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1 Introduction
A characteristic feature of contractual relationships in venture finance is the exis-
tence of interim reporting deadlines. In particular, a startup will often face interim
deadlines for reporting on the progress of a project to the venture capitalist. I study
the economic rationale for the emergence of interim reporting deadlines in a setting
in which the startup has the power to propose the terms for self-reporting to the
venture capitalist.1

I study a game between a startup and an investor. The rent-seeking startup
controls the information on the progress of the project, and commits to providing
the investor with self-reports on its progress towards completion.2 In return, the
investor continuously provides funds over time and chooses when to stop funding
the project. The project has two stages and evolves stochastically over time toward
completion, conditional on continuous investment in it. The completion of the
first stage serves as a milestone, while completion of the second stage achieves the
project. The investor gets a lump-sum payoff if and only if it stops investing after
the project is completed and before an exogenous project completion deadline, and
the startup prefers to prolong the funding of the project for as long as possible.3

As the investor receives the reward only after a prolonged period of investment,
it initially invests without being able to see if the investment is worthwhile. Hence,
it is individually rational for the investor to start investing only if it is sufficiently
optimistic regarding the future of the project. An important feature of the setting
that I consider is that at the outset not only the investor, but also the startup is
unable to find out if the project will bring profit to the investor or not - this can
be inferred only as time goes on and some evidence is accumulated. The only tool
that the startup has for persuading the investor to start investing is the promise

1There are multiple factors that can contribute to startups having the bargaining power to
propose terms of self-reporting on the progress of a project to an investor. First, the startup could
have a unique understanding of the innovative technology and of the project lifecycle. Second,
the innovation proposed by the startup might have a high market value and be attractive to
many potential investors in the market.

2In the spirit of dynamic Bayesian persuasion literature, I assume that choosing the informa-
tion policy, the startup has an intertemporal commitment power.

3The assumption that the investor needs to have the project completed in finite time is natural
in many economic settings. One possible rationale for the exogenous project completion deadline
is an expected change in market conditions that renders the project unprofitable.
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of future reports on the progress of the project.
Clearly, the good news about the completion of the project is valuable to the

investor as it helps it to stop investing in a timely manner. Further, as evidence
regarding the project accumulates over time, failure to pass the milestone in a
reasonable time serves as credible evidence of the project being poor - and the
investor prefers to stop investing after observing such bad news. When designing
the information policy, the startup chooses optimally between the provision of
these two types of evidence in order to postpone the investor’s stopping decision
for as long as possible.

When the project is sufficiently attractive ex ante to the investor, promises to
provide information only on the completion of the project serve as a sufficiently
strong incentive device to motivate the investor to start the funding at the outset.4

Further, the future news on the completion of the project does not harm the total
expected surplus generated by the interaction of the startup and investor, while
the future news on the project being poor decreases the surplus that the startup
can potentially extract from the investor. Accordingly, the startup commits to
providing only the good news, but not the bad news on the project in the future:
it discloses the completion of the project and postpones the disclosure in order to
ensure the extraction of as much surplus as possible from the investor.

The situation changes when the project does not look promising to the investor
ex ante. In that case, if the startup commits to disclosing only the completion of
the project, the investor will not have the sufficient motivation to start investing
in it. Thus, the startup extends the information policy to encompass not only
the good news but also the bad. As in the case of the promising project, the
startup discloses the project’s completion and does so without any postponement,
thereby fully exploiting its preferred incentive tool. In addition, the startup sets a
deterministic date at which the bad news is released if the milestone of the project
has not yet been reached - this date is the interim reporting deadline. The startup
sets the interim deadline as late in time as possible in order to extract all the
surplus from the investor.

The results of my research pin down the necessary and sufficient conditions
4The project is sufficiently attractive ex ante when the ratio of flow investment cost to com-

pletion benefit, normalized using the rate at which completion of one stage of the project occurs,
is sufficiently low.
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for the emergence of an interim self-reporting deadline when a startup offers the
self-reporting conditions to the investor. The first condition is the presence of a
hard exogenous project-completion deadline for the investor. The second condition
is a sufficiently high cost-benefit ratio of the project, i.e., the project should be
sufficiently unattractive to the investor ex ante.

2 Related literature
My paper is related to the literature on dynamic Bayesian persuasion. The closest
paper in this strand of literature is by Ely and Szydlowski (2020). Similarly to my
paper, they study the optimal persuasion of a receiver facing a lump-sum payoff
to incur costly effort for a longer time. In my model, as in theirs, the sender
is concerned to satisfy the beginning-of-the-game individual rationality constraint
of the receiver when choosing the information policy. Further, the “leading on”
information policy in Ely and Szydlowski (2020) has a similar flavor to the “post-
poned disclosure of completion” information policy in my paper: promises of news
on completion of the project serve as an incentive device sufficient to satisfy the
receiver’s individual rationality constraint.

However, there are several substantial differences between Ely and Szydlowski
(2020) and my paper. While in their model the state of the world is static and
drawn at the beginning of the game, in my model it evolves endogenously over
time, given the receiver’s investment. As a result, the initial disclosure used in the
“moving goalposts” policy in Ely and Szydlowski (2020) cannot provide additional
incentives for the receiver in my model. The sender in my model uses another
incentive device to incentivize the receiver to opt in at the initial period: she
commits to an interim deadline at which she discloses that the first stage of the
project is not completed.

Another closely related paper is by Orlov et al. (2020). The main similarity
to my paper lies in the sender’s incentive to postpone the receiver’s irreversible
stopping decision. The sender in their paper prefers to backload the information
provision, which is in line with the properties of the optimal information policy
in my paper. However, there are a number of substantial differences between
our papers. In Orlov et al. (2020), the sender does not have the intertemporal
commitment power. Further, the receiver obtains a payoff at each moment of
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time, and thus the sender does not need to persuade the receiver to opt in at the
beginning of the game.

Ely (2017); Renault et al. (2017); Ball (2019) also analyze dynamic Bayesian
persuasion models. However, their papers focus on persuading a receiver who
chooses an action and receives a payoff at each moment of time, whereas in my
paper the receiver takes an irreversible action and receives a lump-sum project
completion payoff. Henry and Ottaviani (2019) consider a dynamic Bayesian per-
suasion model in which, similarly to my model, the receiver needs to take an
irreversible decision. However, the incentives of the sender and receiver differ from
my model: the receiver wants to match the static state of the world and the
sender is concerned with both the receiver’s action choice and with the timing of
that choice.

My paper is also related to the literature on the dynamic provision of incentives
for experimentation (Bergemann and Hege, 1998; Wolf, 2017; Curello and Sinan-
der, 2020; Madsen, 2020). The closest paper in this strand of literature is by Wolf
(2017). Similarly to my model, his model considers a multistage project and uses a
discrete milestone to capture the endogenous progress of the project towards com-
pletion. However, in contrast to my paper, his paper focuses on a moral-hazard
problem. In his model the investor (receiver) rather than the startup (sender)
has the bargaining power to design the contract according to which the reporting
happens. Green and Taylor (2016) also consider a related model and give the con-
tracting power to the investor rather than to the startup. Similarly to my model,
the optimal contract in their model demonstrates the emergence of an interim
deadline.5

5In a broad sense, my paper also relates to the small strand of theoretical literature on dy-
namic startup-investor and startup-worker relations under information asymmetry (Kaya, 2020;
Ekmekci et al., 2020). However, while these papers focus on the signaling of the type of startup,
I study the provision of information by the startup on the progress of the project.
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3 The model
I consider a game between an agent (she, sender) and a principal (he, receiver).
Time is continuous and there is a publicly observable deadline T , t ∈ [0, T ].6 For
each t, the principal chooses sequentially to invest in the project (at = 1) or not
(at = 0).7 The flow cost of the investment is constant and given by c. The choice
of at = 0 at some t is irreversible and induces the end of the game.

The state of the world at time t is captured by the number of stages of the
project completed by t, xt, and the project has two stages, xt ∈ {0, 1, 2}. The
state process begins at the state x0 = 0 and, conditional on the continuation of
the investment by the principal, it increases at a Poisson rate λ > 0. The formal
definition of the state process is given in Appendix A. Information on the number
of stages completed is controlled by the agent. Thus, when making investment
decisions, the principal relies on the information provided by the agent.

There is a conflict of interest between the agent and the principal. The principal
obtains the lump sum payoff for the completion of the project v if and only if the
second stage of the project has been completed by the time of stopping, and a
payoff of 0, otherwise. The agent is rent-seeking: she gets the flow payoff of c, and
thus wants the principal to postpone his irreversible decision to stop as long as
possible.

I study the agent’s choice of information provision to the principal. The agent
chooses an information policy to maximize her expected long-run payoff. I assume
that the agent has the power to announce and commit to a policy. An information
policy σ is a rule that for each date t and for each past history h (t) specifies a
probability distribution on the set of messages M . When choosing an information
policy, the agent faces a rich strategy space. First, she can choose if the information
on the completion of the first, or second, stage of the project will be disclosed by
the policy. Second, she can choose how to disclose the completion of a stage of the
project: for instance, to do so immediately or to postpone the disclosure.

The timing of the game is as follows. First, at t = 0, the agent publicly commits
to an information policy σ. Second, at each t the principal observes the message

6The results for the setting without a deadline are easily obtained by considering T → ∞.
They are presented in Appendix F.

7The principal does not commit to an investment policy.
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generated by the information policy and makes her investment decision. The game
ends when the principal chooses to stop investing or at T , if he keeps investing
until T . I assume that whenever indifferent about investing or not, the principal
chooses to invest, and whenever indifferent about disclosing information or not,
the agent chooses not to disclose.

Throughout the paper, I use the following intuitive notational convention with
respect to the principal’s time of stopping: I denote the time at which the principal
stops investing by τ when it is a random variable and by S when it is deterministic.
For any two times at which the principal stops investing S and τ ,

S ∧ τ := min (S, τ) .

4 No-information and full-information benchmarks

4.1 No-information benchmark

First, I consider the simple case when the information policy is given by σNI : the
same message m is sent for all histories h (t) and all dates t. Thus, the agent
provides no information regarding the progress of the project. As I demonstrate,
in this case the principal starts investing in the project if and only if it is suffi-
ciently promising for the principal from the ex ante perspective and invests until
a deterministic interior date.

As no news arrives, the principal bases his decision about when to stop in-
vesting on his unconditional belief regarding the completion of the second stage
of the project. I denote the unconditional belief that n stages of the project were
completed by t, by pn (t), i.e. pn (t) := P (xt = n). The state of the world is fully
determined by p (t) given by

p0 (t) = e−λt,

p1 (t) = λte−λt,

p2 (t) = 1 − e−λt − λte−λt.

The principal’s sequential choice of at ∈ {0, 1} can be restated equivalently as
the choice of deterministic stopping time SNI ∈ [0, T ] chosen at t = 0.8 Given

8Note that the dynamic belief system that he faces is deterministic in a sense of being fully
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the principal’s continuous investment, the probability of completion of the second
stage of the project, p2 (t), increases monotonously over time, making obtaining
the payoff v more likely. However, postponing the stopping is costly.

To decide on SNI , the principal trades off the flow benefits and flow costs of
postponing the stopping decision, while keeping the individual rationality con-
straint in mind. The flow cost of postponing the stopping for ∆t is given by c · ∆t

and the flow benefit is given by v · p1 (t) λ∆t.9 Thus, the necessary condition for
the principal’s stopping at some interior moment of time (0 < S < T ) is given by

v · p1 (S) λ = c. (1)

Let
κ := c

vλ
,

the ratio of the flow cost of investment c to the gross project payoff v normalized
using λ, the rate at which a project stage is completed in expectation. The intuitive
interpretation of κ is the normalized cost-benefit ratio of the project. κ is an inverse
measure of how ex ante promising the project is for the principal. (1) is equivalently
given by10

p1 (S)︸ ︷︷ ︸
flow benefit of waiting

= κ︸︷︷︸
flow cost of waiting

(2)

and presented graphically in Figure 1. As the state process transitions monotonously
from 0 to 1 and then to 2, p1 (t) first increases and after some time starts to de-
crease. Thus, the principal has two candidate interior stopping times satisfying
(2), S1 and S2. The principal prefers to postpone stopping to S2, as during (S1, S2)
the flow benefits are higher than the flow costs.

The forward-looking principal can guarantee himself a payoff of 0 if he does
not start investing at t = 0. Thus, he will choose to start investing at t = 0 only

specified from t = 0 perspective.
9To observe this, note that the probability of the completing both the first and second stages

within a very short time ∆t is negligibly small; thus, during some ∆t, the principal receives the
project completion payoff v iff the first stage has already been completed.

10Here I WLOG express the flow benefits and flow costs of investing for the principal in different
units of measurement.
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1 p2(t), probability of completion
of 2nd stage of project

0 t

1
e

p1(t), flow benefit
of waiting

c
vλ

, flow cost
of waiting

optimal
choice

S1 S2

Figure 1: Principal’s choice under no information:
left plot: postponing stopping increases the chance of getting a project payoff v;

right plot: principal trades off costs and benefits and optimally stops at S2.

if his flow gains accumulated up to T ∧ S2 are larger than his flow losses:∫ T ∧S2

0
(v · p1 (s) λ − c) ds ≥ 0. (3)

Geometrically, the left-hand side of (3) corresponds to the difference between the
shaded areas in Figure 2 that correspond to the accumulated gains and losses. The
principal starts investing at t = 0 if, given T and λ, the normalized cost-benefit
ratio κ is low enough, so that the shaded area of the accumulated gains is at least
as large as that of the accumulated losses. I denote such a cutoff value of κ by
κNI (T, λ) and summarize the principal’s choice without information in Lemma 1.

Lemma 1. Assume no information regarding the progress of the project arrives
over time. Denote the time at which the principal stops investing by SNI . If κ >

κNI (T, λ), then the principal does not start investing in the project, i.e. SNI = 0.
If κ ≤ κNI (T, λ), then the principal’s choice of stopping time is given by

SNI =

S2, if 1
λ

≤ T and κ ≥ e−λT λT

T, otherwise ,
(4)

the closed-form expressions for S2 and κNI (T, λ) are presented in the proof in
Appendix D.
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y = x

κ := c
vλ

p1(t)

S2T

accumulated
gains
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Figure 2: Principal’s choice to start investing at t = 0 or not:
left plot: T > S2; the project deadline is distant and decision-irrelevant;

right plot: T ≤ S2; the project deadline is close, which leads to lower expected
benefits of investing.

In both plots the expected accumulated gains are higher than the losses, so the
principal starts to invest at t = 0.

4.2 Full-information benchmark

Here, I consider the case in which the information policy is given by σF I : M =
{m0, m1, m2} and the message mn is sent for all t such that xt = n, n ∈ {0, 1, 2}.
Thus, the principal fully observes the progress of the project at each t. I character-
ize the cutoff level of the cost-benefit ratio below which the principal is willing to
start investing. Further, I show that the principal chooses to stop when no stages
of the project are completed and the project completion deadline T is sufficiently
close.

At each t, the principal uses the information on the number of stages completed
to decide either to stop investing or to postpone the stopping. The news on
completion of the second stage of the project makes the principal stop immediately,
as this way he immediately receives the project payoff v and stops incurring the
costs of further investment. If only the first stage of the project is completed,
the principal faces the following trade-off. The instantaneous probability that the
second stage will be completed during ∆t is given by λ∆t, which is constant over
the time. Thus, the expected benefit of postponing the stopping for ∆t is given
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by v · λ∆t. Meanwhile, the expected cost of postponing the stopping is given by
c · ∆t. As a result, if κ ≤ 1, then the principal who knows that the first stage of
the project has already been completed invests until either the completion of the
second stage or until the project deadline T is reached.

Consider now the case in which the principal knows that the first stage has not
yet been completed. The principal’s trade-off with respect to the stopping decision
is now more involved. Postponing the stopping for ∆t leads to the completion of
the first stage of the project with the instantaneous probability λ∆t. Completion
of the first stage of the project at some t implies that the principal receives the
continuation value of the game, conditional on having the first stage completed.
I denote the continuation value of the principal at time t under full information
and conditional on the completion of first stage of the project by V F I

1 (t). This is
given by11

V F I
1 (t) =

(
v − c

λ

) (
1 − e−λ(T −t)

)
. (5)

The principal’s expected benefit from postponing the stopping for ∆t is given by
V F I

1 (t) · λ∆t and the cost of postponing the stopping is, as before, given by c · ∆t.
The continuation value, V F I

1 (t), shrinks over time and approaches 0 as the project
deadline T approaches. This is because the shorter the time left before the project
deadline, the less likely it is that the second stage of the project will be completed
before T . If at some t, and given that no stages are completed yet, the expected
net benefit of investing reaches 0, it is optimal for the principal to stop at that t.12

I denote this date by SF I
0 and plot it in Figure 3.

11See the derivation in the proof of Lemma 2 in the Appendix.
12If at t the expected benefit of investing becomes lower than the cost, then, after t, the net

expected benefit remains negative. Thus, it is optimal for the principal to stop investing precisely
at t.
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0 tSF I
0 T

V F I
1 (t)λ, expected benefit

of investing at t

c, cost
of investing at t

interim
deadline

Figure 3: The principal optimally sets an interim deadline t = SF I
0 under full

information: given that the first stage of the project has not been completed by
SF I

0 , it is optimal to stop investing at SF I
0 .

As the principal has an incentive to stop at SF I
0 only if he knows that the

first stage or the milestone of the project has not been reached, the economic
interpretation of SF I

0 is that it is the interim deadline that the principal sets for
the project. If the milestone has not been reached by the interim deadline, then
it is sufficiently unlikely that the project will be completed before the project
deadline T . Thus, it is optimal for the principal to “give up” on the project and
stop investing at t = SF I

0 . If the milestone is reached by the interim deadline, then
the principal has an incentive not to stop investing until either the second stage is
completed or T is hit.

Finally, given the plan to stop either at the interim deadline, or at the comple-
tion of the second stage of the project, it is individually rational to start investing
only if the principal’s expected payoff from the t = 0 perspective is non-negative.
I denote the upper bound for the normalized cost-benefit ratio such that the prin-
cipal starts investing at t = 0 by κF I (T, λ) and summarize the principal’s choice
under full information in Lemma 2.

Lemma 2. Assume that the progress of the project is fully observable at each
moment in time. If κ > κF I (T, λ), then the principal does not start investing in
the project. If κ ≤ κF I (T, λ), the principal invests either until the moment at
which the second stage of the project is completed, t = τ2, or until the interim
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deadline, t = SF I
0 , at which he stops if the first stage has not yet been completed.

Formally, the time at which the principal stops investing is a random variable τ

given by:

τ =

τ2 ∧ T, if xSF I
0

̸= 0
SF I

0 , otherwise ,

where SF I
0 = T + 1

λ
log

(
1−2κ
1−κ

)
and the expression for κF I (T, λ) is presented in the

proof in Appendix D.

Assume now that the agent chooses which information to provide to the princi-
pal. As for κ > κF I (T, λ) the principal is not willing to start investing even under
full information, there is no way in which the agent can strategically conceal the
information to her benefit. In Section 5, I assume κ ≤ κF I (T, λ) and analyze how
the agent can strategically provide information on the progress of the project and
extract the principal’s surplus.

5 Agent’s choice of information provision

5.1 Investment schedules

To characterize the agent’s choice of information policy, I rely on efficiency argu-
ments that make use of investment schedules. An investment schedule specifies
in probabilistic terms the total length of investment depending on the evolution
of state process xt. Formally, an investment schedule is given by a stopping time
τ with respect to filtration F = (Ft)t≥0, where filtration F is generated by the
stochastic process xt.13 Informally, τ is a random variable with support [0, T ] in-
duced by the rule that specifies when to stop depending on the history of previous
realizations of the number of completed stages xt.14 Thus, P (xτ = 2) captures
the belief about two stages of the project completed by the random time of stop-
ping in the future and E [τ ] captures the expected length of investment under no
information about the realizations of the state process.

13Further technical details are provided in Appendix A.
14Examples of such rules include “stop 1 minute after the second stage of the project is com-

pleted” and “stop at t = S if only the first stage of the project is completed by t = S”.
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Given an investment schedule τ , the long-run payoff of the agent and the prin-
cipal are given, respectively, by

W (τ) := E [τ ] c,

V (τ) := P (xτ = 2) v − E [τ ] c.

An investment schedule τ is efficient if, given the agent’s expected payoff W (τ)
and the principal’s expected payoff V (τ) induced by the schedule, there is no other
schedule τ ′ such that W (τ ′) > W (τ) and V (τ ′) ≥ V (τ). That is, a schedule is
efficient if there is no way to provide the agent with a strict improvement without
harming the principal. An investment schedule τ is feasible if it promises the
principal at least his reservation value.

To get an insight into efficient investment schedules, consider the agent’s long-
run payoff given an investment schedule, W (τ). This can be restated equivalently
as follows:

W (τ) = [W (τ) + V (τ)] − V (τ) =
P (xτ = 2) v︸ ︷︷ ︸

total surplus

− [P (xτ = 2) v − E [τ ] c]︸ ︷︷ ︸
principal’s surplus

. (6)

Consider a schedule τ such that the stopping occurs after the completion of the
second stage of the project, unless the project deadline T was hit, i.e. the schedule
satisfies the condition τ ≥ τ2 ∧T , where τ2 is the random time at which the second
stage is completed. Such a schedule leads to

P (xτ = 2) = P (xT = 2) . (7)

Given a schedule τ satisfying (7), the total surplus generated achieves its up-
per bound and is given by P (xT = 2) v, which depends on the exogenously given
project deadline T . As the agent’s payoff is given by (6), if such a schedule τ

is feasible, then it is also efficient. However, never stopping before the project is
completed is not individually rational for the principal when the cost of funding
is sufficiently high, the completion payoff is sufficiently low, or the expected time
until a project stage completion is sufficiently high. In Lemma 3, I present the
cutoff value of cost-benefit ratio κ denoted by κ̃ (T, λ), which distinguishes the
case in which the investment schedule that satisfies (7) is feasible from the case in
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which it is not feasible. Based on this partition, when κ ∈ (0, κ̃ (T, λ)], I call the
project ex ante promising for the principal.

Lemma 3. For each (T, λ) there exists κ̃ (T, λ), κNI (T, λ) < κ̃ (T, λ) < κF I (T, λ),
such that if κ ≤ κ̃ (T, λ) (κ > κ̃ (T, λ)) then an investment schedule τ in which
stopping after τ2 ∧ T happens with probability one is individually rational (not
individually rational) for the principal.

In the next Section, I study the case in which stopping only after the completion
of the second stage of the project is individually rational for the principal.

5.2 Postponed disclosure of project completion

In this Section, I study the optimal information policy when the project is ex ante
attractive for the principal. The investment schedule τ that is optimal for the agent
is the one that provides the agent the highest payoff among all the efficient and
feasible schedules. To characterize the optimal investment schedule, a useful object
is the principal’s surplus at some interim date t given an investment schedule τ .
The principal’s surplus stems from the future benefits promised by the investment
schedule and corresponds to the continuation value promised by the investment
schedule τ at some date t.

The continuation value promised by an investment schedule depends on the
beliefs of the principal. The absence of stopping by some time t and, thus, the
fact that the game continues at t serves as a source of inference for the principal.
First, he forms a belief regarding the number of completed stages of the project by
t, conditional on the game still continuing at t, P (xt = n|t < τ). Second, he forms
a belief regarding the number of completed stages of the project at the random
moment of stopping in the future, P (xτ = n|t < τ).

Given the absence of stopping by t, the principal’s expected payoff promised
by the schedule is given by P (xτ = 2|t < τ) v − E [τ − t|t < τ ] c. The principal’s
expected payoff from stopping at t is given by P (xt = 2|t < τ). The principal’s
continuation value at t given the investment schedule τ is the difference between
these two expected payoffs, I denote it by Vt (τ):

Vt (τ) := [P (xτ = 2|t < τ) − P (xt = 2|t < τ)] v − E [τ − t|t < τ ] c. (8)
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Clearly, an investment schedule promises zero surplus to the principal if and only
if the principal’s continuation value at date t given τ is precisely at 0, i.e. the
principal is indifferent between continuing and stopping at t given the schedule.

The next Lemma formally presents the optimal investment schedules for the
case of a promising project.

Lemma 4. Assume κ ∈ (0, κ̃ (T, λ)]. Iff an investment schedule τ satisfies condi-
tions

1. with probability one, stopping occurs after τ2 ∧T , unless the principal invests
until T in the no-information benchmark;

2. V (τ) = max
(
V NI , 0

)
, where V NI is the principal’s expected payoff in the

no-information benchmark,

then there is no other feasible investment schedule τ ′ such that W (τ ′) > W (τ).
For the case κ ∈ (0, κNI (T, λ)] and T ≤ S2, the necessary and sufficient condition
for optimality is τ = T .

For an investment schedule to be optimal for the agent, it has to simultaneously
be efficient, so that the total surplus is maximized, and guarantee extraction of all
of the principal’s surplus subject to his individual rationality constraint. Efficiency
corresponds to condition 1 and surplus extraction is guaranteed by condition 2.
Finally, when investment until T in the no-information benchmark is individually-
rational for the principal, the investment schedule optimal for the agent corre-
sponds to stopping at T with certainty. Given Lemma 4, it is straightforward to
characterize the optimal information policy for the case of a promising project:
an optimal information policy σ is one that implements the optimal investment
schedule τ characterized in Lemma 4.

An investment schedule τ can be WLOG implemented using a direct recom-
mendation mechanism - a simple policy which has M = {0, 1}, where m = 1
received at date t is a recommendation to continue investing at t for the principal
and m = 0 received at date t is a recommendation to stop investing at t. To see
the connection between an investment schedule τ and a direct recommendation
mechanism implementing the schedule τ , recall that τ is induced by a stopping
rule that specifies the probability of stopping based on the evolution of the state
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process. A direct recommendation mechanism which implements τ uses exactly
the same stopping rule. The only difference is that instead of the probability of
stopping, it specifies the probability of sending m = 0, the recommendation to
stop, based on the evolution of the state process15.

The recommendations to continue and to stop need to be incentive-compatible
for the principal. Following Bergemann and Morris (2019), I call the action rec-
ommendation which is incentive-compatible for the principal an obedient action
recommendation. As the principal does not commit to a policy at t = 0, he
rationally updates his beliefs given an investment schedule τ and assesses his con-
tinuation value at each t. The principal does not want to stop at t whenever the
continuation value is non-negative. Thus, ensuring the obedience of the recom-
mendations not to stop at t generated by the mechanism boils down to ensuring
the non-negativity of the continuation value. Further, ensuring the obedience of a
recommendation to stop at t boils down to ensuring a negative continuation value
under no further information provision. This gives a simple sufficient condition
for an investment schedule τ to be implementable using a direct recommendation
mechanism.

Lemma 5. An investment schedule τ is implementable using a direct recommen-
dation mechanism if

Vt (τ) ≥ 0, ∀t ≥ 0, (9)

and, given a recommendation to stop at t, the principal’s continuation value at t

in the absence of any future information from the agent is negative for all t ≥ 0.

I characterize the optimal information policy for the case of a promising project
in Proposition 1.

Proposition 1. Assume κ ∈ (0, κ̃ (T, λ)]. If in the no-information benchmark the
principal invests until T , then the agent chooses not to provide any information to
the principal. Otherwise, the optimal information policy is a direct recommenda-
tion mechanism that has the following properties:

1. whenever stopping is recommended by the mechanism, the second stage of the
project is already completed;

15It suffices to specify the probability of sending m = 0 based on the evolution of the state
process as the probability of sending m = 1 is given by the probability of the complement.
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2. the recommendation to stop is postponed so that the principal’s individual
rationality constraint at t = 0 is binding, i.e. V (τ) = max

(
V NI , 0

)
, where

V NI is the principal’s expected payoff in the no-information benchmark.

Condition 1 presents the key feature of the optimal information policy. When
the cost-benefit ratio is sufficiently low, κ ≤ κ̃ (T, λ), stopping is never recom-
mended until the project is completed. This might be puzzling: the principal
values stopping both when the project is completed and when no stages of the
project are completed and the project deadline T is close, but, at the equilibrium
the agent recommends stopping only in the former case. The intuition behind the
agent’s choice is simple: a recommendation to stop when no stages of the project
are completed and the project deadline T is close does indeed incentivize the agent;
however, it also reduces the total surplus generated that can be extracted via the
agent’s control of information. Meanwhile, the recommendation to stop when the
two stages of the project are completed incentivizes the principal without reducing
the total surplus generated. When κ ≤ κ̃ (T, λ), the project is sufficiently promis-
ing; thus, a partially informative policy that discloses only the completion of the
second stage provides sufficient incentives to the principal and persuades him to
start investing.16

While condition 1 in Proposition 1 ensures that the total surplus generated
is maximized, condition 2 ensures that as much of the surplus generated is ex-
tracted as possible subject to the principal’s individual rationality constraint. It
is worth discussing the distinction between the cases κ ∈ (0, κNI (T, λ)] and κ ∈
(κNI (T, λ) , κ̃ (T, λ)] with respect to condition 2. In the case κ ∈ (0, κNI (T, λ)], the
principal is willing to start investing and invests until t = S2 in the no-information
benchmark, as his expected payoff is non-negative at t = 0, V NI ≥ 0. Thus,
the principal’s reservation value is given by V NI , and by postponing the recom-
mendation to stop the agent can do no better than V (τ) = V NI . The situation
is different in the case κ ∈ (κNI (T, λ) , κ̃ (T, λ)]. The principal is not willing to
start in the no-information benchmark as his expected payoff at t = 0 is negative,
V NI < 0. Thus, the principal’s reservation value is given by 0, which he obtains by
not starting to invest at t = 0. The agent optimally postpones the recommenda-

16The “leading on” information policy in Ely and Szydlowski (2020) is similar: the only in-
formation that the policy provides is that the task is already completed and, thus, it is time to
stop investing.
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tion to stop and extract the principal’s surplus, so that the individual rationality
constraint binds, V (τ) = 0.

Not all optimal investment schedules can be implemented as a direct recom-
mendation mechanism. For instance, consider a mechanism that satisfies both
conditions from the Proposition 1 and assume it stays silent for t ∈ [0, S2), then
at some t̂ ≥ S2 recommends stopping if the second stage is already completed, but
stays completely silent at all the subsequent dates t ∈ (t̂, T ]. A no stopping recom-
mendation drawn at t̂ reveals that the state is either 0 or 1. Clearly, after sufficient
time passes after t̂, the principal would attach a high probability to the second
stage already being completed and would potentially be tempted to deviate from
the recommendation not to stop. The direct recommendation mechanism needs to
account for this and ensure that the principal will obey the recommendations at
all times. I present a simple example of the mechanism implementing an optimal
investment schedule in Proposition 2.

Proposition 2. Assume κ ∈ (0, κNI (T, λ)] and T > S2. The optimal mechanism
does not provide a recommendation to stop during t ∈ [0, S∗). At t = S∗, S∗ >

S2, if the second stage of the project is already completed, then the mechanism
recommends the principal to stop. If the second stage of the project is not yet
completed, then the mechanism recommends the principal to stop at the moment
of its completion t = τ2, τ2 > S∗. Formally,

τ =

S∗, if xS∗ = 2
τ2 ∧ T, otherwise,

where S∗ is chosen such that the principal’s individual rationality constraint at
t = S2 is binding, i.e. VS2 (τ) = 0.

The direct recommendation mechanism for the case of a promising project
starting from some S∗ > S2 generates recommendations to stop if the second stage
is completed. As the recommendation to stop comes immediately at the completion
of the second stage for all t > S∗, hearing no recommendation to stop reveals
that the state is either 0 or 1. Further, as time goes on, the principal attaches
a higher and higher probability to the state being 1, which ensures obedience
to the recommendation not to stop. Further, the start of information provision
S∗ is sufficiently postponed to ensure that the principal’s individual rationality
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constraint is binding at S2, which, for this mechanism, satisfies condition 2 from
Proposition 1.

An important feature of the mechanism from Proposition 2 is that, in contrast
to the no-information benchmark, the principal does not stop at S2, the date of
stopping in the no-information benchmark, and with probability one continues
to invest during t ∈ [S2, S∗) even though the mechanism provides absolutely no
information for all t < S∗. This is driven by the fact that the expected benefit
from stopping at some future date t ∈ [S∗, T ] and obtaining the project payoff v

with certainty compensates the flow losses of investing during t ∈ [S2, S∗).17

When the project is promising, the set of optimal direct recommendation mech-
anisms is rich, which constitutes an important advantage for the agent: she can
choose a mechanism that is easier to implement from the real-world perspective,
depending on the particular environment. In the mechanism from Proposition 2,
the recommendation to stop at some date t depends only on the current state of
the world xt. In an alternative mechanism, the recommendation to stop arrives
with a pre-specified delay after the second stage was completed. Thus, the recom-
mendation depends only on the past history and not on the current state of the
world. In an optimal delayed disclosure mechanism, the delay becomes smaller as
more time passes. I characterize such a mechanism in Appendix E.18

Recall that the key idea of the mechanism from Proposition 1 is that the
agent postpones the disclosure of the completion of the project to extract more
surplus, which makes the principal’s individual rationality constraint bind. For
κ ∈ (κNI (T, λ) , κ̃ (T, λ)] the principal’s payoff in the no-information benchmark
is negative and the agent’s optimal information policy provides the principal just
enough additional value to satisfy the individual rationality constraint. The higher
the cost-benefit ratio of the project κ becomes, the higher additional value the
agent’s information provision needs to generate to satisfy the constraint. The
implication of this for the optimal information policy is presented in Lemma 6.

17Similarly to the “leading on” information policy in Ely and Szydlowski (2020), the promises
of future disclosure of the completion of the project are used as a “carrot” to make the receiver
continue investing beyond the point at which he stops in the no-information benchmark.

18The rich set of optimal direct recommendation mechanisms in my model encompasses both
mechanisms in which the information provision depends only on the current state, similarly to the
optimal mechanism in Ely and Szydlowski (2020), and the mechanisms that use delay, similarly
to the delayed beep from Ely (2017).
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Lemma 6. Assume κ ∈ (κNI (T, λ) , κ̃ (T, λ)]. Given the recommendation mecha-
nism implementing an optimal investment schedule τ , for a fixed Poisson rate λ,
the expected length of investment E [τ ] decreases in the cost-benefit ratio κ.

The intuition is that the higher the cost-benefit ratio of the project becomes, the
sooner after the second stage of the project is completed the agent recommends
the principal to stop. For the cost-benefit ratio as high as κ̃ (T, λ), the agent
provides the recommendation to stop immediately at the date of completion of
the second stage. Further, for κ > κ̃ (T, λ), the optimal information policy from
Proposition 1 ceases to be feasible as it cannot satisfy the principal’s individual
rationality constraint. As I show in the next Section, for κ > κ̃ (T, λ), in addition to
immediate disclosure of the project completion, the agent sets an interim deadline
to persuade the principal.

0 κκ̃ (T, λ) κF I (T, λ)κNI (T, λ) 1/2

Postponed disclosure of
2nd stage completion

Immediate disclosure of
2nd stage completion and

interim deadline for 1st stage

Figure 4: Depending on the cost-benefit ratio of the project, κ, the agent chooses
different types of recommendation mechanisms for the principal.

5.3 Immediate disclosure of completion and an interim
deadline

When κ > κ̃ (T, λ), the project is not promising for the investor and any investment
schedule in which stopping occurs after τ2 ∧ T with probability one violates the
principal’s individual rationality constraint at t = 0, and is thus not feasible. In
other words, from the ex ante perspective the future reports disclosing only the
completion of the project do not motivate the principal to start investing. Thus,
an investment schedule that provides an individually rational expected payoff to
the principal should assign a positive probability not only to stopping after the
completion of the project, but also to stopping in either state 0, when no stages
of the project are completed, or state 1, when only the first stage of the project
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is completed. I present the necessary conditions for an investment schedule to be
both efficient and feasible when the project is not promising in Lemma 7.

Lemma 7. Assume κ ∈ (κ̃ (T, λ) , κF I (T, λ)). If an investment schedule τ is
efficient and yields a nonnegative principal’s expected payoff, then it satisfies the
conditions

1. whenever the second stage of the project is completed, stopping happens im-
mediately and with probability one;

2. conditional on no completed stages of the project, stopping happens with a
positive probability, and it never happens conditional on one completed stage.

Stopping when only the first stage of the project is already completed is clearly
inefficient. In state 1, the principal prefers to continue investing until the comple-
tion of the second stage and this principal’s incentive to wait is aligned with the
agent’s incentive to postpone the stopping. Further, stopping in state 1 does not
help overcome the problem of the violated individual rationality constraint under
κ > κ̃ (T, λ). Meanwhile, assigning a positive probability to stopping when no
stages are completed helps to overcome the feasibility problem, as the principal
benefits from stopping at some date t when the first stage of the project is not
yet completed and the project deadline T is sufficiently close. Further, the agent
clearly prefers to stop after the completion of the second stage rather than in state
0 as the former does not harm the total surplus generated. Thus, a schedule that
is not only feasible but also efficient assigns probability 1 to immediate stopping
when the second stage is completed. The next lemma presents the investment
schedule that is optimal for the agent:

Lemma 8. Assume κ ∈ (κ̃ (T, λ) , κF I (T, λ)). Iff the investment schedule τ satis-
fies conditions

1. whenever the second stage of the project is completed, stopping happens im-
mediately and with probability one;

2. at t = SINT , stopping happens with probability one if the first stage of the
project has not yet been completed,
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SINT = 1
λ

[
γ + W0

(
−γe−γ

)]
, γ = eλT 1 − 2κ

1 − κ
, (10)

where W0(·) is the branch 0 of the Lambert W function, then there is no other
feasible investment schedule τ ′ such that W (τ ′) > W (τ).

The optimal schedule from Lemma 8 shows that the date at which stopping
happens when no stages of the project are completed is deterministic. This is
because the agent’s expected payoff is concave in the date at which stopping under
no completed stages occurs; thus, an investment schedule which randomizes over
multiple such dates cannot yield the agent an improvement. Further, the date
of stopping under no completed stages is postponed so much that the principal’s
individual rationality constraint is binding, which makes the investment schedule
optimal for the agent. Finally, the schedule that is optimal for the agent can
be WLOG implemented using a direct recommendation mechanism presented in
Proposition 3.

Proposition 3. Assume κ ∈ (κ̃ (T, λ) , κF I (T, λ)). The optimal information policy
is given by a direct recommendation mechanism that generates (a) the recommen-
dation to stop at the moment of completion of the second stage of the project, t = τ2

and (b) a conditional recommendation to stop at the interim deadline t = SINT .
At t = SINT , stopping is recommended with certainty if the first stage of the project
has not yet been completed. SINT is chosen so that the principal’s individual ra-
tionality constraint at t = 0 is binding, i.e. V (τ) = 0.

Implementation using a direct recommendation mechanism provides a natural
interpretation to t = SINT , the time of stopping when no stages are completed:
SINT is the optimal interim reporting deadline chosen by the agent. After observing
the stopping recommendation at t = SINT the principal learns that the milestone
of the project has not yet been reached and becomes sufficiently pessimistic that
the project will be completed by T .

To gain a deeper insight into the optimal interim deadline chosen by the agent,
I proceed to discuss the principal’s and agent’s incentives regarding the timing of
the interim deadline. As Lemma 2 suggests, the optimal interim deadline from the
principal’s perspective is given by t = SF I

0 . The incentives of the agent with respect
to the timing of the interim deadline, which I denote by S0, are as follows. If the
agent postpones the interim deadline, then two effects arise. First, the probability
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that stopping at the interim deadline will happen decreases. Second, the expected
loss in total surplus due to stopping at the interim deadline rather than at τ2 ∧ T

decreases. The agent clearly has an incentive to postpone the interim deadline and
uses her control of the information environment to postpone the deadline as much
as possible so that the principal’s individual rationality constraint binds. Figure
5 demonstrates the expected payoff of the principal as a function of the interim
deadline S0. It is maximized at the principal-preferred interim deadline SF I

0 . The
agent-preferred interim deadline S0 = SINT yields the principal’s expected payoff
of 0.

0 S0

V (τ)

SF I
0 TSINT

Figure 5: Principal’s expected payoff, V (τ), as a function of an interim reporting
deadline chosen by the agent, S0.

I proceed by considering the comparative statics of the interim deadline. Both
the agent-preferred and the principal-preferred interim deadline, SINT and SF I

0 ,
respectively, increase in the exogenous deadline T . This is because less time pres-
sure relaxes the principal’s individual rationality constraint and allows the agent to
postpone the deadline further in order to extract the principal’s surplus. Further,
the difference between the interim deadlines SINT − SF I

0 is increasing and convex
in T .

As the cost-benefit ratio increases up to κF I , the agent-preferred deadline con-
verges to the principal-preferred deadline. An increase in the cost-benefit ratio of
the project makes the principal’s t = 0 individual rationality constraint tighter.19

19This is because the increase in κ makes the principal’s instantaneous benefit from waiting
decrease, and the normalized instantaneous cost of waiting becomes higher.
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As a result, for a higher κ, in the absence of completion of the first stage, the
principal is willing to wait for a shorter time before stopping. Thus, both the
interim deadline preferred by the principal SF I

0 and the interim deadline chosen by
the agent SINT are lower for a higher κ. Further, for a higher κ the agent has to
choose an information policy relatively closer to the full-information benchmark
to ensure that the t = 0 individual rationality constraint is satisfied. Hence, the
agent-chosen interim deadline SINT approaches SF I

0 , the interim deadline preferred
by the principal. The comparative statics of SF I

0 and SINT with respect to the
cost-benefit ratio of the project κ are presented in Figure 6.

S0
FI(κ)

SINT(κ)

κ
˜

κ��
κ

�

�

��

Figure 6: Interim deadline chosen by the agent SINT (dashed) and preferred by
the principal SF I

0 (thick), as functions of the cost-benefit ratio of the project κ.

Finally, a notable feature of the optimal information policy when the project
is ex ante not attractive is its uniqueness. The only optimal instrument through
which the agent fine tunes the incentive provision to the principal is the choice of
interim deadline, and there is a unique optimal way to set the deadline to make
the principal’s individual rationality constraint bind.

6 Conclusion
I consider a dynamic Bayesian persuasion model in which the agent commits to
providing information to the principal with an incentive to postpone the principal’s
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irreversible stopping of funding. I characterize the optimal information policy
when the project is ex ante attractive for the principal and when it is not. I show
that the interplay of a hard exogenous project completion deadline and high cost-
benefit ratio leads to the emergence of an interim reporting deadline. My model
has a number of limitations. A natural direction for further research is the study
of implications of the agent’s limited commitment. Another interesting direction
includes considering a more general form of preference alignment between the agent
and the principal, e.g. assuming that the agent receives not only the flat wage but
also part of the profit from the project completion.
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Appendix

A The state process

The state process is given by xt, ∀t ∈ R+. xt is the number of stages of the project
completed by t. It follows a stationary Poisson point process with arrival rate
λ and state 2 being absorbing. xt is defined on the probability space (Ω, F ,P),
t ∈ R+. Its natural filtration is denoted by F = (Ft)t≥0.20

B Notational conventions

Throughout Appendices C and D, the following notational conventions are used:
1. I denote the random time at which the nth stage of the project is completed

by τn. Formally, τn ∈ R+ is a continuously distributed random variable that
represents the first hitting time of xt = n.

2. Consider some stopping time τ . Whenever “τ” stands as a term in an
inequality, it stands for a realization of the stopping time τ and it should be read
as “for each ω ∈ Ω and corresponding τ (ω)”.

Example 1. “τ2 ∧ T ≥ τ” should be read as “τ2 (ω) ∧ T ≥ τ (ω), for all ω ∈ Ω”.
Example 2. “for all t ∈ [S, τ)” should be read as “for all t ∈ [S, τ (ω)), for all

ω ∈ Ω”.
20The state of the world ω ∈ Ω pins down the time at which the first and second stages are

completed, τ1 (ω) and τ2 (ω).
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3. The continuation value of the agent at time t, given τ , and conditional on
t < τ :

Wt (τ) := E [τ − t|t < τ ] c.

4. The total (continuation) surplus at time t, given τ , and conditional on t < τ :

SVt (τ) := Wt (τ) + Vt (τ) .

5. Shorthand for posterior beliefs:

qn (t) := P (xt = n|t < τ) ,

rn (t) := P (xτ = n|t < τ) .

C The principal’s continuation value

Here I present the alternative formulation of the principal’s continuation value (8).
This helps me to study some of its properties for further use in Appendix D. The
continuation value of the principal at time t and given the investment schedule τ is
given by (8). Postponing the stopping for ∆t brings a benefit in the form of project
completion payoff v iff the second stage of the project is completed within ∆t. As
xt follows the Poisson process, the probability of two increments in a very short
time ∆t is negligibly small. Thus, during some ∆t, the principal gets the project
completion payoff v iff the first stage of the project has already been completed
at some earlier time. Thus, postponing the stopping for ∆t brings the principal v

with probability λq1 (t) ∆t. The second stage is not completed within ∆t with the
complementary probability of 1 − λq1 (t) ∆t. The principal’s continuation value is
thus given by

Vt (τ) = (vλq1 (t) − c) ∆t + (1 − λq1 (t) ∆t) Vt+∆t (τ)
= vλ (q1 (t) − κ) ∆t + (1 − λq1 (t) ∆t) Vt+∆t (τ) .

Differentiating both sides w.r.t. ∆t and considering lim∆t→0 (.) yields

0 = vλ (q1 (t) − κ) − λq1 (t) Vt (τ) + V̇t (τ) ,

which, after rearranging becomes

V̇t (τ) = λq1 (t) Vt (τ) + vλ (κ − q1 (t)) . (11)
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D Proofs

Proof of Lemma 1. The beliefs regarding the number of stages of the project com-
pleted by time t, xt, evolve according to the Poisson process. The principal’s
unconditional beliefs are given by p0 (0) = 1 and for any t such that the game still
continues,

ṗ0 (t) = −λp0 (t) ,

ṗ1 (t) = λ(p0 (t) − p1 (t)), (12)
ṗ2 (t) = λp1 (t) ,

where p0 (t) = e−λt and p1 (t) = λte−λt, p2 (t) = 1 − p0 (t) − p1 (t). The principal’s
problem is given by

max
S∈[0,T ]

v · p2 (S) − c · S. (13)

I start with analyzing the choice of S for the interior solution case, S ∈ (0, T ).
F.O.C. for (13) is given by

v · ṗ2 (S) = c, (14)

or, equivalently, p1 (S) = κ. There are two values satisfying (14): S1 and S2,
S1 < S2. At each t ∈ (S1, S2) the principal receives a net positive payoff flow.
Thus, stopping at S1 is not optimal and the only candidate for optimal stopping is
S2.21 Further, one can obtain the closed form expression for the interior stopping
time S2 from (14):

S2 = − 1
λ

W−1 (−κ) , (15)

where W−1(x) denotes the negative branch of the Lambert W function. S2 is
well-defined for any κ < e−1.

Thus, the solution to (13) could potentially be 0, S2, or T . I proceed with a
useful lemma.

Lemma 9. The following is true regarding the principal’s continuation value in
the no-information benchmark, V NI (t): if V NI (t) ≥ 0, for some t ∈ [0, S2 ∧ T ],
then V NI (s) ≥ 0, for all s ∈ [t, S2 ∧ T ].

21S1 is a local minimum of the objective.
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Proof. The principal’s continuation value in the no-information benchmark is given
by

V NI (t) = [p2 (T ∧ S2) − p2 (t)] v − (T ∧ S2 − t) c. (16)

Further,
V̇ NI (t) = vλ

(
κ − e−λtλt

)
= vλ (κ − p1 (t)) .

p1 (t) ≤ κ for all t ∈ [0, S1] and p1 (t) ≥ κ for all t ∈ [S1, S2 ∧ T ]. Thus, V NI (t)
increases for t ∈ [0, S1], decreases for t ∈ [S1, T ∧ S2], and V NI (T ∧ S2) = 0, which
establishes the result.

Lemma 9 implies that if V NI (0) ≥ 0 and the principal chooses to opt in at
t = 0, then V NI (t) ≥ 0, t ∈ [0, S2 ∧ T ], i.e. he invests until t = T ∧ S2. This
implies that the solution to (13) is either T ∧ S2 or 0.

Finally, at t = 0 the principal chooses to start investing or not. The condition
for the principal to start investing at t = 0 is given by

V NI (0) ≥ 0. (17)

To specify the set of parameters for which (17) is satisfied, I obtain the cutoff value
of κ given T and λ. Such a parameterization is intuitive: κ above the cutoff level
corresponds to a project with sufficiently high normalized cost-benefit ratio and
implies that the investor does not opt in. I denote this cutoff by κNI (T, λ). This
solves (17) holding with equality. Two cases are possible.

Case 1 : T ≤ S2 ⇐⇒ T ≤ − 1
λ
W−1 (−κ). This inequality is satisfied when

either 1
λ

≥ T or


1
λ

≥ T

κ ≤ e−λT λT.
Given T ≤ S2, (17) holding with equality becomes

p2 (T ) v − Tc = 0.

Solving it for κ yields κ = e−λT
(

eλT −1
λT

− 1
)
.

Case 2: T > S2. This inequality is satisfied when 1
λ

< T and κ ≥ e−λT λT.

Given T > S2, (17) holding with equality becomes

vp2 (S2) − cS2 = 0 ⇐⇒ v (1 − p0 (S2) − p1 (S2)) = cS2,

where (recall that ṗ2 (S2) = c
v
)

p0 (S2) = 1
λ2S2

ṗ2 (S2) = c

λ2S2v
= κ

λS2
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and
p1 (S2) = 1

λ
ṗ2 (S2) = c

λv
= κ.

Consequently,
vp2 (S2) − cS2 = v − v · κ

(
1 + λS2 + 1

λS2

)
.

Let y := λS2. Note that, by definition, y > 1. Then κ = ye−y, and so

(vp2 (S2) − cS2) /v = 1 − e−y
(
1 + y + y2

)
.

It follows that V NI (0) is nonnegative whenever λS2 ≥ y0
.= 1.79328, which is

equivalent to
κ ≤ κ0

.= 0.298426.

Finally, putting the two cases together yields

κNI (T, λ) =

κ0
.= 0.298426, if 1

λ
≤ T and κ ≥ e−λT λT

e−λT
(

eλT −1
λT

− 1
)

, otherwise.
(18)

Proof of Lemma 2. The principal chooses at ∈ {0, 1} sequentially given the ob-
served realizations of xt ∈ {0, 1, 2}. Whenever the principal observes t = τ2, he
immediately chooses at = 0 and gets v.

Consider the case xt = 1, t < T , i.e. the first stage of the project has already
been completed. As xt follows a Poisson process, in expectation it would take
1
λ

units of time for the second stage to be completed and its completion brings
the principal the value of v. Thus, the necessary and sufficient condition for the
principal to invest at t when xt = 1, t < T is given by

v − c · 1
λ

≥ 0 ⇐⇒ κ ≤ 1

Assume that κ ≤ 1 holds and xt = 1; thus, the principal chooses to invest at t. In
that case, the principal invests until τ2 ∧ T . To see this, recall that the only news
that the principal can receive given xt = 1, t < T is the completion of the second
stage of the project, τ2, which leads to immediate stopping. At each t < τ2∧T such
that xt = 1, choosing at = 0 yields an instantaneous expected payoff of 0, while
choosing at = 1 yields an instantaneous expected payoff of λv∆t − c∆t. Thus,
κ ≤ 1 suffices for the principal to invest until τ2 ∧ T .
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Consider now the case of xt = 0, t < T , i.e. no stages of the project have yet
been completed. Postponing the stopping for ∆t brings the instantaneous expected
payoff of V F I

1 (t) λ∆t − c∆t, where V F I
1 (t) is the principal’s continuation value at

time t under full information, conditional on the completion of the first stage of
the project. I proceed with obtaining the expression for V F I

1 (t). By definition,
the principal gets v whenever the second stage is completed not later than T . The
principal invests until τ2 ∧ T , and knows that at t the first stage of the project is
already completed; thus, V F I

1 (t) is given by

V F I
1 (t) = v P (τ2 ≤ T |xt = 1) − c E [τ2 ∧ T − t|xt = 1] .

τ2|xt = 1 corresponds to the time between two consecutive Poisson arrivals, and
thus has exponential distribution. First, consider P (τ2 ≤ T |xt = 1):

P (τ2 ≤ T |xt = 1) = 1 − e−λ(T −t).

Next, consider E [τ2 ∧ T − t|xt = 1]:

E [τ2 ∧ T |xt = 1] − t

= P (τ2 ≤ T |xt = 1)
∫ T

t
z · λe−λ(z−t)

P (τ2 ≤ T |xt = 1)dz + P (τ2 > T |xt = 1) T − t

= 1
λ

(
1 − e−λ(T −t)

)
+ t − e−λ(T −t)T + P (τ2 > T |xt = 1) T − t

= 1
λ

(
1 − e−λ(T −t)

)
.

(19)

Thus,

V F I
1 (t) = v

(
1 − e−λ(T −t)

)
− c

1
λ

(
1 − e−λ(T −t)

)
=
(

v − c

λ

) (
1 − e−λ(T −t)

)
.

(20)

From (20) one observes that V F I
1 (t) decreases in t. If the net instantaneous benefit

given by V F I
1 (t) λ∆t−c∆t gets as low as 0 at some t, then the principal chooses to

stop investing at this t. I denote the time at which the net instantaneous benefit
reaches 0 by SF I

0 . SF I
0 can be obtained from

(
λV F I

1

(
SF I

0

)
− c

)
∆t = 0. Thus,

SF I
0 = T + 1

λ
log

(1 − 2κ

1 − κ

)
. (21)
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The principal is willing to start investing iff at t = 0 the expected payoff from
investing at t = 0 covers the costs of investing, i.e.

(
λV F I

1 (0) − c
)

∆t ≥ 0. From
(21), this corresponds to SF I

0 ≥ 0. I denote the upper bound on the cost-benefit
ratio κ such that the principal chooses to start investing in t = 0 under full
information by κF I (T, λ), I solve SF I

0 = 0 for κ and obtain

κF I (T, λ) = 1 − e−λT

2 − e−λT
. (22)

In summary, under full information, if κ ≤ κF I (T, λ), then the principal starts
investing at t = 0. Further, he stops at SF I

0 if the first stage of the project has not
been completed by that time. Otherwise, he proceeds to invest until τ2 ∧ T .

Proof of Lemma 3. Consider the recommendation mechanism immediately dis-
closing the completion of the second stage of the project; it is given by τ = τ2 ∧ T .
There exists such κ̃ (T, λ) that solves the principal’s binding t = 0 individual
rationality constraint when τ = τ2 ∧ T :

V (τ2) = 0, (23)

where

V (τ2) = p2 (T ) v − E0 [τ2 ∧ T ] c

= v
(
1 − e−λT − λTe−λT

)
− c

1
λ

(
2 − 2e−λT − λTe−λT

)
.

(24)

The solution to equation (23) is given by

κ̃ (T, λ) = 1 − eλT + λT

2 − 2eλT + λT
. (25)

Further, κ > κ̃ (T, λ) ⇒ V (τ2) < 0 and κ ≤ κ̃ (T, λ) ⇒ V (τ2) ≥ 0.

Proof of Lemma 4. As κ ∈ (0, κ̃ (T, λ)], by Lemma 3 an investment schedule τ

that assigns probability one to τ ≥ τ2 ∧ T is feasible. Consider the agent’s payoff:

W (τ) = P (xτ = 2) v︸ ︷︷ ︸
total surplus

− (P (xτ = 2) v − E [τ ] c)︸ ︷︷ ︸
principal’s surplus

.

Given τ ≥ τ2 ∧ T , the total surplus generated is given by P (xT = 2) v, which is
at its upper bound, determined by the exogenously given project deadline T and
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such τ is feasible. Thus, τ ≥ τ2 ∧ T is necessary and sufficient for the total surplus
to be maximized.

Consider the case κ ∈ (0, κNI (T, λ)]. From Lemma 1, the principal’s reser-
vation value is given by his payoff in the no-information benchmark, V NI =
v (p2 (T ) − p2 (S2)) + cS2 > 0. Thus, V (τ) = V NI is necessary and sufficient for
all surplus to be extracted given the principal’s individual rationality constraint.
For an investment schedule to be optimal for the principal, it is necessary and
sufficient that given τ total surplus is maximized and the principal’s individual
rationality constraint binds. Thus, τ ≥ τ2 ∧ T and V (τ) = V NI is necessary and
sufficient for optimality.

Consider now the case of κ ∈ (κNI (T, λ) , κ̃ (T, λ)]. From Lemma 1, V NI < 0.
Thus, the principal’s reservation value is given by 0. Thus, V (τ) = 0 is necessary
and sufficient for all surplus to be extracted given the principal’s individual ratio-
nality constraint. By arguments similar to the parametric case above, τ ≥ τ2 ∧ T

and V (τ) = 0 is necessary and sufficient for optimality.

Proof of Proposition 1. Consider a direct recommendation mechanism satisfying
conditions 1 and 2 from Proposition 1.

A. Optimality. It implements an investment schedule satisfying the conditions
from Lemma 4. Thus, the investment schedule implemented is optimal for the
agent.

B. Existence. For the case κ ∈ (0, κNI (T, λ)], the existence of a mechanism
satisfying conditions 1 and 2 is established in Proposition 2. For the case κ ∈
(κNI (T, λ) , κ̃ (T, λ)], an example of τ satisfying conditions 1 and 2 is

τ =

S∗, if xS∗ = 2
τ2 ∧ T, otherwise,

where S∗ is chosen such that the principal’s individual rationality constraint at
t = 0 is binding, i.e. V (τ) = 0. The proof of existence of this mechanism can
be obtained by considering the proof of Proposition 2 and imposing S2 = 0 in it
everywhere; thus, I omit this proof for the sake of space.
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Proof of Lemma 5. If (9) holds, then at any t such that m = 1 is generated by
the mechanism, the principal’s continuation value (8) is non-negative; thus, it is
optimal for the principal to choose at = 1. The optimality of choosing at = 0
after observing m = 0 is imposed in the Lemma directly, and, thus holds by
construction.

Proof of Proposition 2. I start with proving the existence of mechanism τ . For all
t ∈ [S2, S∗), stopping never occurs, at t = S∗ it occurs if xS∗ = 2, and for all
t ∈ (S∗, T ] it occurs at t = τ2 ∧ T . For t ∈ [S∗, τ), the absence of stopping induces
posteriors qn (t). Further, for t ∈ [S∗, τ) the principal discounts future benefits
from postponing stopping using the probability of the state being 2. Hence, the
continuation value at t = S2 can be written as

VS2 (τ) = vλ

(∫ S∗

S2
p1 (z) − κdz +

∫ T

S∗
(q1 (z) − κ) (1 − P (xz = 2)) dz

)
. (26)

S∗ satisfying τ solves equation VS2 (τ) = 0. Using (26), the equation can be
written as ∫ S∗

S2
κ − p1 (z) dz =

∫ T

S∗
(q1 (z) − κ) (1 − P (xz = 2)) dz.

Let g (S) :=
∫ S

S2
κ − p1 (z) dz and k (S) :=

∫ T
S (q1 (z) − κ) (1 − P (xz = 2)) dz, S ∈

[S2, T ]. q1 (t) ≥ κ, for all t ∈ [S∗, T ]. Thus, g (S2) = 0, k (S2) > 0. Further,
p1 (t) < κ, for all t ∈ (S2, T ]. Hence, g (T ) > 0, k (T ) = 0. Finally, p1 (t) ≤ κ, for
all t ∈ [S2, T ] implies that g′ (S) ≥ 0, for all s ∈ [S2, T ], and q1 (t) ≥ κ, for all
t ∈ [S∗, T ] implies that k′ (S) ≤ 0, for all s ∈ [S∗, T ]. Thus, by the intermediate
value theorem, there exists S∗ solving VS2 (τ) = 0.

I proceed with proving the obedience of the mechanism τ . The recommendation
to stop at t ≥ S∗ reveals the completion of the second stage of the project, which
makes immediate stopping optimal for the principal. Consider now the obedience
of the recommendation not to stop at all t ≤ S2. The principal’s expected payoff
for all t ∈ [0, S2) can be written as

Vt (τ) = v (p2 (S2) − p2 (t)) − c (S2 − t) + VS2 (τ) .

Given the binding individual rationality constraint, it becomes

Vt (τ) = v (p2 (S2) − p2 (t)) − c (S2 − t) , for all t ∈ [0, S2).
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Finally, note that Vt (τ) above is equivalent to V NI (t) given by (16). Lemma 1
implies that given κ ≤ κNI (T, λ), V NI (0) = V (τ) ≥ 0. Further, Lemma 9 implies
that V (τ) ≥ 0 ⇒ Vt (τ) ≥ 0, ∀t ∈ [0, S2). Consider now the obedience of the
recommendation not to stop for t ∈ [S2, S∗]. As (11) suggests, the value function
satisfies the following equation

V̇t (τ) = λp1 (t) Vt (τ) + vλ (κ − p1 (t)) . (27)

I argue that VS2 (τ) ≥ 0 ⇒ Vt (τ) ≥ 0, ∀t ∈ [S2, S∗]. Assume that this is not
true, then ∃t̂ such that t̂ := inf {t ∈ [S2, S∗) : Vt(τ) < 0}. As Vt(τ) is continuous
in t, it follows that Vt̂(τ) = 0, and by the mean value theorem there must be
t ∈

(
S2, t̂

)
such that V̇t (τ) ≤ 0. But this is in contradiction with the fact that

Vt(τ) ≥ 0 and (27).
Finally, I consider the obedience of the recommendation not to stop for t ∈

[S∗, T ]. The absence of stopping at t ≥ S∗ reveals that xt ̸= 2. Thus, q1 (t) =
p1(t)

p0(t)+p1(t) = λt
1+λt

, ∀t ∈ [S∗, τ), and, thus, q̇1 (t) > 0. Further, q1 (S∗) > κ. The
continuation value ∀t ∈ [S∗, τ) is given by

Vt (τ) = E [
∫ τ

t vλ (q1 (z) − κ) dz | t < τ ] .

Thus, Vt (τ) ≥ 0, ∀t ∈ [S∗, τ).

Proof of Lemma 6. The agent’s equilibrium payoff under the mechanism from Propo-
sition 1 is given by

E [τ ] c = p2 (T ) v.

Rewriting it equivalently, E [τ ] = 1
λ

1
κ
p2 (T ) ⇒ ∂ E [τ ] /∂κ < 0.

Proof of Lemma 7. Lemma 3 implies that if a schedule τ assigns zero probability to
stopping in states 0 and 1 then V (τ) < 0 and the individual rationality constraint
is violated. Thus, the necessary condition for a schedule τ to be feasible under
κ ∈ (κ̃ (T, λ) , κF I (T, λ)) is that it assigns a positive probability to stopping not
only in state 2, but also to stopping in either state 0 or state 1. Consider a schedule
τ that assigns a positive probability to stopping in state 1. Consider an alternative
schedule τ ′ which is induced by reallocating the probability mass of stopping in
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state 1 to stopping at τ2 ∧ T . Lemma 2 suggests that in state 1 the principal
strictly benefits from postponing the stopping until the second stage of the project
is completed. Thus, V (τ ′) > V (τ). Further, under τ ′ the principal invests strictly
longer, in expectation. Thus, W (τ ′) > W (τ). Thus, for a schedule to be efficient
it should not assign a positive probability to stopping in state 1.

Next, consider a schedule τ which assigns a positive probability to stopping in
states 0 and 2. Assume that the stopping in state 0 happens at date S, which can
be either deterministic or stochastic: if xS = 0 then τ = S, otherwise, τ ≥ τ2 ∧ T

and there exists ω ∈ Ω such that τ (ω) > τ2 (ω), i.e. with a positive probability,
stopping in state 2 happens strictly after the date of transition to state 2. Assume
that V (τ) = 0. Consider the following investment schedule τ̃ : if xS̃ = 0 then
τ̃ = S̃, E [S̃] > E [S], otherwise, τ̃ = τ2 ∧ T , and V (τ̃) = 0. Further, from (6), the
agent’s objective is given by

W (τ̃) − W (τ) = (SV (τ̃) − V (τ̃)) − (SV (τ) − V (τ))
= SV (τ̃) − SV (τ) .

The change from τ ≥ τ2 ∧ T to τ = τ2 ∧ T induces no loss in total surplus as
the measure of ω ∈ Ω satisfying the event {τ2 ≤ T} is equal for both schedules.
Further, the change from conditional stopping at S to conditional stopping at S̃

induces an increase in total surplus as P (xS̃ = 0) < P (xS = 0) and thus, in the
latter case, conditional stopping happens less frequently. Hence, SV (τ̃) ≥ SV (τ).
Thus, for a schedule that assigns positive probability to stopping in states 0 and 2
to be efficient, it is necessary that stopping in state 2 happens at τ2 with probability
1.

Proof of Lemma 8. Given Lemma 7, the space of efficient and feasible investment
schedules under κ ∈ (κ̃ (T, λ) , κF I (T, λ)] simplifies to schedules such that stopping
in state 2 happens at τ2, and also stopping in state 0 happens with positive proba-
bility. Thus, to characterize the optimal schedule under κ ∈ (κ̃ (T, λ) , κF I (T, λ)],
I need to characterize the assignment of the probability mass of stopping in state
0 that is optimal for the agent.

I directly consider the choice of the distribution of stopping time in state 0
that maximizes the agent’s payoff subject to the principal’s individual rationality
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constraint. Denote the random time at which stopping in state 0 occurs by ρ ∈
∆ ([0, T ]); it is drawn at t = 0 and publicly observable. It has distribution Fρ on
[0, T ] and is independent from the state process xt, i.e. observing the realization
of ρ does not provide any information on the state process other than that xρ = 0,

for any realization of ρ. The formal relation between ρ and stopping time τ w.r.t.
filtration generated by the state process xt is given by

P (τ ≤ t ∧ xρ = 0) = P (ρ ≤ t) P (xt = 0) = P (ρ ≤ t) e−λt.

I start with characterizing the welfare implications of stopping in state 0 for
the agent’s and principal’s welfare. A few useful objects are SVt|0 (τ2) and Vt|0 (τ2).
SVt|0 (τ2) is the time t continuation total surplus given that xt = 0 at t and
completion of the second stage of the project is immediately disclosed whenever it
happens, τ = τ2 ∧ T :

SVt|0 (τ2) = v P (τ2 ≤ T |xt = 0)
= v

[
1 − e−λ(T −t) − λ (T − t) e−λ(T −t)

]
.

(28)

Vt|0 (τ2) is the principal’s time t continuation value given that xt = 0 and
completion of the second stage of the project is immediately disclosed, τ = τ2 ∧ T :

Vt|0 (τ2) = v P (τ2 ≤ T |xt = 0) − c E [τ2 ∧ T − t|xt = 0] ,

where v P (τ2 ≤ T |xt = 0) is given by (28) and

E [τ2 ∧ T − t|xt = 0]

= P (τ2 ≤ T |xt = 0)
∫ T

t
z · λ2 (z − t) e−λ(z−t)

P (τ2 ≤ T |xt = 0)dz + P (τ2 > T |xt = 0) T − t

= 2
λ

− 2
λ

e−λ(T −t) − e−λ(T −t) (T − t) .

(29)

I proceed with a useful lemma.

Lemma 10. Given an investment schedule

τ =

ρ, if xρ = 0
τ2 ∧ T, otherwise,

(30)
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where ρ has the distribution Fρ on [0, T ], independent of the state process xt and
drawn at t = 0, the total surplus at date t can be written as

SVt (τ) = SVt (τ2) − EFρ

[
P (xρ = 0|t < τ2 ∧ ρ) SVρ|0 (τ2)

]
,

and the principal’s expected payoff at date t can be written as

Vt (τ) = Vt (τ2) − EFρ

[
P (xρ = 0|t < τ2 ∧ ρ) Vρ|0 (ρ; τ2)

]
,

for all t ∈ [0, ρ ∧ τ2) for each realization of ρ.

Proof. By construction, SVt (τ) corresponds to the expected value of the project
completion payoff under stopping policy τ conditional on stopping not having
happened by t, i.e. t < τ . Given (30), the principal gets v either if the second
stage is completed before ρ or if the first stage is completed before ρ and the second
stage is completed before T . Note that when t < ρ, t < τ implies that the state is
either 0 or 1, and, when t ≥ ρ, t < τ implies that the state is 1. Thus,

SVt (τ) = EFρ [v (P ({xρ = 1} ∩ {τ2 ≤ T} |t < τ2 ∧ ρ) + P (xρ = 2|t < τ2 ∧ ρ))] .

Further, for each realization of ρ,

P ({xρ = 1} ∩ {τ2 ≤ T} |t < τ2 ∧ ρ) = P (xρ = 1|t < τ2 ∧ ρ) P (τ2 ≤ T |xρ = 1) .

Thus,

SVt (τ) = EFρ [v (P (xρ = 1|t < τ2 ∧ ρ) P (τ2 ≤ T |xρ = 1) + P (xρ = 2|t < τ2 ∧ ρ))] .

(31)
SVρ|0 (τ2) corresponds to the expected value of the project completion payoff

when xρ = 0. In that case, v is obtained when the completion of the second stage
happens not later than T . Thus, SVρ|0 (τ2) = EFρ [v P (τ2 ≤ T |xρ = 0)]. Therefore,

EFρ

[
SVt (τ2) − P (xρ = 0|t < τ2 ∧ ρ) SVρ|0 (τ2)

]
= EFρ [P (xT = 2|t < τ2 ∧ ρ) v − P (xρ = 0|t < τ2 ∧ ρ) v P (τ2 ≤ T |xρ = 0)]
= EFρ [v (P (xT = 2|t < τ2 ∧ ρ) − P (xρ = 0|t < τ2 ∧ ρ) P (τ2 ≤ T |xρ = 0))] .

(32)
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Thus, given (31) and (32), to complete the proof of the first result of the Lemma
10, it suffices to show that for each realization of ρ,

P (xT = 2|t < τ2 ∧ ρ) − P (xρ = 0|t < τ2 ∧ ρ) P (τ2 ≤ T |xρ = 0)
= P (xρ = 2|t < τ2 ∧ ρ) + P (xρ = 1|t < τ2 ∧ ρ) P (τ2 ≤ T |xρ = 1)

Using the full probability formula,

P (xT = 2|t < τ2 ∧ ρ) =
P (xρ = 0|t < τ2 ∧ ρ) P (τ2 ≤ T |xρ = 0)
+ P (xρ = 1|t < τ2 ∧ ρ) P (τ2 ≤ T |xρ = 1)
+ P (xρ = 2|t < τ2 ∧ ρ) P (τ2 ≤ T |xρ = 2) .

Hence,

SVt (τ) = SVt (τ2) − EFρ

[
P (xρ = 0|t < τ2 ∧ ρ) SVρ|0 (τ2)

]
, for all t ∈ [0, ρ ∧ τ2).

(33)
I proceed with proving the second result of Lemma 10. First, applying (33) to

Vt (τ) yields

Vt (τ) = SVt (τ) − EFρ [c E [τ |t < τ2 ∧ ρ]]
= SVt (τ2) − EFρ

[
P (xρ = 0|t < τ2 ∧ ρ) SVρ|0 (τ2) − c E [τ |t < τ2 ∧ ρ]

]
.

(34)

For each realization of ρ:

E [τ |t < τ2 ∧ ρ]
= P (xρ = 0|t < τ2 ∧ ρ) E [τ |xρ = 0]

+ P (xρ = 1|t < τ2 ∧ ρ) E [τ |xρ = 1] + P (xρ = 2|t < τ2 ∧ ρ) E [τ |xρ = 2]
= P (xρ = 0|t < τ2 ∧ ρ) ρ

+ P (xρ = 1|t < τ2 ∧ ρ) E [τ2 ∧ T |xρ = 1] + P (xρ = 2|t < τ2 ∧ ρ) E [τ2 ∧ T |xρ = 2]
= P (xρ = 0|t < τ2 ∧ ρ) ρ + E [τ2 ∧ T |t < τ2 ∧ ρ] − P (xρ = 0|t < τ2 ∧ ρ) E [τ2 ∧ T |xρ = 0]
= E [τ2 ∧ T |t < τ2 ∧ ρ] − P (xρ = 0|t < τ2 ∧ ρ) (E [τ2 ∧ T |xρ = 0] − ρ) ,

(35)
where the second equality uses the full probability formula.
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Plugging (35) into (34) yields

SVt (τ2) − EFρ [c E [τ2 ∧ T |t < τ2 ∧ ρ]]
− EFρ

[
P (xρ = 0|t < τ2 ∧ ρ)

(
SVρ|0 (τ2) − c E [τ2 ∧ T − ρ|xρ = 0]

)]
=Vt (τ2) − EFρ

[
P (xρ = 0|t < τ2 ∧ ρ) Vρ|0 (τ2)

]
,

for all t ∈ [0, ρ ∧ τ2) for each realization of ρ.

I proceed to formulating the optimization problem. The agent’s objective can
be represented as

c E [τ ] = SV (τ) − V (τ) .

Using Lemma 10,

SV (τ) − V (τ)
=SV (τ2) − V (τ2) − EFρ

[
P (xρ = 0)

(
Vρ|0 (τ2) − SVρ|0 (τ2)

)]
=SV (τ2) − V (τ2) − c EFρ [P (xρ = 0) E [τ2 ∧ T − ρ|xρ = 0]] .

(36)

The individual rationality constraint for the principal can be expressed as

V (τ) ≥ 0 ⇐⇒ V (τ2) ≥ EFρ

[
P (xρ = 0) Vρ|0 (τ2)

]
. (37)

Finally, (36) yields the objective and (37) yields the individual rationality con-
straint for the optimal schedule choice problem22

min
ρ∈∆([0,T ])

[
EFρ [P (xρ = 0) E [τ2 ∧ T − ρ|xρ = 0]]

]
s.t. EFρ

[
P (xρ = 0)

(
c E [τ2 ∧ T − ρ|xρ = 0] − SVρ|0 (τ2)

)]
≥ −V (τ2) .

(38)

The Lagrangian function for the problem is

L = EFρ [P (xρ = 0) E [τ2 ∧ T − ρ|xρ = 0]]
− µ

(
EFρ

[
P (xρ = 0)

(
c E [τ2 ∧ T − ρ|xρ = 0] − SVρ|0 (τ2)

)]
+ V (τ2)

)
,

22The natural interpretation of the problem is the choice of stochastic stopping in state 0 to
minimize the investment saved by the principal due to stopping at the interim deadline when
the project stagnates.
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where P (xt = 0) = e−λt, E [τ2 ∧ T − t|xt = 0] is given by (29), SVt|0 (τ) is given by
(28).

I obtain the F.O.C., which needs to hold for each value of ρ that has a positive
probability in Fρ:

e−λT
(
c
(
2e−λ(T −t) − 1

)
(µ − 1) − µλv

(
e−λ(T −t) − 1

))
= 0. (39)

The derivative of the left-hand side of (39) w.r.t. t is given by e−λtλ (2c + µ (λv − 2c)).
As κF I (T, λ) < 1

2 , the derivative is positive. Thus, there exists at most one t that
satisfies the FOC (39). Thus, the optimal stopping time in state 0, ρ, is determin-
istic. I denote it with SINT , the interim deadline.

I proceed with characterizing the optimal SINT :

min
S∈[0,T ]

[P (xS = 0) E [τ2 ∧ T − S|xS = 0]]

s.t. P (xS = 0)
(
c E [τ2 ∧ T − S|xS = 0] − SVS|0 (τ2)

)
≥ −V (τ2) .

(40)

The system of F.O.C. is given by



e−λT c
(
2e−λ(T −S) − 1

)
(µ − 1)

− e−λT µλv
(
e−λ(T −S) − 1

)
≥ 0 if S = 0
= 0 if S ∈ (0, T )
≤ 0 if S = T

c

λ
e−λT

(
2
(
e−λ(T −S) − 1

)
− λ (T − S)

)
− ve−λT

((
e−λ(T −S) − 1

)
− λ (T − S)

)
+ V (τ2) ≥ 0

= 0 if µ > 0.

Assume µ = 0. In this case, the first F.O.C. wrt S yields −ce−λT
(
2e−λ(T −S) − 1

)
.

The expression is negative for all S ∈ (0, T ). Thus, µ > 0, and optimal S solves the
binding constraint. Thus, I proceed with inspecting the corresponding equation
given by

c

λ
e−λT

(
2
(
e−λ(T −S) − 1

)
− λ (T − S)

)
− ve−λT

((
e−λ(T −S) − 1

)
− λ (T − S)

)
= − V (τ2) ,

(41)

where V (τ2) is given by (24).
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The solution to (41) is given by

S = 1
λ

[
γ + W

(
−γe−γ

)]
, (42)

where γ = eλT 1−2κ
1−κ

and W(.) denotes the Lambert W function.
Denote the 0 and −1 branches of the Lambert W function by W0(.) and W−1(.).

κ ∈
(
0, 1

2

)
, thus, γ > 0. (42) depends on γ and for each γ ̸= 1 corresponds to

two points as the Lambert W function has two branches. The values of (42) as a
function of γ are presented in Figure 7. They are given by

S =



(
1
λ

[γ + W−1 (−γe−γ)] , 0
)

, if γ < 1(
0, 1

λ
[γ + W0 (−γe−γ)]

)
, if γ > 1

0, if γ = 1.

0.5 1.0 1.5 2.0
γ

-2

-1

1

Figure 7: Roots of equation (41) as a function of the parameter γ:
root corresponding to branch 0 of the Lambert W function - thick;

root corresponding to branch −1 of the Lambert W function - dashed.

γ is decreasing in κ, and γ|κ=κF I = 1. As κ ≤ κF I , which corresponds to γ ≥ 1,
the solution to (41) is given by

SA = 0, SB = 1
λ

[γ + W0 (−γe−γ)] .

As the objective of (40) is decreasing in S and SB > SA, the solution to (40) is
given by

SINT = 1
λ

[
γ + W0

(
−γe−γ

)]
, γ = eλT 1 − 2κ

1 − κ
. (43)
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Finally, I can describe the optimal schedule: τ is the stopping time such that
stopping occurs either at the moment of completion of the second stage of the
project or at SINT , conditional on the absence of the completion of the first stage
of the project, i.e.

τ =

SINT , if xSINT = 0
τ2 ∧ T, otherwise,

(44)

where SINT is given by (43).

Proof of Proposition 3. Consider a direct recommendation mechanism satisfying
the conditions in Proposition 3.

A. Optimality. It implements an investment schedule satisfying the conditions
from Lemma 8. Thus, the investment schedule implemented is optimal for the
agent.

B. Existence. The existence of the optimal interim deadline SINT is established
in Lemma 8. Thus, here I proceed with demonstrating the obedience of the direct
recommendation mechanism.

Lemma 11. Assume that κ ∈ (κ̃ (T, λ) , κF I (T, λ)) and consider a recommenda-
tion mechanism that implements τ given by (44). V (τ) ≥ 0 ⇒ Vt (τ) ≥ 0, for all
t ∈ (0, τ).

Proof. First, note that if the recommendation mechanism τ is given by (44), then,
for t < SINT the absence of stopping at some t reveals that xt ̸= 2. Thus,

q1 (t) = p1 (t)
p1 (t) + p0 (t) = λt

1 + λt
, ∀t < SINT .

Hence, q̇1 (t) > 0, for all t < SINT . Further, for t ≥ SINT , the absence of stopping
reveals that xt = 1. Thus, q1 (t) = 1, for all t ≥ SINT .

Writing out Vt (τ) based on (11) yields

V̇t (τ) = λq1 (t) Vt (τ) + vλ (κ − q1 (t)) . (45)

q1 (0) = 0 and q̇1 (t) > 0, for all t < SINT . I define t̃ as the solution of λt
1+λt

= κ.
q1 (t) < κ, for all t ∈

[
0, t̃ ∧ SINT

]
. I argue that V (τ) ≥ 0 ⇒ Vt (τ) ≥ 0,

for all t ∈
(
0, t̃ ∧ SINT

)
. Assume that this is not true, then ∃t̂ such that t̂ :=
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inf
{
t ∈

(
0, t̃ ∧ SINT

)
: Vt(τ) < 0

}
. As Vt(τ) is continuous in t, it follows that

Vt̂(τ) = 0, and by the mean value theorem there must be t ∈
(
0, t̂
)

such that
V̇t (τ) ≤ 0. But this is in contradiction with the fact that Vt(τ) ≥ 0 and 45.

Consider now t ∈ [t̃ ∧ SINT , τ). The continuation value can be written as

Vt (τ) = E [
∫ τ

t vλ (q1 (z) − κ) dz | t < τ ] . (46)

As κ < 1
2 and q1 (t) = 1, for all t ∈ [SINT , τ), it holds that q1 (t) ≥ κ, ∀t ∈

[t̃ ∧ SINT , τ). Thus, it can be seen from (46) that Vt (τ) ≥ 0, ∀t ∈ [t̃ ∧ SINT , τ).

The obedience of recommendations not to stop follows from applying Lemma
11 since V (τ) = 0 holds by construction. Next, consider the obedience of rec-
ommendations to stop. If the recommendation to stop comes at some t ̸= SINT ,
then it reveals the completion of the second stage of the project, which makes im-
mediate stopping optimal for the principal. If the recommendation to stop comes
at t = SINT , then it reveals that xSINT = 0. As Lemma 2 suggests, if in the
full-information benchmark the first stage of the project is not completed by the
interim deadline SF I

0 , that is, xSF I
0

= 0, then V F I
1 (t) λ∆t ≤ c∆t for all t ≥ SF I

0 .
From (21) and (43), SINT > SF I

0 , thus, V F I
1

(
SINT

)
λ∆t < c∆t and the princi-

pal prefers aSINT = 0 over aSINT = 1. As the principal’s expected payoff under
the recommendation mechanism τ is at most as large as in the full-information
benchmark, V F I

1

(
SINT

)
≥ VSINT |1 (τ). Hence, VSINT |1 (τ) λ∆t < c∆t and, given

the recommendation to stop, the principal prefers aSINT = 0 to aSINT = 1.

E Disclosure of project completion with a deterministic
delay

Proposition 4. Assume κ ∈ (0, κNI (T, λ)] and T > S2. The optimal mechanism
provides no information until t = S2. At each t ≥ S2, it generates a recommen-
dation to stop iff the second stage of the project was completed at date π (t) in the
past, where

π (t) = − 1
λ

(
1 + 1

λ
W−1(−

1
κ

e−1−λtλt)
)

,

where W−1(.) denotes the −1 branch of Lambert W function.
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The mechanism from Proposition 4 does not recommend stopping until the
second stage of the project is completed, and thus maximizes the total surplus. The
mechanism makes the principal’s individual rationality constraint bind, VS2 (τ) =
0. The absence of a stopping recommendation after t = S2 induces posterior beliefs
q1 (t) = κ, ∀t ≥ S2. Note that the principal’s expected instantaneous payoff within
∆t is given by

v · q1 (t) λ∆t − c · ∆t = vλ∆t (q1 (t) − κ) .

No information is provided until S2 and after S2 the mechanism keeps the prin-
cipal’s expected instantaneous payoff precisely at 0, ∀t ≥ S2. As a result, the
principal’s continuation value is kept at 0 for all t ∈ [S2, τ).

The delay is given by t − π (t). At the beginning of the disclosure, t = S2, the
delay is S2. To keep the belief regarding state 1 constant, the delay decreases for
all t ∈ (S2, τ).

Proof of Proposition 4. Posterior beliefs at date π induced by the disclosure of the
absence of second stage completion are given by

q0 (π) = p0 (π)
p0 (π) + p1 (π) ,

q1 (π) = p1 (π)
p0 (π) + p1 (π) .

As no other evidence is provided during (π, t], the beliefs evolve according to

q0 (s) = e−λs

1 + λπ
,

q1 (s) = e−λsλ (s + π)
1 + λπ

,

where s ≥ π.
The belief regarding state 1 at current date t is given by

q1 (t) = e−λ(t−π)λt

1 + λπ
. (47)

The dynamic of the state is the same as in the no-information benchmark until
t = S2. Therefore,

q0 (S2) = p0 (S2) = κ

λS2
and q1 (S2) = p1 (S2) = κ.
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The dynamics for t ≥ S2 then is q1 (t) = κ, q̇1 (t) = 0. Solving from (47),

π = − 1
λ

(
1 + 1

λ
W−1(−

1
κ

e−1−λtλt)
)

.

The recommendation mechanism τ is obedient. τ ≥ τ2 ∧ T implies that the
recommendation to stop comes only if the second stage of the project has already
been completed, and thus immediate stopping is clearly optimal for the principal.
The recommendation not to stop is also obedient. Vt (τ) ≥ 0, ∀t ∈ [0, S2) is
formally demonstrated in the proof of obedience for Proposition 2. I proceed by
showing that Vt (τ) = 0, ∀t ∈ [S2, τ). Writing out Vt (τ) in the recursive form
yields

Vt (τ) = (vλq1 (t) − c) ∆t + (1 − λq1 (t) ∆t) Vt+∆t (τ)
= vλ (q1 (t) − κ) ∆t + (1 − λq1 (t) ∆t) Vt+∆t (τ) .

As q1 (t) = κ, ∀t ∈ [S2, τ), it becomes

Vt (τ) = (1 − λq1 (t) ∆t) Vt+∆t (τ) , ∀t ∈ [S2, τ).

Differentiating both sides w.r.t. ∆t yields

0 = −λq1 (t) Vt+∆t (τ) + V̇t+∆t (τ) .

This differential equation together with the boundary condition VT (τ) = 0 has a
unique solution Vt(τ) = 0 for all t ∈ [S2, T ].

F The case of no project completion deadline

Importantly, the presence of a hard project deadline T serves as one of the nec-
essary and sufficient conditions for the agent to commit to an interim reporting
deadline. Without a hard deadline T , the principal’s incentives under full infor-
mation are different. Recall from Lemma 2 the principal’s incentive to continue
investing decreases in the length of absence of the first stage completion. In the
case T → ∞, the continuation value V F I

1 (t) is constant and given by v (1 − κ). As
a result, the principal’s incentive to continue investing given the absence of stage
completion does not change over time. Thus, if the principal opts in, he never
chooses to stop investing before the completion of the second stage occurs. As a
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result, setting an interim deadline stops serving as an agent’s tool to incentivize
the principal’s investment. The agent’s information policy in the case of no project
deadline is given in Lemma 12.

Lemma 12. Assume that T → ∞. In that case, if κ < 1
2 , then the agent uses the

recommendation mechanism presented in Proposition 1.

Proof of Lemma 12. Under full information and the absence of an exogenous dead-
line, the principal assigns value vx to each state x ∈ {0, 1, 2}. Clearly, v2 = v as
the principal stops immediately and gets v. In state 1, at each t the principal gets
v∆t with probability λ∆t and pays c∆t. As a result, the principal’s continuation
value is constant. Assume that κ < 1, as otherwise c ≥ λv and the principal
chooses not to invest in state 1. As the principal’s continuation value in state 1
does not change over time,

0 = λ · (v2 − v1) − c,

and so
v1 = v − c

λ
= v(1 − κ).

Thus, the principal wants to invest in state 0 if c ≤ λv1, i.e. κ ≤ 1
2 .

Finally, as the information regarding τ1 is not decision-relevant for the principal,
for κ < 1

2 , the agent chooses the recommendation mechanism that discloses only
the completion of the second stage of the project and optimally postpones the
disclosure to make the principal’s individual rationality constraint bind.
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