Fiscal regimes and the exchange rate^{*}

Enrique Alberola[†], Carlos Cantú[†], Paolo Cavallino[†] and Nikola Mirkov[‡]

[†]Bank for International Settlements

[‡]Swiss National Bank

EEA-ESEM 2022

23 August 2022

^{*}The views expressed in this paper are those of the authors and do not necessarily reflect those of the Bank for International Settlements and the Swiss National Bank.

Introduction

- Fiscal support during the pandemic has raised government debt to unprecedented levels
 - AEs: 104% of GDP (2019) \rightarrow 122% of GDP (2021)
 - EMEs: 55% of GDP (2019) ightarrow 65% of GDP (2021)
- In the last year, inflationary pressures have started to arise forcing CBs to raise policy rates
- This environment has brought the monetary-fiscal nexus back into the spotlight
 - MP affects real value and financing cost of government debt
 - FP affects aggregate demand and inflation
 - Both supply assets that provide liquidity services
- We focus on the effect of their interaction on the exchange rate

This paper

- Study BRL/USD daily movements around monetary (fiscal) policy announcements and find evidence of two regimes
- In response to a contractionary monetary (expansionary fiscal) shock, the domestic currency tends to
 - appreciate (no-effect) during normal times (Ricardian fiscal regime)
 - depreciate during periods of fiscal distress (non-Ricardian fiscal regime)
- We propose a simple model of sovereign default with
 - stochastic fiscal regimes
 - 2 asymmetric recovery rates between domestic and foreign investors
- Sovereign risk drives the currency excess return
 - \implies domestic policies affect the exrate through debt sustainability

Empirical approach

Empirical model

$$\Delta e_t = \alpha_t + \frac{\beta_t \xi_t}{\xi_t} + \gamma \Delta \mathbf{X}_t^\top + \varepsilon_t$$

- Δe_t is the daily log change of the BRL/USD exchange rate

- ξ_t is the (monetary/fiscal) policy surprise at policy announcement
- The object of interest is the sign of β_t and its evolution

Identify fiscal regimes using narrative evidence:

 $\beta_t = (1 - \mathbf{1}_t) \,\beta_R + \mathbf{1}_t \beta_N$

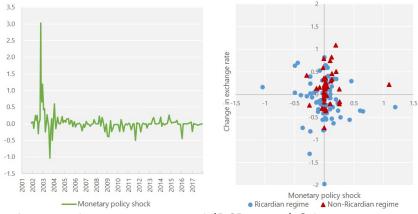

where $\mathbf{1}_t = 1$ during non-Ricardian regimes

2 Unobserved fiscal regimes:

$$\beta_t = \beta\left(s_t\right)$$

where s_t is a hidden state that follows a two-state Markov chain

Non-Ricardian fiscal regimes



• Two episodes (exact dates using CDS spread dynamics):

I runoff to Lula election: Mar-Oct 2002

uncontrolled fiscal expansion: Jan 2012-Dec 2015

Monetary policy shocks

- Announced minus avg expected (BCB survey) Selic target rate
- 147 interest rate decisions, from Nov 2001 to Dec 2017
 - decision distribution: 42 \uparrow , 50 =, 55 \downarrow
 - shock distribution: 71 >, 17 =, 59 <

Exchange rate response to MP shocks

	Unco	Unconditional		Fiscal regimes					
	(1)	(2)		(3)	(4)				
			R	N	R	N			
Constant $i - \mathbb{E}[i]$	-0.02	0.01	-0.09**	0.14**	-0.05	0.16***			
	(0.03) 0.14 (0.12)	(0.03) 0.14 (0.12)	(0.04) -0.22	(0.06) 0.25***	(0.04) - 0.25**	(0.06) 0.27***			
							(0.13)	(0.04)	(0.12)
			Δ VIX Δ Comm. Prices Δ 2 year T-note		0.06*			0.06*	
	(0.03)				(0.03) - 0.07^{***} (0.03) 0.08 (0.64)				
	-0.07***								
	(0.03) 0.18 (0.68)								
Constant (diff.)			0.23^{***} (0.07)		0.21***				
					(0.07)				
$i - \mathbb{E}\left[i ight]$ (diff.)			0.46***		0.52***				
			(0.14)		(0.12)				
R^2	0.01	0.11	0.11		0.21				
No. of observations	147	147	147		147				

Note: Robust standard errors in parenthesis. Statistical significance at the 10%, 5% and 1% levels is denoted by *, **, and ***.

Empirical evidence

Markov-switching regression

Empirical model

$$\Delta e_t = \alpha_t + \frac{\beta_t \xi_t}{\xi_t} + \gamma \Delta \mathbf{X}_t^\top + \varepsilon_t$$

- Δe_t is the daily log change of the BRL/USD exchange rate

- ξ_t is the (monetary/fiscal) policy surprise at policy announcement
- The object of interest is the sign of β_t and its evolution

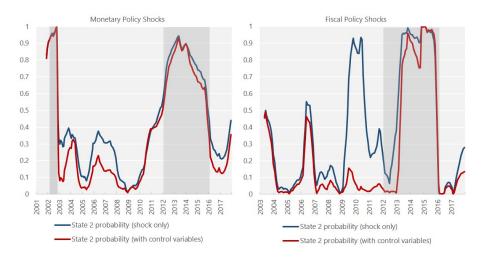
Identify fiscal regimes using narrative evidence:

$$\beta_t = (1 - \mathbf{1}_t) \,\beta_R + \mathbf{1}_t \beta_N$$

where $\mathbf{1}_t = 1$ during non-Ricardian regimes

② Unobserved fiscal regimes:

$$\beta_t = \beta\left(s_t\right)$$


where \boldsymbol{s}_t is a hidden state that follows a two-state Markov chain

Exchange rate response in the two regimes

		Monetary policy				Fiscal policy				
		(1)		(2)		(3)		(4)		
		State 1	State 2	State 1	State 2	State 1	State 2	State 1	State 2	
Transition	State 1	0.95	0.05	0.96	0.04	0.95	0.05	0.97	0.03	
matrix	State 2	0.06	0.94	0.06	0.94	0.07	0.93	0.08	0.92	
Constant		-0.11	0.09	-0.06	0.14**	-0.12**	0.01	-0.07	-0.01	
		(0.18)	(0.17)	(0.05)	(0.06)	(0.05)	(0.07)	(0.05)	(0.08)	
policy shock		-0.14	0.19	-0.21*	0.23**	-0.02	0.08***	-0.01	0.09***	
		(0.43)	(0.39)	(0.13)	(0.09)	(0.02)	(0.02)	(0.02)	(0.02)	
Δ VIX		0.06*				0.13***				
			(0.03)				(0.03)			
Δ Comm. Pri	ces	-0.07***		7***			-0.04			
			(0.03)				(0.03)			
Δ 2 year T-note			0.02			1.37**			37**	
		(0.72)				(0.70)				
Volatility		0.40		0.37		0.44		0.40		
		(0.05)		(0.03)		(0.03)		(0.03)		
Obs.		147				177				

Note: Robust standard errors in parenthesis. Statistical significance at the 10%, 5% and 1% levels is denoted by *, **, and ***, respectively.

Estimated probabilities

Theory

The model

- Continuous-time NK-SOE model...
- Central bank: sets the interest rate at which households

$$i(t) = \left[\rho + (1 + \phi_{\pi}) \pi_{H}(t)\right] + \varepsilon_{i}(t)$$

where $\phi_{\pi} > 0 \implies$ monetary policy is always active

• Government: finances exogenous expenditure $G(t) = \varepsilon_{q}(t)$ and follows the fiscal rule

$$T(t) - \bar{T} = \psi_b^x \left(B(t) - \bar{B} \right)$$

where B(t) is total real debt and x denotes the fiscal regime • $\psi_h^R >> 0 \implies$ Ricardian regime (passive fiscal policy) • $\psi_i^N \approx 0 \implies$ non-Ricardian regime (active fiscal policy)

Sovereign bonds and default

- The government issues two short-term (instantaneous) bonds:
 - Home-currency bond, pays the interest rate $i_{H}\left(t
 ight)$
 - Foreign-currency bond, pays the interest rate $i_{F}\left(t
 ight)$
- Complete financial markets integration
 - Home and Foreign investors can buy both bonds
- The government can default on its (total) debt
 - default is a stochastic event with endogenous probability $\eta\left(t
 ight)$
 - $\eta\left(t\right)$ is determined in equilibrium by the government budget constraint
- Upon default foreign investors are subject to higher haircuts
 - Domestic creditors recover a fraction χ of credits
 - Foreign creditors recover $\chi^* < \chi$

Theory

Exchange rate and default risk

• The (modified) uncovered interest parity condition

$$\mathbb{E}\left[\frac{d\mathcal{E}\left(t\right)}{\mathcal{E}\left(t\right)}\right] = i\left(t\right) - i^{*}\left(t\right) - \left(\chi - \chi^{*}\right)\eta\left(t\right)$$

- Default risk drives the currency excess return
 - an increase in $\eta\left(t\right)$ depreciates the exchange rate
- An increase in $\eta(t)$ raises sovereign bonds spreads
 - increase in $i_{H}\left(t\right)$ too low for foreign investors
 - increase in $i_{F}\left(t
 ight)$ too high for domestic investors
- Della Corte et al (2021): an increase in a country's CDS spread is accompanied by a depreciation of its currency [...] mainly driven by default expectations (rather than distress risk premia)

Equilibrium default probability

- The government defaults on its total debt
- \bullet Default is a stochastic event that follows a Poisson process with probability $\eta\left(t\right)$
- The intertemporal budget constraint of the government is

$$B(t) = \mathbb{E} \int_{t}^{\infty} e^{-\int_{t}^{k} (i(z) - \pi_{H}(z) - \boldsymbol{\xi}(\boldsymbol{z})(\boldsymbol{\chi} - \boldsymbol{\chi}^{*})\boldsymbol{\eta}(\boldsymbol{z}) + \dots)dz} \left(T(k) - G(k)\right) dk$$

• To solve, assume that default risk is proportional to debt:

$$\eta\left(t\right) = \max\left\{0, \frac{\eta^{x}}{\bar{B}}\frac{B\left(t\right) - \bar{B}}{\bar{B}}\right\}$$

Theory

Monetary policy shocks - fixed fiscal regimes

Proposition

The elasticity of the exchange rate to the shock $\varepsilon_i(0) = \varrho \bar{\varepsilon}_i > 0$ is

• in the Ricardian equilibrium

$$\frac{e^{R}\left(0\right)}{\bar{\varepsilon}_{i}} = -1 + \frac{\kappa\omega\phi_{\pi}}{\kappa\omega\phi_{\pi} + \varrho\left(\rho + \varrho\right)}$$

• in the non-Ricardian equilibrium

$$\frac{e^{N}\left(0\right)}{\bar{\varepsilon}_{i}} = \frac{e^{R}\left(0\right)}{\bar{\varepsilon}_{i}} + \underbrace{\frac{\varrho\left(\rho+\varrho\right)\left(\rho-\psi_{b}^{N}\right)}{\kappa\omega\phi_{\pi}+\varrho\left(\rho+\varrho\right)}\frac{1-\iota+\frac{\kappa\omega\phi_{\pi}\frac{1-\alpha}{\rho+\varrho}-\rho}{\kappa\omega\phi_{\pi}\left(1-\alpha\right)+\alpha\rho^{2}}\frac{\kappa\omega\phi_{\pi}}{\rho+\varrho}}{\frac{\rho\xi\kappa\omega\phi_{\pi}}{\kappa\omega\phi_{\pi}\left(1-\alpha\right)+\alpha\rho^{2}}-\iota\left(\rho-\psi_{b}^{N}\right)}}_{debt\ channel\ >0}$$

- Foreign-currency debt (ι) tends to amplify the response of the exchange rate in the non-Ricardian equilibrium

Alberola, Cantú, Cavallino, Mirkov

Fiscal regimes and the exchange rate

Monetary policy shocks - Markov-switching fiscal regimes

Proposition

Let $\psi_{\pi}^{R} = \psi_{\pi}^{N} = 1$, $\psi_{b}^{N} = 0$, $\psi_{b}^{R} \downarrow \rho$, and $\iota = 0$. Then the elasticity of the exchange rate to the shock $\varepsilon_{i}(0) = \rho \bar{\varepsilon}_{i} > 0$ in the MS model is

$$\frac{e^{R}\left(0\right)}{\bar{\varepsilon}_{i}} = \left.\frac{e^{R}\left(0\right)}{\bar{\varepsilon}_{i}}\right|_{\sigma^{N}=0} + \sigma^{N}\Xi$$

and

$$\frac{e^{N}\left(0\right)}{\bar{\varepsilon}_{i}}=\left.\frac{e^{N}\left(0\right)}{\bar{\varepsilon}_{i}}\right|_{\sigma^{R}=0}-\sigma^{R}\Xi$$

where $e^{x}(0) / \bar{\varepsilon}_{i}|_{\sigma^{-x}=0}$ is the response of the exchange rate in regime $x \in \{R, N\}$ in the deterministic model.

Conclusion

- Study BRL/USD daily movements around monetary (fiscal) policy announcements and find evidence of two regimes
- In response to a contractionary monetary (expansionary fiscal) shock, the domestic currency tends to
 - appreciate in normal times
 - depreciate during periods of fiscal distress
- We rationalize these fact with a sovereign default model featuring
 - stochastic fiscal regimes
 - asymmetric recovery rates between domestic and foreign investors
- Sovereign risk drives the currency excess return.
 - \implies domestic policies affect the exrate through debt sustainability