
# Effectiveness and Heterogeneous Effects of Purchase Grants for EVs

Evidence from Germany

Peter Haan, Adrián Santonja, Aleksandar Zaklan

EEA 2022 August 25, 2022

# Emissions of German transportation sector stubbornly high



Source: European Environmental Agency.



# Purchase subsidy as part of the climate policy mix

- Purchase subsidies important element in the existing policy mix targeting decarbonization of the transportation sector
- German subsidy implies transfer of  $\approx 5$  billion euro until 2025 from taxpayers to car manufacturers and buyers of new vehicles



# Purchase subsidy as part of the climate policy mix

- Purchase subsidies important element in the existing policy mix targeting decarbonization of the transportation sector
- German subsidy implies transfer of  $\approx 5$  billion euro until 2025 from taxpayers to car manufacturers and buyers of new vehicles
- Some potential problems:
  - Potential for distributional tension and loss in climate policy acceptance
  - Incentive to purchase additional vehicles without retiring old ones
  - Leakage effects in border regions could lead to losses in (within-country) effectiveness



# This paper in a nutshell

#### **Research Questions**

- What is the overall effect of the German purchase subsidy program on the German car market?
- 2 Distributional issues: How does the effect differ across geographical and socio-economic dimensions?



# This paper in a nutshell

#### **Research Questions**

- What is the overall effect of the German purchase subsidy program on the German car market?
- 2 Distributional issues: How does the effect differ across geographical and socio-economic dimensions?

#### Methods

Introduction

■ Diff-in-diff analysis of registrations of new Electric Vehicles (EVs) and Plug-in Hybrid Electric Vehicles (PHEVs)



# This paper in a nutshell

#### **Research Questions**

- What is the overall effect of the German purchase subsidy program on the German car market?
- Distributional issues: How does the effect differ across geographical and socio-economic dimensions?

#### Methods

Introduction

Diff-in-diff analysis of registrations of new Electric Vehicles (EVs)
 and Plug-in Hybrid Electric Vehicles (PHEVs)

#### Results

- Subsidy causes substantial increase in EV and PHEV registrations
- Heterogeneous effects by...
  - ...household income level
  - ...political orientation
  - V degree of unbenientie
  - ...degree of urbanization
  - X ...potential for leakage effects



- Effects of financial incentives for EV adoption using granular data (Muehlegger and Rapson 2018)
  - Additional literature using less granular data (Azarafshar and Vermeulen 2020; Clinton and Steinberg 2019; Jenn, Springel and Gopal 2018; Münzel et al. 2019)



### Literature and contribution

- Effects of financial incentives for EV adoption using granular data (Muehlegger and Rapson 2018)
  - Additional literature using less granular data (Azarafshar and Vermeulen 2020; Clinton and Steinberg 2019; Jenn, Springel and Gopal 2018; Münzel et al. 2019)
- Energy efficiency and scrapping programs (Chen, Hu and Knittel 2021; Grigolon, Leheyda and Verboven 2016; Hoekstra, Puller and West 2017)



### Literature and contribution

- Effects of financial incentives for EV adoption using granular data (Muehlegger and Rapson 2018)
  - Additional literature using less granular data (Azarafshar and Vermeulen 2020; Clinton and Steinberg 2019; Jenn, Springel and Gopal 2018; Münzel et al. 2019)
- Energy efficiency and scrapping programs (Chen, Hu and Knittel 2021; Grigolon, Leheyda and Verboven 2016; Hoekstra, Puller and West 2017)
- Structural analysis, e.g. of the trade-off between financial incentives for EVs and for charging stations (Li et al. 2017; Remmy 2022; Springel 2021)



### Literature and contribution

- Effects of financial incentives for EV adoption using granular data (Muehlegger and Rapson 2018)
  - Additional literature using less granular data (Azarafshar and Vermeulen 2020; Clinton and Steinberg 2019; Jenn, Springel and Gopal 2018; Münzel et al. 2019)
- Energy efficiency and scrapping programs (Chen, Hu and Knittel 2021; Grigolon, Leheyda and Verboven 2016; Hoekstra, Puller and West 2017)
- Structural analysis, e.g. of the trade-off between financial incentives for EVs and for charging stations (Li et al. 2017; Remmy 2022; Springel 2021)
- Our contributions:
  - Evaluation of causal effects of purchase subsidy in Europe's largest car market using highly granular data
  - Focus on heterogeneous effects allows for examination of distributional impacts



# Policy background

- May 2016: German government introduces subsidy program for EVs and PHEVs with listed prices below 60.000 euro
  - 4.000 euro for EVs, 3.000 euro for PHEVs
  - manufacturer share of 50 %
- Subsidy system changed and amounts increased in November 2019 and June 2020



# Policy background

- May 2016: German government introduces subsidy program for EVs and PHEVs with listed prices below 60.000 euro
  - 4.000 euro for EVs, 3.000 euro for PHEVs
  - manufacturer share of 50 %
- Subsidy system changed and amounts increased in November 2019 and June 2020
- Currently:

|                             | <40k  | 40k - 65k |
|-----------------------------|-------|-----------|
| EV                          | 9.000 | 7.500     |
| of which manufacturer share | 3.000 | 2.500     |
| PHEV                        | 6.875 | 5.625     |
| of which manufacturer share | 2.250 | 1.875     |



### Data I

### Vehicle registrations

- Data on vehicle registrations (≠ sales) from German Federal Motor Transport Authority (KBA – Kraftfahrt-Bundesamt)
  - Monthly registrations at the municipality level for Jan 2015 Feb 2022 at manufacturer-model level (e.g. number of Renault Zoe registered in February 2022 in Esslingen county)
  - Type of engine (e.g. gasoline, diesel, hybrid, plug-in hybrid, electric)
  - Owner type (private or company)



Policy background Data Research Design Results Conclusions References

O O●OOOO O OOOOOOO OO

### Data II

### Vehicle list prices

■ Vehicle list prices from ADAC (*Allgemeiner Deutscher Automobil-Club*) by month and model



Policy background Data Research Design Results Conclusions References

O O●OOOO O OOOOOO OO

### Data II

### Vehicle list prices

■ Vehicle list prices from ADAC (*Allgemeiner Deutscher Automobil-Club*) by month and model



### Data II

### Vehicle list prices

■ Vehicle list prices from ADAC (*Allgemeiner Deutscher Automobil-Club*) by month and model



8/23

Policy background Data Research Design Results Conclusions References

O O OOOOO O OOOOOO OO

### Data II

### Vehicle list prices

■ Vehicle list prices from ADAC (*Allgemeiner Deutscher Automobil-Club*) by month and model

#### County-level data

- Population density (Destatis)
- Socio-economic data (INKAR)

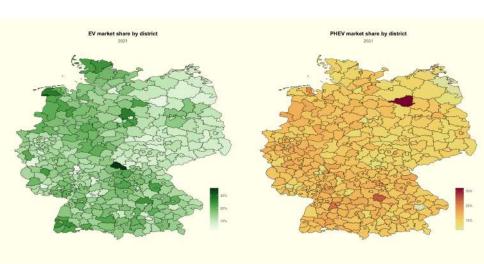


Policy background Data Research Design Results Conclusions References

O O●OOOO O OOOOOO OO

### Data II

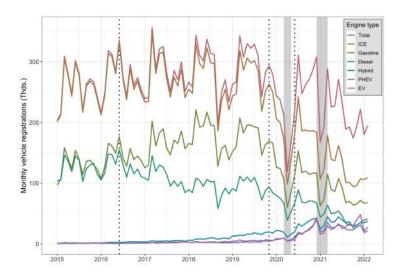
#### Vehicle list prices


■ Vehicle list prices from ADAC (*Allgemeiner Deutscher Automobil-Club*) by month and model

#### County-level data

- Population density (Destatis)
- Socio-economic data (INKAR)

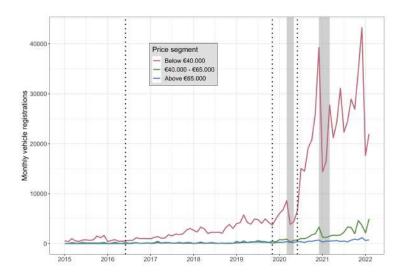
**Final dataset** Aggregate to create a balanced panel with 399 counties over 86 months








Policy background Data Research Design Results Conclusions References
O 000000 O 0000000 OO

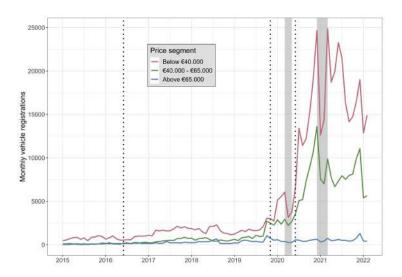

### Evolution of German vehicle market





Policy background Data Research Design Results Conclusions References
O OOOO●O O OOOOOOO OO

# EV segment






Policy background Data Research Design Results Conclusions References

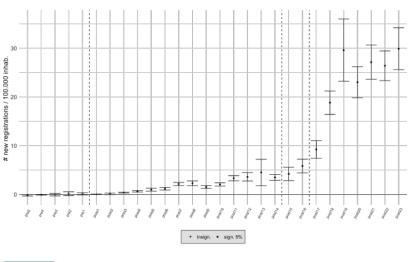
O OOOOOO O OOOOOOO OO

# PHEV segment





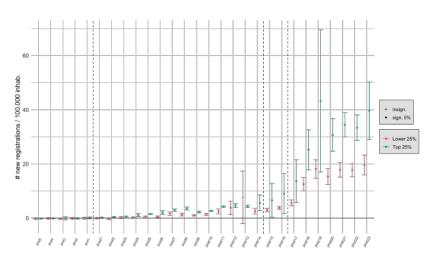
# Research Design - Difference-in-Differences


Difference-in-difference approach:

$$y_{kit} = \sum_{j=-m}^{q} \rho_j D_{kiz,z=0+j} + \alpha_{ki} + \lambda_t + \epsilon_{kit}$$

- $y_{kit}$  Registrations of models in price segment k, county i and month t per 100.000 inhabitants
- D<sub>kiz</sub> Interaction of treatment status and trimester grouping indicator
- $\alpha_{ki}$  County × Price segment FE
- $\lambda_t$  Month-of-sample FE
- → Treatment group (list price < €40.000) vs Control group (list price > €65.000)



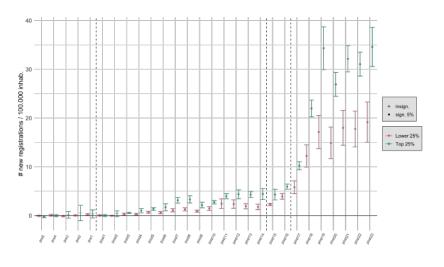

### Effect of subsidy on EVs







### EVs - Heterogeneous effect I: income



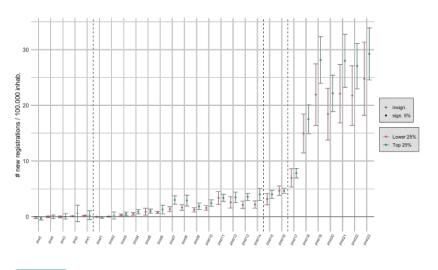





Results 0000000

# EVs - Heterogeneous effect II: green party vote share



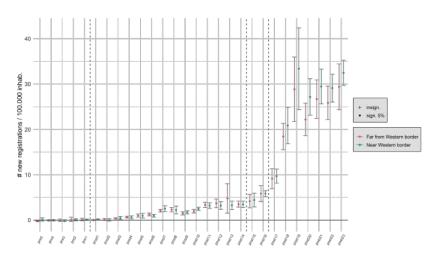



Adrián Santonia



16 / 23

# EVs - Heterogeneous effect III: population density








Policy background Data Research Design **Results** Conclusions References
O OOOOOO O OOOOOOO OO

# EVs - Heterogeneous effect IV: Western counties





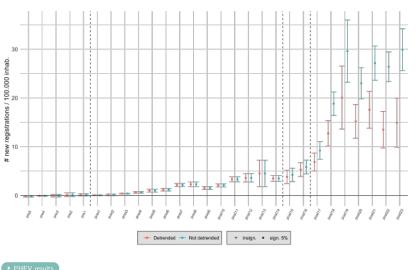


### Potential threat to identification

■ In 2020, the stringency of European *CO*<sub>2</sub> emissions standards was increased substantially



Policy background Data Research Design **Results** Conclusions References
O OOOOOO O OOOOOOO OO


### Potential threat to identification

- In 2020, the stringency of European *CO*<sub>2</sub> emissions standards was increased substantially
- In order to account for such concurrent policy at the European level:
  - Calculate the evolution at the national level of EV and PHEV registrations in the Western neighbouring countries (FR, BE, LU, DK, CH, AT)
  - 2 Detrend our outcome variables after 2020 accordingly



Results 0000000

### Effect of subsidy on EVs





Adrián Santonja



Policy background Data Research Design Results **Conclusions** References

O 000000 0 000000 

O 000000

### Conclusions and further steps

### **?** Conclusions

- Purchase grant altered the composition of the German vehicle fleet
  - Registrations of EVs (and PHEVs) increased substantially
  - Effect mostly driven by richer counties with a high share of green party voters
  - No evidence of across border leakage

### Further steps

- Exploit municipal-level data (11.000 municipalities in Germany)
- Alternative control groups



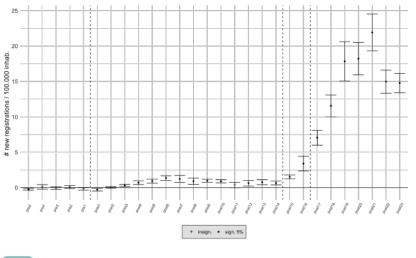
Thank you for your attention! 🙏

Adrián Santonja

🛮 asantonjadifonzo@diw.de 📭



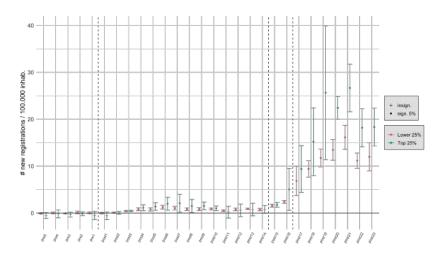
### References I


- Azarafshar, R. and Vermeulen, W. N. (2020). "Electric vehicle incentive policies in Canadian provinces". In: Energy Economics 91, p. 104902.
- Chen, C.-W., Hu, W.-M. and Knittel, C. R. (2021). "Subsidizing Fuel-Efficient Cars: Evidence from China's Automobile Industry". In: American Economic Journal: Economic Policy 13.4, pp. 152–184.
- Clinton, B. C. and Steinberg, D. C. (2019). "Providing the Spark: Impact of financial incentives on battery electric vehicle adoption". In: Journal of Environmental Economics and Management 98, p. 102255.
- Grigolon, L., Leheyda, N. and Verboven, F. (2016). "Scrapping subsidies during the financial crisis Evidence from Europe". In: International Journal of Industrial Organization 44, pp. 41–59.
- Hoekstra, M., Puller, S. and West, J. (2017). "Cash for Corollas: When Stimulus Reduces Spending". In: American Economic Journal: Applied Economics 9.3, pp. 1–35.
- Jenn, A., Springel, K. and Gopal, A. R. (2018). "Effectiveness of electric vehicle incentives in the United States". In: Energy policy 119, pp. 349–356.
- Li, S., Tong, L., Xing, J. and Zhou, Y. (2017). "The market for electric vehicles: indirect network effects and policy design". In: Journal of the Association of Environmental and Resource Economists 4.1, pp. 89–133.
- Muehlegger, E. and Rapson, D. (2018). "Subsidizing mass adoption of electric vehicles: Quasi-experimental evidence from California". In: NBER Working Paper w25359.
- Münzel, C., Plötz, P., Sprei, F. and Gnann, T. (2019). "How large is the effect of financial incentives on electric vehicle sales?—A global review and European analysis". In: Energy Economics 84, p. 104493.
- Remmy, K. (2022). "Adjustable product attributes, indirect network effects, and subsidy design: The case of electric vehicles". In: Working Paper.
- Springel, K. (2021). "Network externality and subsidy structure in two-sided markets: Evidence from electric vehicle incentives". In: American Economic Journal: Economic Policy 13.4, pp. 393–432.



# Correlations across subsamples

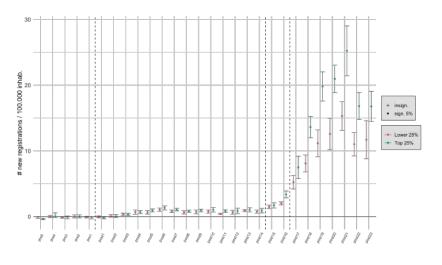
|                    | HH Income | Population density | Green vote share | Near West border |
|--------------------|-----------|--------------------|------------------|------------------|
| HH Income          | 1.0000    | -0.0850            | 0.4304           | -0.0212          |
| Population density | -0.0850   | 1.0000             | 0.4134           | 0.0361           |
| Green vote share   | 0.4304    | 0.4134             | 1.0000           | 0.1327           |
| Near West border   | -0.0212   | 0.0361             | 0.1327           | 1.0000           |


# Effect of subsidy on PHEVs





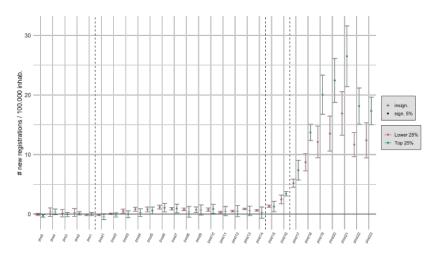



# PHEVs - Heterogeneous effect I: income








### PHEVs - Heterogeneous effect II: green party vote share

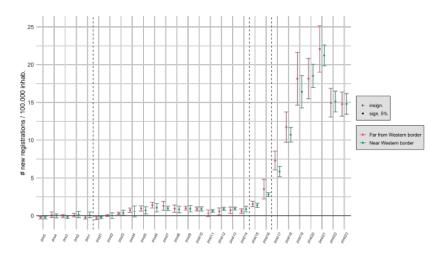






### PHEVs - Heterogeneous effect III: population density





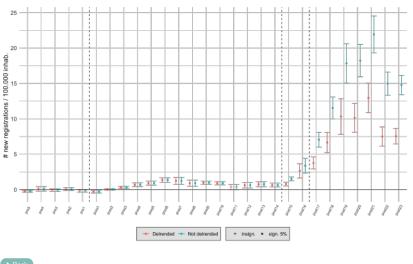

Adrián Santonia



5/23

### PHEVs - Heterogeneous effect IV: Western counties






Adrián Santonia



6/23

# Effect of subsidy on PHEVs





