{\theta^{\star}(0, K)}^{\sigma} \underbrace{\frac{\partial x_{0}^{\star}(\cdot)}{\partial \theta^{\star}(\cdot)} \frac{\partial \theta^{\star}(\cdot)}{\partial K}}_{+} \underbrace{\left[x_{0}^{\star}(\theta, 1, K)-x_{0}^{\star}(\theta, 0, K)\right]}_{+} \frac{d \theta}{\sigma}}_{\text {Selection effect }(+)}$
- $\Delta \pi_{0}(K)$ is single peaked in K and features a maximum at

$$
K^{\star} \triangleq\left(\frac{b^{2}(2 \sigma+\mu(1-b))}{8\left(4-b^{2}\right)}\right)^{2} \in(0, \bar{K})
$$

- K^{\star} is increasing in σ

Consumer Surplus

- Expected consumer surplus $C S(I, K)$

$$
\int_{-\sigma}^{\theta^{\star}(I, K)} \underbrace{\frac{\mu^{2}}{8}}_{C^{M}} \frac{d \theta}{2 \sigma}+\int_{\theta^{\star}(I, K)}^{\sigma} \underbrace{\left[\frac{1}{2} \sum_{i=0,1} x_{i}^{\star}(\cdot)^{2}+b x_{0}^{\star}(\cdot) x_{1}^{\star}(\cdot)\right]}_{C S^{D}(\theta, I, K)} \frac{d \theta}{2 \sigma}
$$

Consumer Surplus

- Expected consumer surplus $C S(I, K)$

$$
\int_{-\sigma}^{\theta^{\star}(I, K)} \underbrace{\frac{\mu^{2}}{8}}_{C S^{M}} \frac{d \theta}{2 \sigma}+\int_{\theta^{\star}(I, K)}^{\sigma} \underbrace{\left[\frac{1}{2} \sum_{i=0,1} x_{i}^{\star}(\cdot)^{2}+b x_{0}^{\star}(\cdot) x_{1}^{\star}(\cdot)\right]}_{C S^{D}(\theta, I, K)} \frac{d \theta}{2 \sigma}
$$

- Social value of investment: $\triangle C S(K) \triangleq C S(1, K)-C S(0, K)$:

$$
\begin{aligned}
& \Delta C S(K)=\underbrace{\int_{\theta^{\star}(1, K)}^{\theta^{\star}(0, K)}\left(\operatorname{CS}^{D}(\theta, 1, K)-C S^{M}\right) \frac{d \theta}{2 \sigma}}_{\text {Switch to duopoly }(+)}+ \\
& +\underbrace{\int_{\theta^{\star}(0, K)}^{\sigma}\left(\operatorname{CS}^{D}(\theta, 1, K)-C^{D}(\theta, 0, K)\right) \frac{d \theta}{2 \sigma}}_{\text {Investment effect in duopoly }(+)}
\end{aligned}
$$

Consumer Surplus

- Expected consumer surplus $C S(I, K)$

$$
\int_{-\sigma}^{\theta^{\star}(I, K)} \underbrace{\frac{\mu^{2}}{8}}_{C S^{M}} \frac{d \theta}{2 \sigma}+\int_{\theta^{\star}(I, K)}^{\sigma} \underbrace{\left[\frac{1}{2} \sum_{i=0,1} x_{i}^{\star}(\cdot)^{2}+b x_{0}^{\star}(\cdot) x_{1}^{\star}(\cdot)\right]}_{\operatorname{CS}^{D}(\theta, I, K)} \frac{d \theta}{2 \sigma}
$$

- Social value of investment: $\triangle C S(K) \triangleq C S(1, K)-C S(0, K)$:

$$
\begin{aligned}
& \Delta C S(K)=\underbrace{\int_{\theta^{\star}(1, K)}^{\theta^{\star}(0, K)}\left(\operatorname{CS}^{D}(\theta, 1, K)-C S^{M}\right) \frac{d \theta}{2 \sigma}}_{\text {Switch to duopoly }(+)}+ \\
& +\underbrace{\int_{\theta^{\star}(0, K)}^{\sigma}\left(\operatorname{CS}^{D}(\theta, 1, K)-C^{D}(\theta, 0, K)\right) \frac{d \theta}{2 \sigma}}_{\text {Investment effect in duopoly }(+)}
\end{aligned}
$$

- $\Delta C S(K)>0 \Longrightarrow$ Under-investment problem for $\psi>\Delta \pi_{0}(K)$

Optimal Exit Value Conditional on I

- Define

$$
K^{\star \star}(I) \triangleq \underset{K \in[0, \bar{K}]}{\arg \max } C S(I, K)
$$

Optimal Exit Value Conditional on I

- Define

$$
K^{\star \star}(I) \triangleq \underset{K \in[0, \bar{K}]}{\arg \max } C S(I, K)
$$

- Differentiating CS (I, K) w.r.t. K gives:

$$
\begin{gathered}
\frac{\partial C S(I, K)}{\partial K}=\frac{1}{2 \sigma} \underbrace{\frac{\partial \theta^{\star}(\cdot)}{\partial K}}_{(+)}\{\underbrace{C S^{M}-C S^{D}\left(\theta^{\star}(\cdot), I, K\right)}_{\text {Switch to monopoly }(?)}+ \\
+\int_{\theta^{\star}(\cdot)}^{\sigma} \underbrace{\frac{\partial x_{1}^{\star}(\cdot)}{\partial \theta^{\star}(\cdot)}\left[x_{1}^{\star}(\cdot)+b x_{0}^{\star}(\cdot)\right]}_{\text {Strategic effect }(-)} d \theta+\int_{\theta^{\star}(\cdot)}^{\sigma} \underbrace{\frac{\partial x_{0}^{\star}(\cdot)}{\partial \theta^{\star}(\cdot)}\left[x_{0}^{\star}(\cdot)+b x_{1}^{\star}(\cdot)\right]}_{\text {Output enhancing effect }(+)} d \theta\}
\end{gathered}
$$

Optimal Exit Value Conditional on I

- Define

$$
K^{\star \star}(I) \triangleq \underset{K \in[0, \bar{K}]}{\arg \max } C S(I, K)
$$

- Differentiating CS (I, K) w.r.t. K gives:

$$
\begin{gathered}
\frac{\partial C S(I, K)}{\partial K}=\frac{1}{2 \sigma} \underbrace{\frac{\partial \theta^{\star}(\cdot)}{\partial K}}_{(+)}\{\underbrace{C S^{M}-C S^{D}\left(\theta^{\star}(\cdot), I, K\right)}_{\text {Switch to monopoly }(?)}+ \\
+\int_{\theta^{\star}(\cdot)}^{\sigma} \underbrace{\frac{\partial x_{1}^{\star}(\cdot)}{\partial \theta^{\star}(\cdot)}\left[x_{1}^{\star}(\cdot)+b x_{0}^{\star}(\cdot)\right]}_{\text {Strategic effect }(-)} d \theta+\int_{\theta^{\star}(\cdot)}^{\sigma} \underbrace{\frac{\partial x_{0}^{\star}(\cdot)}{\partial \theta^{\star}(\cdot)}\left[x_{0}^{\star}(\cdot)+b x_{1}^{\star}(\cdot)\right]}_{\text {Output enhancing effect }(+)} d \theta\}
\end{gathered}
$$

- Results:
- $K^{\star \star}(1)=0$
- $K^{\star \star}(0) \in\left(0, K^{\star}\right)$ iff $b>b_{0}^{\star}$ and $\sigma<\sigma_{0}^{\star}$; otherwise $K^{\star \star}(0)=0$

Optimal Ex-Ante Exit Policy

- Trivial cases

Optimal Ex-Ante Exit Policy

- Trivial cases
- $\psi>\Delta \pi_{0}\left(K^{\star}\right) \Longrightarrow I^{\star}=0$ for all $K \Longrightarrow K^{R}=K^{\star \star}(0) \geq 0$

Optimal Ex-Ante Exit Policy

- Trivial cases
- $\psi>\Delta \pi_{0}\left(K^{\star}\right) \Longrightarrow I^{\star}=0$ for all $K \Longrightarrow K^{R}=K^{\star \star}(0) \geq 0$
- $\psi \leq \Delta \pi_{0}(0) \Longrightarrow I^{\star}=1$ for all $K \Longrightarrow K^{R}=K^{\star \star}(1)=0$

Optimal Ex-Ante Exit Policy

- Trivial cases
- $\psi>\Delta \pi_{0}\left(K^{\star}\right) \Longrightarrow I^{\star}=0$ for all $K \Longrightarrow K^{R}=K^{\star \star}(0) \geq 0$
- $\psi \leq \Delta \pi_{0}(0) \Longrightarrow I^{\star}=1$ for all $K \Longrightarrow K^{R}=K^{\star \star}(1)=0$
- Interesting case $\psi \in \Psi \triangleq\left(\Delta \pi_{0}(0), \Delta \pi_{0}\left(K^{\star}\right)\right]$

Optimal Ex-Ante Exit Policy

- Trivial cases
- $\psi>\Delta \pi_{0}\left(K^{\star}\right) \Longrightarrow I^{\star}=0$ for all $K \Longrightarrow K^{R}=K^{\star \star}(0) \geq 0$
- $\psi \leq \Delta \pi_{0}(0) \Longrightarrow I^{\star}=1$ for all $K \Longrightarrow K^{R}=K^{\star \star}(1)=0$
- Interesting case $\psi \in \Psi \triangleq\left(\Delta \pi_{0}(0), \Delta \pi_{0}\left(K^{\star}\right)\right]$
- If regulator wants to induce $I=1$, solves

$$
\left\{\begin{array}{l}
\max _{K \in[0, \bar{K}]} C S(1, K) \\
\text { s.t. } \psi \leq \Delta \pi_{0}(K)
\end{array}\right.
$$

Optimal Ex-Ante Exit Policy

- Trivial cases
- $\psi>\Delta \pi_{0}\left(K^{\star}\right) \Longrightarrow I^{\star}=0$ for all $K \Longrightarrow K^{R}=K^{\star \star}(0) \geq 0$
- $\psi \leq \Delta \pi_{0}(0) \Longrightarrow I^{\star}=1$ for all $K \Longrightarrow K^{R}=K^{\star \star}(1)=0$
- Interesting case $\psi \in \Psi \triangleq\left(\Delta \pi_{0}(0), \Delta \pi_{0}\left(K^{\star}\right)\right]$
- If regulator wants to induce $I=1$, solves

$$
\left\{\begin{array}{l}
\max _{K \in[0, \bar{K}]} C S(1, K) \\
\text { s.t. } \psi \leq \Delta \pi_{0}(K)
\end{array}\right.
$$

Solution (for all $\psi \in \Psi$): $K=\widehat{K} \triangleq \Delta \pi_{0}^{-1}(\psi) \in\left[0, K^{\star}\right]$, increasing in ψ

Optimal Ex-Ante Exit Policy

- Trivial cases
- $\psi>\Delta \pi_{0}\left(K^{\star}\right) \Longrightarrow I^{\star}=0$ for all $K \Longrightarrow K^{R}=K^{\star \star}(0) \geq 0$
- $\psi \leq \Delta \pi_{0}(0) \Longrightarrow I^{\star}=1$ for all $K \Longrightarrow K^{R}=K^{\star \star}(1)=0$
- Interesting case $\psi \in \Psi \triangleq\left(\Delta \pi_{0}(0), \Delta \pi_{0}\left(K^{\star}\right)\right]$
- If regulator wants to induce $I=1$, solves

$$
\left\{\begin{array}{l}
\max _{K \in[0, \bar{K}]} C S(1, K) \\
\text { s.t. } \psi \leq \Delta \pi_{0}(K)
\end{array}\right.
$$

Solution (for all $\psi \in \Psi$): $K=\widehat{K} \triangleq \Delta \pi_{0}^{-1}(\psi) \in\left[0, K^{\star}\right]$, increasing in ψ

- Otherwise just sets $K=K^{\star \star}(0)$

Optimal Ex-Ante Exit Policy

For all $\psi \in \Psi$, the optimal exit policy is $K^{R}=\widehat{K}$

Optimal Ex-Ante Exit Policy

For all $\psi \in \Psi$, the optimal exit policy is $K^{R}=\widehat{K}$

Optimal Ex-Ante Exit Policy

For all $\psi \in \Psi$, the optimal exit policy is $K^{R}=\widehat{K}$

The region of parameters ψ expands as σ grow large

Endogenous Exit Value: Start-up acquisition

- So far: exogenous exit value K, independent of $I \in\{0,1\}$

Endogenous Exit Value: Start-up acquisition

- So far: exogenous exit value K, independent of $I \in\{0,1\}$
- Often in reality: challenger's exit through acquisition by incumbent

Endogenous Exit Value: Start-up acquisition

- So far: exogenous exit value K, independent of $I \in\{0,1\}$
- Often in reality: challenger's exit through acquisition by incumbent
- Exit value endogenous: (TIOLI) offer by incumbent

Endogenous Exit Value: Start-up acquisition

- So far: exogenous exit value K, independent of $I \in\{0,1\}$
- Often in reality: challenger's exit through acquisition by incumbent
- Exit value endogenous: (TIOLI) offer by incumbent
- Optimal offer depends on investment decision

Endogenous Exit Value: Start-up acquisition

- So far: exogenous exit value K, independent of $I \in\{0,1\}$
- Often in reality: challenger's exit through acquisition by incumbent
- Exit value endogenous: (TIOLI) offer by incumbent
- Optimal offer depends on investment decision

$$
t=1 \quad t=2 \quad t=3
$$

Firm 0:
$I \in\{0,1\}$

Firm 1: Takeover offer K
Firm 0: Observes θ, accepts or refuses K

Monopoly or
Bayes-Cournot game

Strict Merger Policy

- Merger not allowed $(y=S): K=0$ for all I

Strict Merger Policy

- Merger not allowed $(y=S): K=0$ for all I
- From baseline analysis:

Strict Merger Policy

- Merger not allowed $(y=S): K=0$ for all I
- From baseline analysis:
- Firm 0 quits if and only if $\theta<\theta^{\star}(I, 0)$

Strict Merger Policy

- Merger not allowed $(y=S): K=0$ for all I
- From baseline analysis:
- Firm 0 quits if and only if $\theta<\theta^{\star}(I, 0)$
- Increase in firm 0's profit due to the investment $\Delta \pi_{0}(S)=\Delta \pi_{0}(0)$

Strict Merger Policy

- Merger not allowed $(y=S): K=0$ for all I
- From baseline analysis:
- Firm 0 quits if and only if $\theta<\theta^{\star}(I, 0)$
- Increase in firm 0's profit due to the investment $\Delta \pi_{0}(S)=\Delta \pi_{0}(0)$
- Firm 0 invests iff $\psi \leq \Delta \pi_{0}$ (S)

Lenient Merger Policy

- Merger allowed $(y=L): K=K^{e}(I)$ (optimal offer by firm 1)

Lenient Merger Policy

- Merger allowed $(y=L): K=K^{e}(I)$ (optimal offer by firm 1)
- $K^{e}(0)=0$

Lenient Merger Policy

- Merger allowed $(y=L): K=K^{e}(I)$ (optimal offer by firm 1)
- $K^{e}(0)=0$
- $K^{e}(1)>0$ is U-shaped in σ

Lenient Merger Policy

- Merger allowed $(y=L): K=K^{e}(I)$ (optimal offer by firm 1)
- $K^{e}(0)=0$
- $K^{e}(1)>0$ is U-shaped in σ
- All mergers are killer acquisitions

Lenient Merger Policy

- Merger allowed $(y=L): K=K^{e}(I)$ (optimal offer by firm 1)
- $K^{e}(0)=0$
- $K^{e}(1)>0$ is U-shaped in σ
- All mergers are killer acquisitions
- Firm 0's expected profit

$$
\pi_{0}^{\star}(I, y=L) \triangleq \underbrace{\int_{-\sigma}^{\theta^{\star}\left(I, K^{e}(I)\right)} K^{e}(I) \frac{d \theta}{2 \sigma}}_{\text {The target accepts the offer }}+\underbrace{\int_{\theta^{\star}\left(I, K^{e}(I)\right)}^{\sigma} x_{0}^{\star}\left(\theta, I, K^{e}(I)\right)^{2} \frac{d \theta}{2 \sigma}}_{\text {The target rejects the offer }}
$$

Lenient Merger Policy

- Merger allowed $(y=L): K=K^{e}(I)$ (optimal offer by firm 1)
- $K^{e}(0)=0$
- $K^{e}(1)>0$ is U-shaped in σ
- All mergers are killer acquisitions
- Firm 0's expected profit

$$
\pi_{0}^{\star}(I, y=L) \triangleq \underbrace{\int_{-\sigma}^{\theta^{\star}\left(I, K^{e}(I)\right)} K^{e}(I) \frac{d \theta}{2 \sigma}}_{\text {The target accepts the offer }}+\underbrace{\int_{\theta^{\star}\left(I, K^{e}(I)\right)}^{\sigma} x_{0}^{\star}\left(\theta, I, K^{e}(I)\right)^{2} \frac{d \theta}{2 \sigma}}_{\text {The target rejects the offer }}
$$

- Firm 0 invests iff $\psi \leq \Delta \pi_{0}(L)=\pi_{0}^{\star}(1, y=L)-\pi_{0}^{\star}(0, y=L)$

Optimal Merger Policy (CS-Standard)

$$
\Delta \pi_{0}(L)>\Delta \pi_{0}(S)
$$

Optimal Merger Policy (CS-Standard)

$\Delta \pi_{0}(L)>\Delta \pi_{0}(S)$

- $\psi \leq \Delta \pi_{0}(S): I=1$ for all $y \in\{S, L\} \Longrightarrow y^{*}=S$

Optimal Merger Policy (CS-Standard)

$$
\Delta \pi_{0}(L)>\Delta \pi_{0}(S)
$$

- $\psi \leq \Delta \pi_{0}(S): I=1$ for all $y \in\{S, L\} \Longrightarrow y^{*}=S$
- $\psi \in\left(\Delta \pi_{0}(S), \Delta \pi_{0}(L)\right]: I=1$ iff $y=L \Longrightarrow y^{*}=L$

Optimal Merger Policy (CS-Standard)

$$
\Delta \pi_{0}(L)>\Delta \pi_{0}(S)
$$

- $\psi \leq \Delta \pi_{0}(S): I=1$ for all $y \in\{S, L\} \Longrightarrow y^{*}=S$
- $\psi \in\left(\Delta \pi_{0}(S), \Delta \pi_{0}(L)\right]: I=1$ iff $y=L \Longrightarrow y^{*}=L$
- $\psi>\Delta \pi_{0}(L): I=0$ for all $y \in\{S, L\} \Longrightarrow y^{*} \in\{S, L\}$

Transaction-based Merger Policy

Let K^{P} be the unique solution of $\psi=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0,0)$. Then, the optimal price-contingent policy is as follows:

Transaction-based Merger Policy

Let K^{P} be the unique solution of $\psi=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0,0)$. Then, the optimal price-contingent policy is as follows:

- $\psi \leq \Delta \pi_{0}(s)$: Strict policy

Transaction-based Merger Policy

Let K^{P} be the unique solution of $\psi=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0,0)$. Then, the optimal price-contingent policy is as follows:

- $\psi \leq \Delta \pi_{0}(s)$: Strict policy
- $\psi \in\left(\Delta \pi_{0}(s), \Delta \pi_{0}(I)\right]$: Approve every merger with takeover price $K \leq K^{P}$, with $K^{P} \leq K^{e}(1)$ s.t.

Transaction-based Merger Policy

Let K^{P} be the unique solution of $\psi=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0,0)$. Then, the optimal price-contingent policy is as follows:

- $\psi \leq \Delta \pi_{0}(s)$: Strict policy
- $\psi \in\left(\Delta \pi_{0}(s), \Delta \pi_{0}(I)\right]$: Approve every merger with takeover price $K \leq K^{P}$, with $K^{P} \leq K^{e}(1)$ s.t.
- The challenger invests

Transaction-based Merger Policy

Let K^{P} be the unique solution of $\psi=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0,0)$. Then, the optimal price-contingent policy is as follows:

- $\psi \leq \Delta \pi_{0}(s)$: Strict policy
- $\psi \in\left(\Delta \pi_{0}(s), \Delta \pi_{0}(I)\right]$: Approve every merger with takeover price $K \leq K^{P}$, with $K^{P} \leq K^{e}(1)$ s.t.
- The challenger invests
- The incumbent optimally offers K^{P}

Transaction-based Merger Policy

Let K^{P} be the unique solution of $\psi=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0,0)$. Then, the optimal price-contingent policy is as follows:

- $\psi \leq \Delta \pi_{0}$ (s): Strict policy
- $\psi \in\left(\Delta \pi_{0}(s), \Delta \pi_{0}(I)\right]$: Approve every merger with takeover price $K \leq K^{P}$, with $K^{P} \leq K^{e}(1)$ s.t.
- The challenger invests
- The incumbent optimally offers K^{P}
- The merger takes place with positive probability

Transaction-based Merger Policy

Let K^{P} be the unique solution of $\psi=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0,0)$. Then, the optimal price-contingent policy is as follows:

- $\psi \leq \Delta \pi_{0}(s)$: Strict policy
- $\psi \in\left(\Delta \pi_{0}(s), \Delta \pi_{0}(I)\right]$: Approve every merger with takeover price $K \leq K^{P}$, with $K^{P} \leq K^{e}(1)$ s.t.
- The challenger invests
- The incumbent optimally offers K^{P}
- The merger takes place with positive probability
- $\psi>\Delta \pi_{0}(I)$: Approve every merger with takeover price $K \geq K^{P}$, with $K^{P}>K^{e}(1)$.

Transaction-based Merger Policy

Let K^{P} be the unique solution of $\psi=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0,0)$. Then, the optimal price-contingent policy is as follows:

- $\psi \leq \Delta \pi_{0}(s)$: Strict policy
- $\psi \in\left(\Delta \pi_{0}(s), \Delta \pi_{0}(I)\right]$: Approve every merger with takeover price $K \leq K^{P}$, with $K^{P} \leq K^{e}(1)$ s.t.
- The challenger invests
- The incumbent optimally offers K^{P}
- The merger takes place with positive probability
- $\psi>\Delta \pi_{0}(I)$: Approve every merger with takeover price $K \geq K^{P}$, with $K^{P}>K^{e}(1)$.
- $\psi \in\left(\Delta \pi_{0}(I), \bar{\psi}\right]$: Challenger invests, incumbent offers K^{P}, merger takes place with positive probability

Transaction-based Merger Policy

Let K^{P} be the unique solution of $\psi=\pi_{0}^{\star}(1, K)-\pi_{0}^{\star}(0,0)$. Then, the optimal price-contingent policy is as follows:

- $\psi \leq \Delta \pi_{0}(s)$: Strict policy
- $\psi \in\left(\Delta \pi_{0}(s), \Delta \pi_{0}(I)\right]$: Approve every merger with takeover price $K \leq K^{P}$, with $K^{P} \leq K^{e}(1)$ s.t.
- The challenger invests
- The incumbent optimally offers K^{P}
- The merger takes place with positive probability
- $\psi>\Delta \pi_{0}(I)$: Approve every merger with takeover price $K \geq K^{P}$, with $K^{P}>K^{e}(1)$.
- $\psi \in\left(\Delta \pi_{0}(I), \bar{\psi}\right]$: Challenger invests, incumbent offers K^{P}, merger takes place with positive probability
- $\psi>\bar{\psi}$: Incumbent not willing to offer K^{P} $\Longrightarrow I=0, K^{e}=0$: merger never takes place

Robustness

Qualitative results robust:

Robustness

Qualitative results robust:

- Multiple incumbents

Robustness

Qualitative results robust:

- Multiple incumbents
- Leapfrogging by the challenger

Robustness

Qualitative results robust:

- Multiple incumbents
- Leapfrogging by the challenger
- Uncertain investment return

Robustness

Qualitative results robust:

- Multiple incumbents
- Leapfrogging by the challenger
- Uncertain investment return
- Continuous investment technology

Robustness

Qualitative results robust:

- Multiple incumbents
- Leapfrogging by the challenger
- Uncertain investment return
- Continuous investment technology
- Exit option as the investment liquidation value

Conclusions

- Under uncertain demand and asymmetric information, firms' ability to exit has a non-monotone effect on their investment decisions

Conclusions

- Under uncertain demand and asymmetric information, firms' ability to exit has a non-monotone effect on their investment decisions
- Trade-off between encouraging more firms to stay in the market and stimulating ex-ante investment

Conclusions

- Under uncertain demand and asymmetric information, firms' ability to exit has a non-monotone effect on their investment decisions
- Trade-off between encouraging more firms to stay in the market and stimulating ex-ante investment
- Industries in which investments are costly require relatively lenient merger/liquidation policies to secure investments

Thank you!

Comments are Welcome.

Michele Bisceglia (michele.bisceglia@tse-fr.eu) Jorge Padilla (JPadilla@compasslexecon.com) Joe Perkins (JPerkins@compasslexecon.com) Salvatore Piccolo (salvatore.piccolo@unibg.it)

