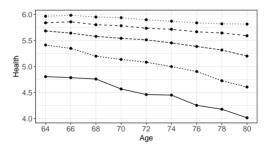
Heterogeneous and Uncertain Health Dynamics and Working Decisions of Older Adults

Angela Denis Bank of Spain

EEA-ESEM Conference 2022

The opinions and analysis do not necessarily coincide with the opinions and analysis of the Banco de España or the Eurosystem


Motivation

- Population aging: number older people out of labor force per worker is rising (OECD, 2019)
 - 42 per 100 workers in 2018
 - 58 per 100 workers in 2050
- Evidence of health effects on older adults' working choices
 - Negative health shocks lead to early retirement (Kerkhofs and Lindeboom, 1997; Bound et al, 1999; Disney et al, 2006; French, 2005)
 - Changes in health affect retirement expectations of workers (McGarry, 2004)
- Mostly ignored: heterogeneity at which health deteriorates with age

Motivation

Heterogeneous health dynamics

Figure: Health percentiles with age from the Health and Retirement Study

--- p10 ---- p25 --- p50 -- p75 ---- p90

- In my model, I find some of this variation is individidual heterogeneity in health profiles

Research questions

- Goals:

1. To document heterogeneity of health profiles with age

2. To measure individuals' information about their own health profiles

3. To study its effects on working decisions of older adults

4. To measure the effect of information from blood-base biomarkers

Data

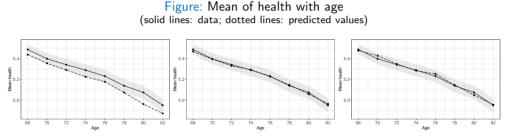
- Health and Retirement Study (HRS)
 - Longitudinal data, collected every 2 years, running since 1992
 - Representative of individuals 50 years and older in the US $% \left({{{\rm{US}}} \right)$
 - Includes measures of health, survival expectations, labor supply
- This analysis uses 9 waves, 1998-2014
- Construct health h_{it} by Confirmatory Factor Analysis using 11 measures
 - Better health is characterized by larger values of h_{it}
 - A decrease of 1 unit in $h_{\it it}$ corresponds to one extra chronic condition

measures

Step 1: heterogeneous health dynamics Empirical strategy

- Estimate dynamic model for health with heterogeneous levels and slopes

 $h_{it} = \rho h_{it-1} + \alpha_i + \delta_i \cdot t + \epsilon_{it}, \quad t \text{ denotes age, } \epsilon_{it} \sim N$


Step 1: heterogeneous health dynamics Empirical strategy

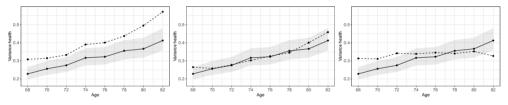
- Estimate dynamic model for health with heterogeneous levels and slopes

 $h_{it} = \rho h_{it-1} + \alpha_i + \delta_i \cdot t + \epsilon_{it}, \quad t \text{ denotes age, } \epsilon_{it} \sim N$

- Heterogeneity $(lpha_i, \delta_i)$ normally distributed conditional on h_{i0} (at age 50)
- Health shocks ϵ_{it} iid normally distributed
- Includes other strictly exogenous regressors
- Survival equation to control for selection $S(h_{it-1})$
- Random coefficient model estimated by MLE

Fit under different assumptions

(a) Heterogeneous slopes without survival equation


(b) Heterogeneous slopes and survival equation

(c) Homogeneous slopes and survival equation

MLE results

Fit under different assumptions

Figure: Variance of health with age (solid lines: data; dotted lines: predicted values)

(a) Heterogeneous slopes without survival equation

(b) Heterogeneous slopes and survival equation

(c) Homogeneous slopes and survival equation

Step 2: uncertainty about own health dynamics with age Model

- Unknown slope δ_i and unobserved and time-varying beliefs
- To study those beliefs, we add structure to the beliefs process

Step 2: uncertainty about own health dynamics with age Model

- Unknown slope δ_i and unobserved and time-varying beliefs
- To study those beliefs, we add structure to the beliefs process
- Bayesian learning model for unknown slope δ_i
 - Initial beliefs $N(\hat{\delta}_{i0},\hat{\sigma}_0^2)$ (at t=0),
 - Initial bias $b = \mathbb{E}(\hat{\delta}_{i0} \delta_i)$
 - Initial uncertainty $\lambda = \frac{\hat{\sigma}_0}{\sigma_{\delta}}$
 - Health h_{it} signals δ_i over time
 - Posterior beliefs $N(\hat{\delta}_{it},\hat{\sigma}_t^2)$ with recursive updating equations

equations

Step 2: uncertainty about own health dynamics with age Empirical Strategy

- For identification, use Subjective Survival Expectations
 - What is the percentage chance you will live to be (80, 85, 90, 95 or 100) or more? (plive10)
- From the model, survival expectations depend on beliefs about future health

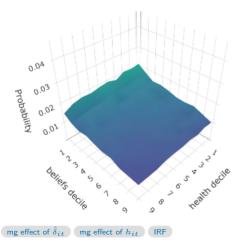
$$\widehat{plive10}_{it} = f_S(h_{it}, \hat{\delta}_{it}, \hat{\sigma}_t^2, \alpha_i)$$

where beliefs $(\hat{\delta}_{it}, \hat{\sigma}_t^2)$ depend on initial bias b and uncertainty λ

descriptive

Step 2: uncertainty about own health dynamics with age Results

- Use simulated method of moments to estimate bias b and uncertainty λ
- Allow for non-classical measurement error
- Results:
 - bias b = -0.061 < 0 implies worse beliefs about future health and less expected survival on average
 - $\lambda = 0.338 > 0$ is evidence of incomplete information
 - Large measurement error with mean $\mu_{merror}=0.121$ and standard deviation $\sigma_{merror}=0.177$
- Results are robust to rounding

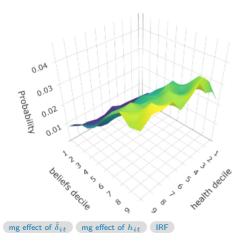

Step 3. Working decisions

Empirical Strategy

- In any model, the working decision rule p_{it} is a function of the information set at that point, Ω_{it-1} .
- When there is heterogeneity in the health process and incomplete information, individuals beliefs $(\hat{\delta}_{it-1}, \hat{\sigma}_{t-1})$ belong to that set.
- A probit exercise shows that beliefs $\hat{\delta}_{it-1}$ do matter
 - Larger $\hat{\delta}_{it-1}$ (better expected health) implies larger probabilities of work
 - However, probit results assume a linear index and could be misspecified
- Instead, want to estimate this probability flexibly
 - Take advantage of neural networks for flexible estimation
 - Beliefs are unobserved to the econometrician
 - To deal with them, use an iterative approach based on EM algorithm

Step 3: working decisions

Working individuals who believe their health will deteriorate more slowly have larger probabilities of working next period

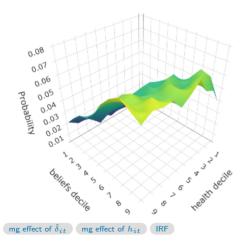


- z-axis is
$$\mathbb{E}\left(rac{\partial \mathbb{P}(p_{it}=1)}{\partial \hat{\delta}_{it-1}}
ight)$$

- x-axis deciles of health h_{it-1}
- y-axis deciles of expected beliefs $\hat{\delta}_{it-1}$
- $age_{it} \in [52, 59]$
- Avg probability 80-90 pp

Step 3: working decisions

Non-linear effects of beliefs for younger older adults who already stopped working



- z-axis is
$$\mathbb{E}\left(rac{\partial \mathbb{P}(p_{it}=1)}{\partial \hat{\delta}_{it-1}}
ight)$$

- x-axis deciles of health h_{it-1}
- y-axis deciles of expected beliefs $\hat{\delta}_{it-1}$
- $age_{it} \in [52, 59]$
- Avg probability 10-30 pp

Step 3: working decisions

Interaction effects for younger older adults not working

- z-axis is $\mathbb{E}\left(\frac{\partial \mathbb{P}(p_{it}=1)}{\partial h_{it-1}}\right)$
- x-axis deciles of health h_{it-1}
- y-axis deciles of expected beliefs $\hat{\delta}_{it-1}$
- $age_{it} \in [52, 59]$
- Avg probability 10-30 pp

Step 4: information experiment

Biomarkers as signals of δ_i

- So far, results show
 - Beliefs matter for working decisions
 - Beliefs are biased
 - Health is a weak signal
- Can we provide information to correct beliefs? And affect working decisions?
- Blood-based biomarkers introduced in 2006
 - Some results are informed back: blood glucose, HDL and total cholesterol These results provide *information about health*
 - Info collected and provided to a random half of the sample, every other wave Hence, we have *exogenous source of variation*

group 1 Blood test Blood test (treatment) group 2 Blood test (control) 4 wave 8 wave 10 wave 5 wave 6 wave 7 wave 9 2000 2002 2004 2006 2008 2010 randomization

group 1 Blood test Blood info Blood test (treatment) group 2 Blood test Blood info (control) ⇒ wave 5 wave 6 wave 7 wave 8 wave 9 wave 10 2000 2002 2004 2006 2008 2010 randomization

Mostly in-person Mostly in-person group 1 Blood test Blood info Blood test (treatment) Mostly in-person group 2 Blood test Blood info (control) ⇒ wave 5 wave 6 wave 7 wave 8 wave 9 wave 10 2000 2002 2004 2006 2008 2010 randomization

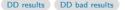
Mostly in-person Mostly phone Mostly in-person group 1 Blood test Blood info Blood test (treatment) Mostly phone Mostly in-person Mostly phone group 2 Blood test Blood info (control) ⇒ wave 8 wave 10 wave 5 wave 6 wave 7 wave 9 2000 2002 2004 2006 2008 2010 randomization

Mostly in-person Mostly phone Mostly in-person group 1 Blood info Blood test Blood test (treatment) Mostly phone Mostly in-person Mostly phone group 2 Blood test Blood info (control) wave 5 wave 6 wave 8 wave 10 wave 7 wave 9 2000 2002 2004 2006 2008 2010 randomization

- DD waves 7 and 8: mode collection effects (in-person)
- DD waves 7 and 9: information effect mode collection effects (in-person)

Mostly in-person Mostly phone Mostly in-person group 1 Blood test Blood info Blood test (treatment) Mostly in-person Mostly phone Mostly phone group 2 Blood test Blood info (control) wave 8 wave 10 wave 5 wave 6 wave 7 wave 9 2002 2004 2008 2010 2000 2006 randomization

Figure: Timing of the biomarker collection and information experiment


- DD waves 7 and 8: mode collection effects (in-person)
- DD waves 7 and 9: information effect mode collection effects (in-person)
- Two variables:
- Survival expectations *plive*10 i.e. effects on beliefs
- Working decision p

i.e. effects on outcomes

Step 4: information experiment

Biomarker results from a data perspective

- Overall results
 - Survival expectations *plive*10: 1.36 pp not significant
 - Working decision p: 0.02 pp not significant
- Larger effects for college graduates
 - Survival expectations *plive10*: 5.12 pp significant at 5%
 - Working decision p: 0.04 pp not significant

Summary

- Evidence of heterogeneity in health dynamics
- Individuals are uncertain and have negatively biased in beliefs about health changes with age
- Expecting a worse health profile is associated with lower probability of work, in particular, for younger adults (50s) not working
- Eliminating initial bias in beliefs would increase participation by more than 2 pp
- Cholesterol and glucose information has small effects on expectations, but no work effects

Thank you!

Appendix

Data and preliminaries

Health measures

- Chronic conditions: high blood pressure, heart attack, diabetes, stroke, lung disease, arthritis, cancer
- Self reported health: excellent, very good, good, fair, poor
- Body mass index
- Eyesight in general, at a distance, and up close: excellent, very good, good, fair, poor and legally blind
- Hearing: excellent, ... poor
- Pain: no pain, mild, moderate and severe pain
- ADLs mobility: walk 1 block, several blocks, across room, climb 1 flight of stairs, several flight of stairs
- ADLs large muscles: push or pull large object, sit for 2 hours, get up from chair, stoop kneel or crouch
- Other ADLs: carry 10 lbs, reach arms

Data and preliminaries

Confirmatory Factor Analysis results

Measure of health	Intercept	Loading	R-squared
Number of chronic conditions ^{(a)}	0	1	0.29
Self-assessed health	8.188	-1.027	0.44
Body mass index	37.278	-1.812	0.05
Eyesight in general	5.710	-0.549	0.15
Eyesight at a distance	5.177	-0.502	0.13
Eyesight up close	5.465	-0.523	0.13
Hearing	4.830	-0.424	0.08
Pain	4.792	-0.802	0.36
Difficulties in ADLs regarding mobility	9.398	-1.598	0.64
Difficulties in ADLs of large muscles	8.964	-1.475	0.63
Difficulties in other ADLs	3.812	-0.654	0.50

Note: (a) The first measure corresponds to 7 minus the number of chronic conditions, hence, larger values represent better health. For this variable, the intercept and loading are fixed to 0 and 1, respectively. All other coefficients are significant at 1%.

MLE results on health and survival

	Symbol	Coefficient	Pvalue
Persistence	ρ	0.223	0.000
Mean * of $lpha_i$	μ_{lpha}	0.955	0.000
Mean * of δ_i	μ_{δ}	-0.057	0.018
SD of α_i	σ_{lpha}	0.235	0.000
SD of δ_i	σ_{δ}	0.043	0.000
$Corr(\alpha_i, \delta_i)$	ϕ	-0.033	0.714
SD of health shocks	σ_{ϵ}	0.266	0.000
Survival dependence on health	γ	0.583	0.001
Controls		Yes	
N alive observations		8,901	
N dead observations		112	
N individuals		1,671	
-Log likelihood		3,027.6	

Hence, evidence of slope heterogeneity

MLE results: health equation

	Heterogeneous slopes without survival eq		Heterogeneous slopes with survival eq		Homogeneous slopes with survival eq	
	Coefficient (1)	Pvalue (2)	Coefficient (3)	Pvalue (4)	Coefficient (5)	Pvalue (6)
ρ	0.225	0.000	0.223	0.000	0.366	0.000
τ	0.001	0.087	0.001	0.119	0.001	0.108
μ_{α}	0.968	0.000	0.955	0.000	0.781	0.000
$\nu_{\alpha female}$	-0.029	0.132	-0.029	0.131	-0.024	0.163
$\nu_{\alpha white}$	0.026	0.338	0.027	0.335	0.018	0.458
$\nu_{\alpha hispanic}$	0.004	0.909	0.005	0.889	-0.001	0.973
$\nu_{\alpha less_HS}$	-0.134	0.000	-0.134	0.000	-0.120	0.000
ω_{lpha}	0.599	0.000	0.603	0.000	0.492	0.000
μ_{δ}	-0.060	0.012	-0.057	0.018	-0.051	0.000
$\nu_{\delta female}$	0.006	0.146	0.006	0.136	0.005	0.198
$\nu_{\delta white}$	0.015	0.007	0.015	0.008	0.013	0.011
$\nu_{\delta hispanic}$	0.010	0.196	0.010	0.199	0.006	0.390
$\nu_{\delta less_HS}$	-0.003	0.677	-0.003	0.624	0.001	0.896
ω_{δ}	0.000	0.956	0.000	0.962		
σ_{lpha}	0.235	0.000	0.235	0.000	0.212	0.000
σ_{δ}	0.042	0.000	0.043	0.000		
ϕ	-0.030	0.741	-0.033	0.714		
σ_{ϵ}	0.266	0.000	0.266	0.000	0.285	0.000

MLE results: survival equation

	Heterogeneous slopes without survival eq		Heterogeneous slopes with survival eq		Homogeneous slopes with survival eq	
	Coefficient (1)	Pvalue (2)	Coefficient (3)	Pvalue (4)	Coefficient (5)	Pvalue (6)
γ			0.583	0.001	0.640	0.000
ι_1			-0.277	0.334	-0.422	0.125
ι_2			0.044	0.986		
ι_3			0.029	0.306	0.036	0.287
ι_4			0.241	0.601		
$ heta_0$			0.529	0.326	0.514	0.336
$ heta_1$			-0.178	0.136	-0.193	0.092
$\theta_{2female}$			0.259	0.002	0.255	0.002
θ_{2white}			0.019	0.847	0.029	0.758
$\theta_{2hispanic}$			0.317	0.079	0.311	0.078
θ_{2less_HS}			-0.106	0.305	-0.114	0.267
N alive observations	8,90	1	8,901		8,901	
N dead observations	0		112		112	
N individuals	1,67	1	1,671		1,671	
-LL	2,498	.6	3,027.6		3,067.6	

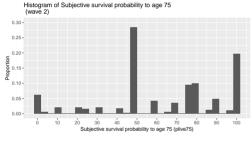
Step 2: uncertainty about own health dynamics with age Bayes' updating equations

Posterior variance

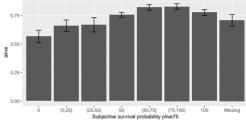
$$\frac{1}{\hat{\sigma}_t^2} = \frac{1}{\hat{\sigma}_{t-1}^2} + \frac{t^2}{\sigma_\epsilon^2}$$

Posterior mean

$$\frac{\hat{\delta}_{it}}{\hat{\sigma}_{t}^{2}} = \frac{\hat{\delta}_{it-1}}{\hat{\sigma}_{t-1}^{2}} + \frac{(h_{it} - \rho h_{it-1} - \alpha_{i})t}{\sigma_{\epsilon}^{2}}$$

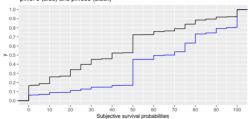

$$\Leftrightarrow \hat{\delta}_{it} = \hat{\delta}_{it-1} + K_{t}(\lambda, \sigma_{\epsilon}^{2}) \cdot \hat{\zeta}_{it}$$

where


- $\hat{\zeta}_{it}$ is the perceived innovation in health, $\hat{\zeta}_{it} \equiv h_{it} - \mathbb{E}(h_{it}|\Omega_{it-1})$

-
$$K_t(\lambda = 0, \sigma_{\epsilon}^2) = 0$$
, $\frac{\partial K_t}{\partial \lambda} > 0$, and $\frac{\partial K_t}{\partial \sigma_{\epsilon}^2} < 0$

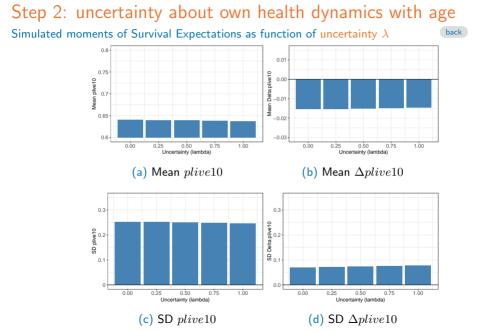
Step 2: uncertainty about own health dynamics with age Subjective survival probabilities in the HRS


(a) Histogram of plive75 (wave 2, $age \le 65$)

Percentage alive in at 75 by plive75 at wave 2

(b) Percentage alive at 75 by plive75 at wave 2


Step 2: uncertainty about own health dynamics with age Subjective survival probabilities in the HRS (cont.)



CDF of Subjective survival probabilities at wave 2 plive75 (blue) and plive85 (black)

(a) Cumulative distribution of plive75 and plive85 (wave 2, $age \le 75$)

Step 2: uncertainty about own health dynamics with age Simulated covariance moments of Survival Expectations as function of uncertainty λ

Step 2: uncertainty about own health dynamics with age Identification with subjective survival rates

We could identify λ with panel data on expectations about survival rates

$$bsr_{it} = \mathbb{P}(S_{it+3} = 1 | S_{it+2} = 1, \Omega_{it})$$

$$bsr_{it+1} = \mathbb{P}(S_{it+3} = 1 | S_{it+2} = 1, \Omega_{it+1})$$

Then,

$$\Delta_w \Phi^{-1} bsr_{it+1} = \underbrace{\rho(h_{it+1} - \rho h_{it} - \alpha_i - \hat{\delta}_{it}(t+1))}_{\text{due to persistence } \rho} + \underbrace{(t+2)(\hat{\delta}_{it+1} - \hat{\delta}_{it})}_{\text{due to learning } \lambda}$$

And

$$\Rightarrow Cov(\Delta_w \Phi^{-1} bsr_{it+1}, \Delta h_{it+1}) = C_t(\lambda) \cdot Var(\Delta h_{it+1})$$

where $C_t(\lambda)$ is increasing in λ back

Step 2: uncertainty about own health dynamics with age Results

	Symbol	Coefficient	Lower bound	Upper bound
Bias	b	-0.061	-0.061	-0.060
Uncertainty	λ	0.338	0.336	0.340
Mean of measurement error	μ_{merror}	0.121	0.118	0.123
SD of measurement error	σ_{merror}	0.177	0.176	0.177

Note: The simulation includes non-classical measurement error $\nu_{it} \sim N(\mu_{merror}, \sigma_{merror}^2)$ with observed values are $max\{min\{plive10_{it} + \nu_{it}, 1\}, 0\}$. Standard errors clustered at the individual level

Step 2: uncertainty about own health dynamics with age $_{\mbox{\scriptsize SMM fit}}$

\approx Target moments

Other	moments	

	Data moment	SE	Simulated moment
$\mathbb{E}(plive10)$	0.531	(0.00011)	0.538
$\mathbb{E}(plive10^2)$	0.371	(0.00012)	0.357
$\mathbb{E}(plive10 \cdot h)$	2.890	(0.00065)	2.957
$\mathbb{E}(\Delta plive10)$	-0.013	(0.00002)	-0.014
$\mathbb{E}((\Delta plive10)^2)$	0.070	(0.00003)	0.066
$\mathbb{E}(\Delta plive10\Delta h)$	0.007	(0.00002)	0.007

Note: same sample used for estimation

	Data moment	SE	Simulated moment
$\mathbb{E}(plive75)$	0.702	(0.00017)	0.806
$\mathbb{E}(plive75^2)$	0.556	(0.00021)	0.687
$\mathbb{E}(plive75 \cdot h)$	3.886	(0.00101)	4.469
$\mathbb{E}(\Delta plive75)$	-0.001	(0.00010)	0.018
$\mathbb{E}((\Delta plive75)^2)$	0.054	(0.00008)	0.042
$\mathbb{E}(\Delta plive75\Delta h)$	0.006	(0.00005)	0.003

Note: subsample used for estimation that is also under 65 years old, ${\cal N}=1,247$ individuals

Step 3: working decisions

In a model with heterogeneous and uncertain health dynamics

 p_{it} labor participation, c_{it} consumption

$$V_{t}(\Omega_{it-1}) = \max_{p_{it},c_{it}} \left\{ \mathbb{E}\left(\underbrace{U(p_{it},c_{it},h_{it},p_{it-1})}_{\text{survival}} \middle| \Omega_{it-1} \right) + \beta \mathbb{E}\left(\underbrace{S_{it+1}}_{\text{survival}} V_{t+1}(\Omega_{it}) + (1-S_{it+1})\underbrace{B(a_{it})}_{\text{bequest}} \middle| \Omega_{it-1},p_{it},c_{it} \right) \right\}$$

st.

- Budget constraint, with assets $a_{it} = a(\Omega_{it-1}, p_{it}, c_{it}, h_{it}, w_{it})$
- Health process $h_{it} = \rho h_{it-1} + \alpha_i + \delta_i \cdot t + \epsilon_{it}$ heterogeneity
- Beliefs about δ_i following $N(\hat{\delta}_{it}, \hat{\sigma}_t^2)$ defined by updating equations

incomplete information

Step 3: working decisions In a model with heterogeneous and uncertain health dynamics

Information set

$$\Omega_{it-1} = \{t, p_{it-1}, a_{it-1}, w_{it-1}, h_{it-1}, \hat{\delta}_{it-1}, \hat{\sigma}_{t-1}^2, \alpha_i\}$$

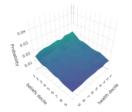
Policy rule for working decision

$$p_{it} = p(t, p_{it-1}, a_{it-1}, w_{it-1}, h_{it-1}, \hat{\delta}_{it-1}, \hat{\sigma}_{t-1}^2, \alpha_i)$$

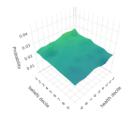
- Survival expectations $plive10_{it}$ help us identify $\hat{\delta}_{it}$ and $\hat{\sigma}_t^2$
- Conditional on Ω_{it-1} , $plive10_{it}$ do not play a role on decisions p_{it}

Step 3: working decisions

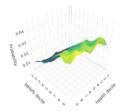
Probit results on $\mathbb{P}(p_{it} = 1 | \Omega_{it-1})$


back

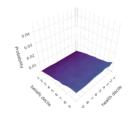
		(1)		(2)		(3)	
		coeff	se	coeff	se	coeff	se
age	t	-0.20***	(0.016)	-0.08***	(0.003)	-0.19***	(0.016)
lagged work	p_{it-1}	2.03***	(0.018)	2.03***	(0.019)	2.03***	(0.019)
lagged health	h_{it-1}	0.17***	(0.024)	0.26***	(0.033)	0.18***	(0.046)
heterogeneous intercept	α_i	0.24***	(0.036)	0.07	(0.046)	0.24***	(0.075)
beliefs mean	$\hat{\delta}_{it-1}$	1.93***	(0.249)			1.90***	(0.499)
beliefs var	$\hat{\sigma}_{t-1}^2/\sigma_{\delta}^2$	-13.85***	(2.048)			-13.33***	(2.102)
survival expectations	$plive10_{it}$			0.11***	(0.031)	0.01	(0.043)
Controls	other vars Ω_{it-1}	Ye	5	Ye	s	Ye	S
N individuals		14,9	69	14,7	'18	14,7	18
N observations		58,0	40	55,5	592	55,5	92


Note: Standard errors are clustered at the individual level.*** p < 0.01, ** p < 0.05, * p < 0.1

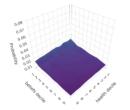
- Beliefs are unobserved to econometrician and hence are integrated out
- Beliefs matter: larger $\hat{\delta}_{it}$ implies larger probabilities of work
- Survival expectations $plive10_{it}$ do not matter once we control for beliefs


Step 3: working decisions NN results: average marginal effects of beliefs $\hat{\delta}_{it-1}$ on labor participation p_{it}

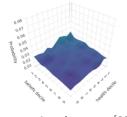
(a)
$$p_{it-1} = 1$$
 and $age_{it} \in [52, 59]$



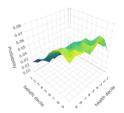
(c)
$$p_{it-1} = 1$$
 and $age_{it} \in [66, 75]$


back

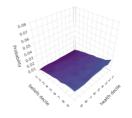
(b)
$$p_{it-1} = 0$$
 and $age_{it} \in [52, 59]$



(d)
$$p_{it-1} = 0$$
 and $age_{it} \in [66, 75]$ 34


Step 3: working decisions NN results: average marginal effects of health h_{it-1} on labor participation p_{it}

(a)
$$p_{it-1} = 1$$
 and $age_{it} \in [52, 59]$



(c) $p_{it-1} = 1$ and $age_{it} \in [66, 75]$

back

(b)
$$p_{it-1} = 0$$
 and $age_{it} \in [52, 59]$

(d)
$$p_{it-1} = 0$$
 and $age_{it} \in [66, 75]$

Step 3: working decisions Result: Eliminating bias in beliefs would **increase** probability of work

(2) Effect of eliminating initial negative bias b on $\mathbb{P}(p_{it} = 1 | \Omega_{it-1})$

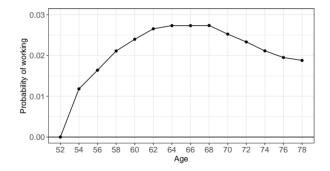


Figure: Impulse response function to eliminate initial bias b

Step 3: working decisions NN impulse response functions to a reduction in bias $\hat{\delta}_{it} - \delta_i$

quartile of initial bias - q1 ···· q2 --· q3 -- q4

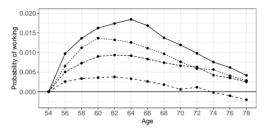


Figure: Bias reduced in half, by quartile of bias

At 54, p_{it} has mean 0.73 and sd 0.44 At 66, p_{it} has mean 0.34 and sd 0.47 At 78, p_{it} has mean 0.11 and sd 0.31

Bias at 54 goes between -0.16 to 0.12, with a mean and median of -0.059 (back

Step 4: information experiment DD results

		Survival expectations ($plive10_{iw}$)			Work choice (p_{iw})			
		All	Less college	College	All	Less college	College	
group 1	d_{g_i}	-0.47	-0.24	-1.38	0.00	0.01	-0.01	
wave 6	d_{w6}	-1.42***	-1.21**	-2.09**	-0.07***	-0.07***	-0.09***	
wave 7	d_{w7}	-1.50***	-1.44***	-1.72**	-0.12***	-0.12***	-0.12***	
wave 8	d_{w8}	-6.41***	-6.12***	-7.37***	-0.16***	-0.16***	-0.19***	
wave 9	d_{w9}	-3.57***	-3.22***	-4.70***	-0.20***	-0.20***	-0.22***	
group 1, wave 6	$d_{g_i} \cdot d_{w6}$	0.28	-0.06	1.37	0.01	0.00	0.02	
group 1, wave 7	$d_{g_i} \cdot d_{w7}$	-0.27	-0.24	-0.33	0.01	0.01	0.01	
group 1, wave 8	$d_{g_i} \cdot d_{w8}$ (a)	1.77**	1.29	3.31***	0.01	0.00	0.03	
group 1, wave 9	$d_{q_i} \cdot d_{w9}$ (b)	-0.42	-1.12	1.82	0.01	0.01	0.00	
Constant	5	53.97***	52.42***	58.96***	0.49***	0.45***	0.61***	
Observations		41,930	31,815	10,115	41,923	31,810	10,113	
R-squared		0.004	0.004	0.005	0.021	0.021	0.022	
Interview mode e	ffect (a)	1.77**	1.29	3.31**	0.01	0.00	0.03	
Information effect	t (a)+(b)	1.36	1.65	5.12**	0.02	0.01	0.04	

$$y_{iw} = \beta_0 + \beta_1 d_{g_i} + \beta_{2w} d_w + \beta_{3w} d_{g_i} \cdot d_w + \epsilon_{iw}$$

Step 4: biomarkers as signals of δ_i

Reduced-form results distinguishing bad vs good test results

back

		Survival expectations $plive10_{iw}$	Working decisions p_{iw}
group 1	d_{g_i}	-0.39	-0.01
group 1, bad results	d_{b_i}	-0.37	0.04**
wave 6	d_{w6}	-1.42***	-0.07***
wave 7	d_{w7}	-1.50***	-0.12***
wave 8	d_{w8}	-6.41***	-0.16***
wave 9	d_{w9}	-3.57***	-0.20***
group 1, wave 6	$d_{g_i} \cdot d_{w6}$	0.58	0.01
group 1, wave 7	$d_{g_i} \cdot d_{w7}$	0.15	0.02*
group 1, wave 8	$d_{g_i} \cdot d_{w8}$	2.23***	0.02*
group 1, wave 9	$d_{g_i} \cdot d_{w9}$	-0.05	0.02
group 1, bad results, wave 6	$d_{g_i} \cdot d_{b_i} \cdot d_{w6}$	-1.25	-0.01
group 1, bad results, wave 7	$d_{q_i} \cdot d_{b_i} \cdot d_{w7}$	-1.75*	-0.04**
group 1, bad results, wave 8	$d_{g_i} \cdot d_{b_i} \cdot d_{w8}$	-1.94*	-0.05***
group 1, bad results, wave 9	$d_{g_i} \cdot d_{b_i} \cdot d_{w9}$	-1.56	-0.03
Constant		53.97***	0.49***
Observations		41,930	41,923
% of group 1 individuals with	bad results	12.29	12.30