Out in the Cold: Effect of Temperature Shocks on Evictions

Ana Varela Varela

Amsterdam School of Economics

Motivation and Research Question

Eviction rates have increased steadily in the past decades

Source: Spivack (2020) in New York Magazine

Source: Gross (2018) in Aspen Public Radio

Understanding drivers of evictions has become a pressing policy question

- \rightarrow Consequences of evictions are becoming better known. Collinson et al. (2021):
 - Evicted households: \uparrow rate of homelessness; \downarrow future earnings and credit access.
 - Effects are particularly acute for Black and female tenants.

 \rightarrow Causes of evictions are still not well understood (Desmond and Gershenson, 2017)

This paper investigates an environmental driver of evictions

Do cold winter shocks impact evictions in the US?

Quotes in Desmond (2016), documenting the story of families that underwent eviction

Lorraine had used \$150 of her rent money to pay a defaulted utility bill with the hope of having her gas turned back on. She wanted to take a hot shower, scrub away the smell. She wanted to feel clean, maybe even something closer to pretty.

Then her car gave out at the worst time—winter—when money was tightest. Ned had been working with a construction crew, which all but shut down in the colder months. They didn't have enough money to repair the car, and Pam lost her job. That's when they fell behind with Tobin. Data: Near-universe of eviction filings and evictions in the US (2010-2016); and winter temperatures at the county level.

Main result: cold winter weather shocks \uparrow evictions

Mechanisms:

- Heating fuel prices: effects aggravated by \uparrow heating fuel prices.
- Labor: effects driven by counties with ↑ employment shares in more weather-exposed industries, specially if wages experience negative growth shocks.

Contribution to the literature:

- 1. How do environmental outcomes impact economic inequality? Banzhaf and Timmins (2019), Hsiang et al. (2019), Ma et al. (2019)
 - Novel mechanism: environmental shocks \rightarrow economic inequality
 - Cold shocks ightarrow evictions ightarrow encroachment of poverty

Contribution to the literature:

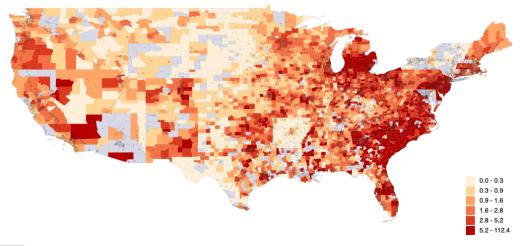
- 1. How do environmental outcomes impact economic inequality? Banzhaf and Timmins (2019), Hsiang et al. (2019), Ma et al. (2019)
 - Novel mechanism: environmental shocks \rightarrow economic inequality
 - Cold shocks ightarrow evictions ightarrow encroachment of poverty
- 2. What are the consequences of energy poverty?
 - González-Eguino (2015), Chirakijja et al. (2019), Churchill and Smyth (2020), He and Tanaka (2019)
 - \uparrow fuel prices with \downarrow temperatures lead to \uparrow evictions
 - Calls for energy prices to be more progressive (Borenstein et al., 2021)

Contribution to the literature:

- 1. How do environmental outcomes impact economic inequality? Banzhaf and Timmins (2019), Hsiang et al. (2019), Ma et al. (2019)
 - Novel mechanism: environmental shocks \rightarrow economic inequality
 - Cold shocks \rightarrow evictions \rightarrow encroachment of poverty
- 2. What are the consequences of energy poverty?
 - González-Eguino (2015), Chirakijja et al. (2019), Churchill and Smyth (2020), He and Tanaka (2019)
 - \uparrow fuel prices with \downarrow temperatures lead to \uparrow evictions
 - Calls for energy prices to be more progressive (Borenstein et al., 2021)
- 3. What are the causes of evictions?
 - Collinson et al. (2021), Desmond (2016), Desmond and Gershenson (2017)
 - Sheds light on environmental roots of evictions
 - Helps elucidate what policies might mitigate eviction rates

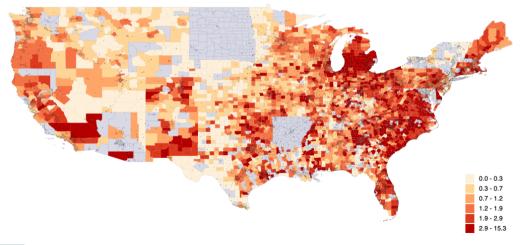
Outline of the talk:

ightarrow Data

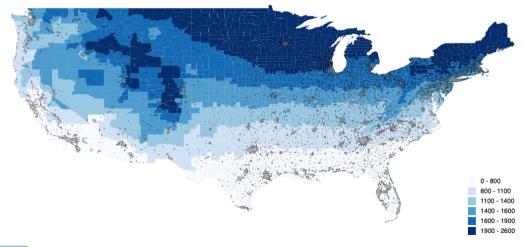

- \rightarrow Empirical strategy
- \rightarrow Results: main, heterogeneity, mechanisms, policy

$\rightarrow \ {\rm Conclusion}$

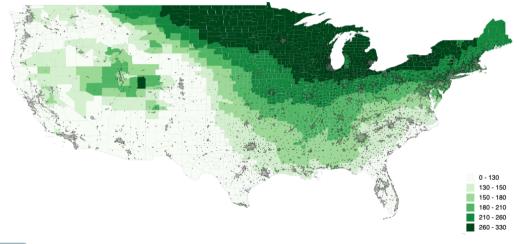
Data


Eviction Filings in the US (2010-2016)

Eviction filings: eviction cases filed in a county in a year



Evictions in the US (2010-2016)


Evictions: eviction cases that resulted in a tenant ordered to vacate a property

Winter temperatures: Heating Degree Days (HDD) - Average Heating Degree Days: commonly used metric to estimate energy demand for heating

Winter temperatures: Heating Degree Days (HDD) - Standard Deviation I exploit random winter HDD variation within counties

Empirical approach

Impacts estimated with a fixed effects model

 \rightarrow Exploit random variation in HDD within counties across years

$$y_{csy} = \beta \cdot HDD_{csy} + \mu_{cs} + \delta_{sy} + \varepsilon_{csy}$$

- y_{bpt} : total eviction filings (in logs) or evictions (in logs) in county c of state s in year y
- HDD_{csy} : 100 heating degree days during the first quarter of year y in county c of state s
- μ_{cs} , δ_{sy} : County and state-year fixed effects
- ε_{csy} : standard errors clustered at the county level

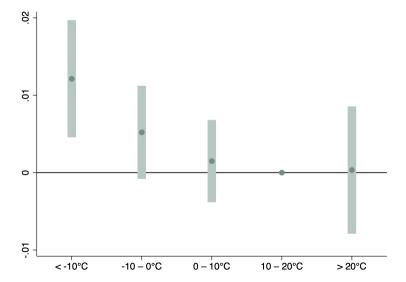
 \rightarrow β > 0 : cold weather shocks \uparrow evictions

To explore mechanisms: shift-share type of instruments

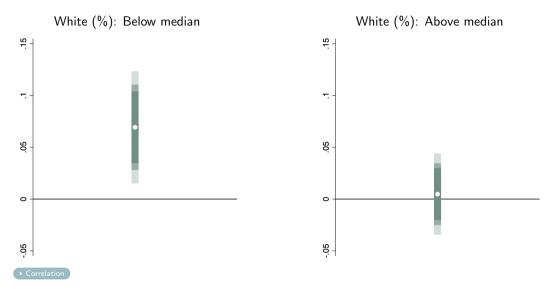
Explore changes in β with local fuel prices and wages in weather-exposed industries.

To address endogeneity, I exploit shift-share types of instruments:

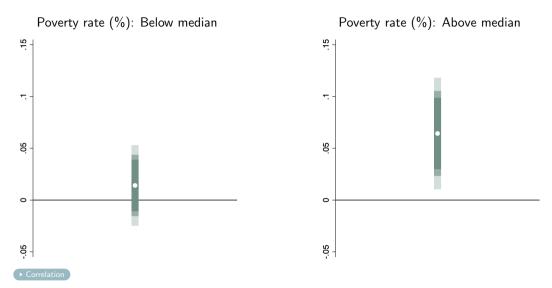
- Instead of local natural gas prices:
 - $\rightarrow\,$ Baseline share of natural gas use \times National average growth in natural gas prices
- Instead of local wages in weather-exposed industries.
 - $\rightarrow\,$ Baseline share of workers in relevant industries \times National average growth in wages

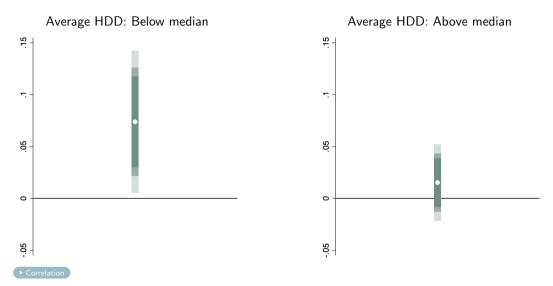

Cold weather shocks \uparrow evic	tions			
HDD winter _{c,y}	0.036***	0.031**	0.044***	
HDD fall _{c,y-1}	(0.011)	(0.013) 0.0093 (0.020)	(0.012)	
HDD spring $_{c,y}$		0.030 (0.030)		
HDD winter _{c,y-1}		(0.000)	0.027**	
HDD winter _{c,y-2}			(0.012) 0.036*** (0.012)	
Precipitation (cuadratic)	\checkmark	\checkmark	\checkmark	_
Filings (log) _{c,y-1}	\checkmark	\checkmark	\checkmark	
P-value joint H_0		0.009	0.000	
Observations	15,348	15,348	15,348	

Cold weather shocks \uparrow evicti	ons			
HDD winter _{c,y}	0.036***	0.031**	0.044***	
HDD fall _{c,y-1}	(0.011)	(0.013) 0.0093 (0.020)	(0.012)	
HDD spring _{c,y}		0.030 (0.030)		
HDD winter _{c,y-1}			0.027**	
HDD winter _{c,y-2}			(0.012) 0.036*** (0.012)	
Precipitation (cuadratic)	\checkmark	\checkmark	\checkmark	
Filings (log) _{c,y-1}	\checkmark	\checkmark	\checkmark	
P-value joint H_0		0.009	0.000	
Observations	15,348	15,348	15,348	


Cold weather shocks \uparrow ev	victions			
HDD winter _{c,y}	0.036***	0.031**	0.044***	
	(0.011)	(0.013)	(0.012)	
HDD fall _{c,y-1}		0.0093		
		(0.020)		
HDD spring _{c,y}				
HDD winter _{c v-1}		(0.030)	0.027**	
0,9 1			(0.012)	
HDD winter _{c,y-2}			0.036***	
			(0.012)	
Precipitation (cuadratic)	\checkmark	✓	\checkmark	
Filings (log) _{c,y-1}	\checkmark	\checkmark	\checkmark	
P-value joint H_0		0.009	0.000	
Observations	15,348	15,348	15,348	
Precipitation (cuadratic) Filings (log) _{c,y-1} P-value joint <i>H</i> 0	√ ✓ 15,348	0.030 (0.030) (0.030)	(0.012) 0.036*** (0.012) ✓ ✓ 0.000	

Cold weather shocks \uparrow evidential contract of the contract o	ctions		
HDD winter _{c.v}	0.036***	0.031**	0.044***
	(0.011)	(0.013)	(0.012)
HDD fall _{c,y-1}		0.0093	
		(0.020)	
HDD spring _{c,y}		0.030 (0.030)	
HDD winter _{c,v-1}		(0.000)	0.027**
-17 -			(0.012)
HDD winter _{c,y-2}			0.036***
			(0.012)
Precipitation (cuadratic)	\checkmark	\checkmark	\checkmark
Filings (log) _{c,y-1}	\checkmark	\checkmark	\checkmark
P-value joint H_0		0.009	0.000
Observations	15,348	15,348	15,348


Cold weather shocks \uparrow evictions: temperature-bins


Effects driven by counties with lower shares of White population

Effects driven by counties with lower incomes

Effects concentrated in counties with warmer winters on average

Effects aggravated by \uparrow natural gas prices

	Natural Gas	Electricity
HDD winter _{cy}	0.052***	0.032**
	(0.013)	(0.016)
HDD winter _{cy} $ imes$ NG share _c $ imes$ NG price growth _y	0.17***	
	(0.059)	
HDD winter _{cy} ×Elec share _c ×Elec price growth _y		-0.18
		(0.34)
Observations	16,313	16,313

Effects aggravated by \uparrow natural gas prices

	Natural Gas	Electricity
HDD winter _{cy}	0.052***	0.032**
	(0.013)	(0.016)
HDD winter _{cy} ×NG share _c ×NG price growth _y	0.17***	
	(0.059)	
HDD winter _{cy} ×Elec share _c ×Elec price growth _y		-0.18
		(0.34)
Observations	16,313	16,313

Correlation

Effects aggravated by \uparrow natural gas prices

	Natural Gas	Electricity
HDD winter _{cy}	0.052***	0.032**
	(0.013)	(0.016)
HDD winter _{cy} $ imes$ NG share _c $ imes$ NG price growth _y	0.17***	
	(0.059)	
HDD winter _{cy} ×Elec share _c ×Elec price growth _y		-0.18
		(0.34)
Observations	16,313	16,313

Correlation

Effects driven by weather-exposed industries

HDD winter _{cy}	0.016 (0.020)	-0.012 (0.021)	0.090*** (0.024)	
Tercile	1	2	3	
Observations	4,983	5,518	5,750	

Effects driven by weather-exposed industries

HDD winter _{cy}	0.016	-0.012	0.090***
	(0.020)	(0.021)	(0.024)
Tercile	1	2	3
Observations	4,983	5,518	5,750

Effects driven by weather-exposed industries, particularly if wages \downarrow

HDD winter _{cy}	0.0090 (0.021)	-0.0026 (0.023)	0.10*** (0.026)	
$HDD\ winter_{cy}{\times}Wage\ growth_{y}$	0.17 (0.18)	-0.25 (0.17)	-0.30* (0.18)	
Tercile Observations	1 4,983	2 5,518	3 5,750	_

Effects driven by weather-exposed industries, particularly if wages \downarrow

HDD winter _{cy}	0.0090	-0.0026	0.10***
	(0.021)	(0.023)	(0.026)
HDD winter _{cy} $ imes$ Wage growth _y	0.17	-0.25	-0.30*
	(0.18)	(0.17)	(0.18)
Tercile	1	2	3
Observations	4,983	5,518	5,750

Further results. Effects driven by counties with:

- \uparrow mortality due to cardiovascular and respiratory diseases lacksquare

Further results. Effects driven by counties with:

- \uparrow mortality due to cardiovascular and respiratory diseases lacksquare
- State legislation leaning pro-landlord Table

Further results. Effects driven by counties with:

- \uparrow mortality due to cardiovascular and respiratory diseases lacksquare
- State legislation leaning pro-landlord Table
- Policies banning utility disconnection Table

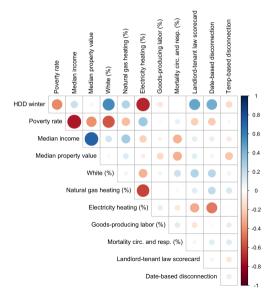
Conclusions

- Cold winter shocks drive more households towards eviction
- Evidence of a channel: environmental shocks ightarrow economic inequality.

Conclusions

- Cold winter shocks drive more households towards eviction
- Evidence of a channel: environmental shocks ightarrow economic inequality.
- Policies that might \downarrow evictions:
 - \downarrow fuel taxes during winter (Auffhammer and Rubin, 2018)
 - \uparrow worker benefits of weather-exposed industries during cold winters

Conclusions


- Cold winter shocks drive more households towards eviction
- Evidence of a channel: environmental shocks ightarrow economic inequality.
- Policies that might \downarrow evictions:
 - \downarrow fuel taxes during winter (Auffhammer and Rubin, 2018)
 - \uparrow worker benefits of weather-exposed industries during cold winters
- Climate-change-induced average \uparrow temperatures might not ameliorate these effects

Thank you for your attention

Descriptive Statistics • Go back

Variable	Mean	SD	SD	Ν	Counties	Years
		(within)	(between)			(average)
HDD winter	1382	183	512	21728	3104	7.0
Filings	885	457	4415	18813	2827	6.7
Evictions	375	279	1445	17525	2643	6.6

Correlation matrix • Go back

Baseline circulatory and respiratory disease • Go back

HDD winter _{cy}	0.026 (0.020)	0.054** (0.022)	0.056** (0.023)
Tercile	1	2	3
Observations	5,299	5,465	5,370

State policies leaning pro-tenant or pro-landlord • Go back

HDD winter _{cy}	0.045**	0.023	
·	(0.019)	(0.016)	
State landlord-tenant laws	Pro-landlord	Pro-tenant	
Observations	8,318	7,995	

Regulation banning utility disconnection • Go back

HDD winter _{cy}	0.046***	-0.0081	0.052***	0.014
	(0.014)	(0.026)	(0.018)	(0.016)
Date-based disconnection	\checkmark	×	_	_
Temperature-based disconnection	_	_	\checkmark	×
Observations	10,829	5,484	8,050	8,263

Regulation banning utility disconnection • Go back

HDD winter _{cy}	0.046***	-0.0081	0.052***	0.014
	(0.014)	(0.026)	(0.018)	(0.016)
Date-based disconnection	\checkmark	×	_	_
Temperature-based disconnection	-	-	\checkmark	\times
Observations	10,829	5,484	8,050	8,263

Regulation banning utility disconnection • Go back

HDD winter _{cy}	0.046*** (0.014)	-0.0081 (0.026)	0.052*** (0.018)	0.014 (0.016)
Date-based disconnection	\checkmark	×	_	_
Temperature-based disconnection	_	-	\checkmark	×
Observations	10,829	5,484	8,050	8,263