The Tipping Point: Interest Rates and Financial Stability ${ }^{a, b}$

Davide Porcellacchia
24 August 2022
European Central Bank

[^0]
Research question

Effect of interest-rate shocks on bank stability?

Research question

Effect of interest-rate shocks on bank stability?

Very quick answer:

- Theoretically, it depends.
\rightarrow Valuation effect vs margin compression.

Research question

Effect of interest-rate shocks on bank stability?

Very quick answer:

- Theoretically, it depends.
\rightarrow Valuation effect vs margin compression.
- Quantitatively, sufficiently low rates are destabilizing.

Literature

1. Effect of interest rates on bank value.

Duration-gap view: Kaufman (1984), Gertler and Kiyotaki (2010), Gertler and Karadi (2011), English, van den Heuvel, and Zakrajšek (2018), and Akinci et al. (2021).
Deposit-franchise view: Borio, Gambacorta, and Hofmann (2017), Drechsler, Savov, and Schnabl (2017), Di Tella and Kurlat (2021), and Drechsler, Savov, and Schnabl (2021).
2. Bank stability: Allen and Gale (1998), Gertler and Kiyotaki (2015), and Segura and Suárez (2017).
3. Low rates.

Credit supply: Brunnermeier and Koby (2019), Ulate (2021), and Altavilla et al. (2022).
Risk taking: Maddaloni and Peydró (2011), Jiménez et al. (2014), Dell'Ariccia, Laeven, and Marquez (2014), Di Maggio and Kacperczyk (2017), Martinez-Miera and Repullo (2017), Heider, Saidi, and Schepens (2019), and Whited, Wu, and Xiao (2021). ${ }_{3 / 26}$

Paper in 1 slide

Effect of interest-rate shock on bank stability?

Model: Diamond-Dybvig model of banking plus (1) infinite horizon and (2) long-term assets.

Paper in 1 slide

Effect of interest-rate shock on bank stability?

Model: Diamond-Dybvig model of banking plus (1) infinite horizon and (2) long-term assets.

Two effects: \ominus Asset revaluation, \oplus Margin compression.

Paper in 1 slide

Effect of interest-rate shock on bank stability?

Model: Diamond-Dybvig model of banking plus (1) infinite horizon and (2) long-term assets.

Two effects: \ominus Asset revaluation, \oplus Margin compression.

Result \#1: Condition for dominant effect.

- Quantitatively, margin-compression effect dominates.

Paper in 1 slide

Effect of interest-rate shock on bank stability?

Model: Diamond-Dybvig model of banking plus (1) infinite horizon and (2) long-term assets.

Two effects: \ominus Asset revaluation, \oplus Margin compression.

Result \#1: Condition for dominant effect.

- Quantitatively, margin-compression effect dominates.

Result \#2: Tipping point.

- Simple analytical solution.
- Quantitatively, interest rate below 0.32% generates bank instability.

Preferences and technology Efficiency

- Unit measure of infinitely-lived households with
- unit endowment at time 0 .

Preferences and technology

- Unit measure of infinitely-lived households with
- unit endowment at time 0 .

Preferences:

- Households uncertain about timing of consumption $\theta \in\{1,2, \ldots\}$ with $\theta \sim \operatorname{Geo}(\phi)$.

$$
\begin{equation*}
E_{0}(\mathcal{U})=\phi \cdot u\left(C_{1}\right)+(1-\phi) \cdot \phi \cdot u\left(C_{2}\right)+(1-\phi)^{2} \cdot \phi \cdot u\left(C_{3}\right)+\ldots \tag{1}
\end{equation*}
$$

- Flow utility u has constant relative risk aversion $1 / \alpha>1$.

Preferences and technology

- Unit measure of infinitely-lived households with
- unit endowment at time 0 .

Preferences:

- Households uncertain about timing of consumption $\theta \in\{1,2, \ldots\}$ with $\theta \sim \operatorname{Geo}(\phi)$.

$$
\begin{equation*}
E_{0}(\mathcal{U})=\phi \cdot u\left(C_{1}\right)+(1-\phi) \cdot \phi \cdot u\left(C_{2}\right)+(1-\phi)^{2} \cdot \phi \cdot u\left(C_{3}\right)+\ldots \tag{1}
\end{equation*}
$$

- Flow utility u has constant relative risk aversion $1 / \alpha>1$.

Investment:

1. Productive technology K :

- one-period net return $\rho>0$,

2. Storage technology S :

- one-period net return 0 ,
$\rightarrow K \succ S$.

Economy

1. Households

- hold deposits or storage.
\rightarrow ZLB on deposit rate.

2. Banks

- lends to firms via long-term bonds and
- borrows via deposits.

3. Firms

- operate the productive technology.

Firms

- Competitive firms
- operate productive tech and
- borrow via long-term bonds.

Firms

- Competitive firms
- operate productive tech and
- borrow via long-term bonds.

Long-term bond:

- Bond duration is increasing in $\delta \in[0,1)$.
- Bond issued at time $t-1$ is equivalent to δ new bonds issued at t.

Firms

- Competitive firms
- operate productive tech and
- borrow via long-term bonds.

Long-term bond:

- Bond duration is increasing in $\delta \in[0,1)$.
- Bond issued at time $t-1$ is equivalent to δ new bonds issued at t.

By arbitrage, $1+\rho=\left(1+\delta \cdot q_{t+1}^{*}\right) / q_{t}^{*}$. With no-bubble condition,

$$
q_{t}^{*}=\frac{1}{1+\rho-\delta}
$$

Households

- At time 0 , uses unit endowment to purchase deposit contract $D_{0}=1$.
- Deposit contract specifies deposit rates $\left\{r_{t}\right\}_{t=0}^{+\infty}$.

Households

- At time 0 , uses unit endowment to purchase deposit contract $D_{0}=1$.
- Deposit contract specifies deposit rates $\left\{r_{t}\right\}_{t=0}^{+\infty}$.
- At a given time t,
- Impatient households (i.e., $\theta=t$) withdraw their deposits.
- Patient households (i.e., $\theta \neq t$) do not withdraw $\Longleftrightarrow r_{t} \geq 0$.
\rightarrow Households' outside option is storage.

Bank

At time 0 , competitive banks choose $\left\{B_{t+1}, D_{t+1}, r_{t}\right\}_{t=0}^{+\infty}$ to maximize

$$
\begin{equation*}
\sum_{t=1}^{+\infty}(1-\phi)^{t-1} \cdot \phi \cdot u\left(D_{t}\right) \tag{3}
\end{equation*}
$$

subject to budget constraints

$$
\begin{gather*}
q_{0} \cdot B_{1}=D_{0}=1 \tag{4}\\
q_{t} \cdot B_{t+1}+\phi \cdot(1-\phi)^{t-1} \cdot D_{t}=\left(1+\delta \cdot q_{t}\right) \cdot B_{t} \quad \text { for all } t \geq 1, \tag{5}\\
D_{t+1}=\left(1+r_{t}\right) \cdot D_{t} \tag{6}
\end{gather*}
$$

a boundary condition, and incentive-compatibility constraints

$$
\begin{equation*}
r_{t} \geq 0 \quad \text { for all } t \geq 1 \tag{7}
\end{equation*}
$$

Bank failure ansetipumation cost

Bank failure

The bank fails at time $s \Longleftrightarrow$ there exists no $\left\{r_{t}\right\}_{t=s}^{\infty} \geq 0$ that is feasible.
\rightarrow Bank assets are paid out to depositors on a pro-rata basis.

Bank failure

The bank fails at time $s \Longleftrightarrow$ there exists no $\left\{r_{t}\right\}_{t=s}^{\infty} \geq 0$ that is feasible.
\rightarrow Bank assets are paid out to depositors on a pro-rata basis.

Proposition 1 (Solvency condition)

At time $t \geq 1$, the bank does not fail

$$
\underbrace{\left(1+\delta \cdot q_{t}\right) \cdot B_{t}}_{\begin{array}{c}
\text { Bank-asset } \tag{8}\\
\text { value }
\end{array}} \geq \frac{\phi+\rho}{\phi \cdot(1+\rho)} \cdot \underbrace{(1-\phi)^{t-1} \cdot D_{t}}_{\begin{array}{c}
\text { Outstanding } \\
\text { deposits }
\end{array}} .
$$

Perfect-foresight equilibrium Dafition

Proposition 2 (PF equilibrium conditions)

PF equilibrium implies

$$
\begin{gather*}
1+r_{t}^{*}=(1+\rho)^{\alpha} \quad \text { for all } t \geq 1 \\
\left(1+\delta \cdot q_{t}^{*}\right) \cdot B_{t}^{*}=\frac{\phi \cdot(1+\rho)^{1-\alpha}}{(1+\rho)^{1-\alpha}-(1-\phi)} \cdot(1-\phi)^{t-1} \cdot D_{t}^{*} \quad \text { for all } t \geq 1 \tag{10}
\end{gather*}
$$

and q_{t}^{*} given by no-arbitrage condition (2).
\rightarrow With infinite risk aversion (i.e., $\alpha \rightarrow 0$), $r_{t}^{*}=0$.

Perfect-foresight equilibrium Dafition

Proposition 2 (PF equilibrium conditions)

PF equilibrium implies

$$
\begin{gather*}
1+r_{t}^{*}=(1+\rho)^{\alpha} \quad \text { for all } t \geq 1 \\
\left(1+\delta \cdot q_{t}^{*}\right) \cdot B_{t}^{*}=\frac{\phi \cdot(1+\rho)^{1-\alpha}}{(1+\rho)^{1-\alpha}-(1-\phi)} \cdot(1-\phi)^{t-1} \cdot D_{t}^{*} \quad \text { for all } t \geq 1 \tag{10}
\end{gather*}
$$

and q_{t}^{*} given by no-arbitrage condition (2).
\rightarrow With infinite risk aversion (i.e., $\alpha \rightarrow 0$), $r_{t}^{*}=0$.

In PF equilibrium, IC never binding and no bank failure.

Deposit-franchise interpretation

- Interest margin.

$$
\begin{equation*}
1+m_{t} \stackrel{\text { def }}{=} \frac{1+\rho}{1+r_{t}} . \tag{11}
\end{equation*}
$$

$\rightarrow \operatorname{In} \mathrm{PF}$ equilibrium, $m_{t}^{*}>0$.

- Per-unit deposit franchise.

$$
\begin{equation*}
f\left(\left\{m_{t}\right\}\right) \stackrel{\text { def }}{=} \underbrace{-\phi-\phi \cdot(1-\phi) \cdot \frac{1+r_{t}}{1+\rho}-\ldots}_{\text {Value of cashflows }}-\underbrace{(-1)}_{\substack{\text { Fale } \\ \text { value }}} \tag{12}
\end{equation*}
$$

$$
\rightarrow\left\{m_{t}\right\}>0 \Longrightarrow f\left(\left\{m_{t}\right\}\right)>0
$$

Deposit-franchise interpretation

- Interest margin.

$$
\begin{equation*}
1+m_{t} \stackrel{\text { def }}{=} \frac{1+\rho}{1+r_{t}} . \tag{11}
\end{equation*}
$$

$\rightarrow \operatorname{In}$ PF equilibrium, $m_{t}^{*}>0$.

- Per-unit deposit franchise.

$$
\begin{equation*}
f\left(\left\{m_{t}\right\}\right) \stackrel{\text { def }}{=} \underbrace{-\phi-\phi \cdot(1-\phi) \cdot \frac{1+r_{t}}{1+\rho}-\ldots}_{\text {Value of cashflows }}-\underbrace{(-1)}_{\substack{\text { Face } \\ \text { value }}} . \tag{12}
\end{equation*}
$$

$\rightarrow\left\{m_{t}\right\}>0 \Longrightarrow f\left(\left\{m_{t}\right\}\right)>0$.
Corollary 1 (Solvency condition with deposit-franchise interpretation)
At time $t \geq 1$, the bank does not fail
\Downarrow

$$
\underbrace{\left(1+\delta \cdot q_{t}\right) \cdot B_{t}}_{\begin{array}{c}
\text { Bank asset } \\
\text { value }
\end{array}}+\underbrace{f(\{\rho\}) \cdot(1-\phi)^{t-1} \cdot D_{t}}_{\text {Deposit franchise }} \underbrace{-(1-\phi)^{t-1} \cdot D_{t}}_{\begin{array}{c}
\text { Deposit face } \\
\text { value }
\end{array}} \geq 0 .
$$

Interest-rate shock

Consider an unanticipated and persistent shock $\rho \rightarrow \hat{\rho}$ at time $t \geq 1$.

$$
\begin{equation*}
\underbrace{\left(1+\delta \cdot \hat{q}_{t}\right)}_{\substack{\text { Valuation } \\ \Theta}} \cdot B_{t}^{*}+\underbrace{f(\{\hat{\rho}\})}_{\substack{\text { Margin } \\ \oplus}} \cdot(1-\phi)^{t-1} \cdot D_{t}^{*}-(1-\phi)^{t-1} \cdot D_{t}^{*} \geq 0 ? \tag{13}
\end{equation*}
$$

Interest-rate shock

Consider an unanticipated and persistent shock $\rho \rightarrow \hat{\rho}$ at time $t \geq 1$.

$$
\begin{equation*}
\underbrace{\left(1+\delta \cdot \hat{q}_{t}\right)}_{\substack{\text { Valuation } \\ \Theta}} \cdot B_{t}^{*}+\underbrace{f(\{\hat{\rho}\})}_{\substack{\text { Margin } \\ \oplus}} \cdot(1-\phi)^{t-1} \cdot D_{t}^{*}-(1-\phi)^{t-1} \cdot D_{t}^{*} \geq 0 ? \tag{13}
\end{equation*}
$$

Proposition 4a (Dominant effect)

Three parametric regions:

1. Given $\delta<1-\phi$, then bank fails $\Longleftrightarrow \hat{\rho}<\rho^{\mathrm{TP}}$.
2. Given $\delta>(1-\phi) \cdot(1+\rho)^{\alpha}$, then bank fails $\Longleftrightarrow \hat{\rho}>\rho^{\text {TP }}$.
3. In intermediate parameter region, bank is fully resilient to the interest-rate shock.

Quantification frulcalitration

- US data from 1997-2007.

Model	Empirical counterpart	Value	Source
$\delta /(1+\rho-\delta)$	Average bank-asset repricing time (years)	4.5	English, van den Heuvel, and Zakrajšek (2018)
f^{*}	Average per-unit deposit franchise	20%	Sheehan (2013)

Parameter	Description	Value
δ	Common ratio of coupons' progression	85%
$1-\phi$	Probability of staying patient	95%

Quantification Full callibration

- US data from 1997-2007.

Model	Empirical counterpart	Value	Source
$\delta /(1+\rho-\delta)$	Average bank-asset repricing time (years)	4.5	English, van den Heuvel, and Zakrajšek (2018)
f^{*}	Average per-unit deposit franchise	20%	Sheehan (2013)

Parameter	Description	Value
δ	Common ratio of coupons' progression	85%
$1-\phi$	Probability of staying patient	95%

$\delta<1-\phi$. Quantitatively, margin effect dominates. Beware low rates!

- For valuation effect to dominate, we need bank-asset duration of 18 years.

Tipping point

Proposition 4b (Tipping point)
The critical tipping point is given by

$$
\begin{equation*}
\rho^{\mathrm{TP}}=m_{t}^{*}-\delta \cdot \frac{\left(\rho-m_{t}^{*}\right) \cdot\left(\phi+m_{t}^{*}\right)}{(1-\phi) \cdot(1+\rho)-\delta \cdot\left(1+m_{t}^{*}\right)} . \tag{14}
\end{equation*}
$$

Tipping point

Proposition 4b (Tipping point)

The critical tipping point is given by

$$
\begin{equation*}
\rho^{\mathrm{TP}}=m_{t}^{*}-\delta \cdot \frac{\left(\rho-m_{t}^{*}\right) \cdot\left(\phi+m_{t}^{*}\right)}{(1-\phi) \cdot(1+\rho)-\delta \cdot\left(1+m_{t}^{*}\right)} . \tag{14}
\end{equation*}
$$

Conclusion

Effect of interest-rate shock on bank stability?

Method. Diamond-Dybvig model with fundamental runs plus:

- infinite-horizon and
- long-term assets.

Theory results. Margin effect vs revaluation effect.

- Condition for dominance.
- Tipping point.

Quantitative results. Margin effect dominates.
\rightarrow The threat to bank stability are low rates.

Conclusion

Effect of interest-rate shock on bank stability?

Method. Diamond-Dybvig model with fundamental runs plus:

- infinite-horizon and
- long-term assets.

Theory results. Margin effect vs revaluation effect.

- Condition for dominance.
- Tipping point.

Quantitative results. Margin effect dominates.
\rightarrow The threat to bank stability are low rates.
Implications. - Bank's maturity mismatch alone bad measure for interest-rate risk exposure.

- Effective lower bound on policy rates.

References i

- Akinci, Ozge et al. (Jan. 2021). The Financial (In)Stability Real Interest Rate, R**. International Finance Discussion Papers 1308. Board of Governors of the Federal Reserve System (U.S.) 7. Allen, Franklin and Douglas Gale (1998). "Optimal Financial Crises". In: The Journal of Finance 53.4, pp. 1245-1284.
Altavilla, Carlo et al. (2022). "Is There a Zero Lower Bound? The Effects of Negative Policy Rates on Banks and Firms". In: Journal of Financial Economics 144.3, pp. 885-907.
Borio, Claudio, Leonardo Gambacorta, and Boris Hofmann (Apr. 2017). "The Influence of Monetary Policy on Bank Profitability". In: International Finance 20, pp. 48-63.
Brunnermeier, Markus K. and Yann Koby (June 2019). The Reversal Interest Rate. IMES Discussion Paper Series 19-E-06. Institute for Monetary and Economic Studies, Bank of Japan.
. Dell'Ariccia, Giovanni, Luc Laeven, and Robert Marquez (2014). "Real Interest Rates, Leverage, and Bank Risk-taking". In: Journal of Economic Theory 149.C, pp. 65-99.

References ii

- Di Maggio, Marco and Marcin Kacperczyk (2017). "The Unintended Consequences of the Zero Lower Bound Policy". In: Journal of Financial Economics 123.1, pp. 59-80.
Di Tella, Sebastian and Pablo Kurlat (Oct. 2021). "Why Are Banks Exposed to Monetary Policy?" In: American Economic Journal: Macroeconomics 13.4, pp. 295-340.
Diamond, Douglas W (Oct. 1997). "Liquidity, Banks, and Markets". In: Journal of Political Economy 105.5, pp. 928-956.

Drechsler, Itamar, Alexi Savov, and Philipp Schnabl (2017). "The Deposits Channel of Monetary Policy". In: The Quarterly Journal of Economics 132.4, pp. 1819-1876.

- (2021). "Banking on Deposits: Maturity Transformation without Interest Rate Risk". In: The Journal of Finance 76.3, pp. 1091-1143.
- English, William B., Skander J. van den Heuvel, and Egon Zakrajšek (2018). "Interest Rate Risk and Bank Equity Valuations". In: Journal of Monetary Economics 98, pp. 80-97. ISSN: 0304-3932.

References iif

Gertler, Mark and Peter Karadi (Jan. 2011). "A Model of Unconventional Monetary Policy". In: Journal of Monetary Economics 58.1, pp. 17-34.
Gertler, Mark and Nobuhiro Kiyotaki (2010). "Financial Intermediation and Credit Policy in Business Cycle Analysis". In: Handbook of Monetary Economics. Ed. by Benjamin M. Friedman and Michael Woodford. Vol. 3, pp. 547-599.

- (July 2015). "Banking, Liquidity, and Bank Runs in an Infinite Horizon Economy". In: American Economic Review 105.7, pp. 2011-2043.
Heider, Florian, Farzad Saidi, and Glenn Schepens (2019). "Life Below Zero: Bank Lending Under Negative Policy Rates". In: Review of Financial Studies 32.10, pp. 3728-3761.
Jiménez, Gabriel et al. (2014). "Hazardous Times for Monetary Policy: What Do Twenty-Three Million Bank Loans Say About the Effects of Monetary Policy on Credit Risk-Taking?" In: Econometrica 82.2, pp. 463-505.

References iv

Kaufman, George G. (1984). "Measuring and Managing Interest Rate Risk: A Primer". In: Economic Perspectives 8. Jan, pp. 16-29.
T. Maddaloni, Angela and José-Luis Peydró (2011). "Bank Risk-taking, Securitization, Supervision, and Low Interest Rates: Evidence from the Euro-area and the U.S. Lending Standards". In: The Review of Financial Studies 24.6, pp. 2121-2165.

- Martinez-Miera, David and Rafael Repullo (Mar. 2017). "Search for Yield". In: Econometrica 85, pp. 351-378.
Segura, Anatoli and Javier Suárez (2017). "How Excessive Is Banks' Maturity Transformation?" In: Review of Financial Studies 30.10, pp. 3538-3580.
Sheehan, Richard (2013). "Valuing Core Deposits". In: Journal of Financial Services Research 43.2, pp. 197-220.
Ulate, Mauricio (Jan. 2021). "Going Negative at the Zero Lower Bound: The Effects of Negative Nominal Interest Rates". In: American Economic Review 111.1, pp. 1-40.

Whited, Toni M., Yufeng Wu, and Kairong Xiao (2021). "Low interest rates and risk incentives for banks with market power". In: Journal of Monetary Economics 121, pp. 155-174.

Appendix

Efficiency

A social planner chooses $\left\{C_{t}, K_{t+1}\right\}_{t=1}^{+\infty}$ to maximise aggregate welfare

$$
\begin{equation*}
\sum_{t=1}^{+\infty}(1-\phi)^{t-1} \cdot \phi \cdot u\left(C_{t}\right) \tag{15}
\end{equation*}
$$

subject to resource constraints

$$
\begin{equation*}
K_{t+1}+(1-\phi)^{t-1} \cdot \phi \cdot C_{t}=(1+\rho) \cdot K_{t} \quad \text { for all } t \geq 1 \tag{16}
\end{equation*}
$$

and initial condition $K_{1}=1$.

Efficiency requires

$$
\begin{equation*}
\frac{C_{t+1}}{C_{t}}=(1+\rho)^{\alpha} \quad \text { for all } t \geq 1 \tag{17}
\end{equation*}
$$

- $1 / \alpha>1 \Longrightarrow$ relatively smooth consumption pattern.

Frictions Back

1. Privately-observed type θ.
2. No fully-contingent deposit contract.
3. Households can only deposit at their bank or store.

- Cost of direct finance (Diamond 1997) and switching cost.

4. Bank loans have fixed duration.

Extension: asset-liquidation cost Back

Bond selling
$B_{t}<\phi \cdot(1-\phi)^{t-1} \cdot D_{t} \Longleftrightarrow$ the bank sells bonds at time $t \geq 1$.

Proposition 5 (Failure and asset liquidation)

Consider $\delta \leq 1-\phi$.
A bank does not fail at time $t \geq 1 \Longrightarrow$ it does not sell bonds at any time $s \geq t$.

- For low enough bond duration, the coupon is always enough to pay off withdrawals as long as the bank is solvent.
- Hence, asset-liquidation costs are not relevant.

Definition of Equilibrium Bark

Equilibrium

Equilibrium is a sequence $\left\{B_{t}^{f}, B_{t}, D_{t}, K_{t}, q_{t}, r_{t}, \Pi_{t}\right\}_{t=0}^{+\infty}$ such that:

1. The firm chooses $\left\{B_{t}^{f}, K_{t}, \Pi_{t}\right\}_{t=0}^{+\infty}$ to solve its maximization problem, taking $\left\{q_{t}\right\}_{t=0}^{+\infty}$ as given.
2. The bank chooses $\left\{B_{t}, D_{t}, r_{t}\right\}_{t=0}^{+\infty}$ to solve its maximization problem, taking $\left\{q_{t}\right\}_{t=0}^{+\infty}$ as given.
3. If and only if there exists no $\left\{r_{t}\right\}_{t=s}^{+\infty}$ that is feasible and IC, then the bank fails at time s and its assets are paid out on a pro-rata basis.
4. Prices $\left\{q_{t}\right\}_{t=0}^{+\infty}$ ensure $B_{t+1}^{f}=B_{t+1}$ for all $t \geq 0$ subject to $\lim _{T \rightarrow+\infty} q_{t}^{*} \neq \pm \infty$.

Full calibration

Model	Empirical counterpart	Value	Source
ρ	Average fed funds rate	3.81%	FRED
r^{*}	Average interest rate on core deposits	2.39%	US Call Reports
$\delta /(1+\rho-\delta)$	Average bank-asset repricing time (years)	4.46	English, van den Heuvel, and Zakrajšek (2018)
f^{*}	Average per-unit deposit franchise	20.2%	Sheehan (2013)

Parameter	Description	Value
ρ	Short-term interest rate	3.81%
$1 / \alpha$	Coefficient of relative risk aversion	1.58
δ	Common ratio of coupons' progression	84.8%
ϕ	Household's probability of turning impatient	5.13%

[^0]: ${ }^{\text {a }}$ Link to the paper's latest version and slides' latest version on www.dporcellacchia.com.
 ${ }^{b}$ This paper represents my own views, not necessarily those of the European Central Bank or Eurosystem.

