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Abstract

We propose a novel framework for analyzing linear asset pricing models: simple, robust,

and applicable to high dimensional problems. For a (potentially misspecified) standalone

model, it provides reliable price of risk estimates for both tradable and non-tradable

factors, and detects those weakly identified. For competing factors and (possibly non-

nested) models, the method automatically selects the best specification – if a dominant

one exists – or provides a Bayesian model averaging (BMA-SDF), if there is no clear

winner. We analyze 2.25 quadrillion models generated by a large set of factors, and find

that the BMA-SDF outperforms existing models in- and out-of-sample.
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I Introduction

In the last decade or so, two observations have come to the forefront of the empirical asset

pricing literature. First, thanks to the factor zoo phenomenon, in the near future we might

have as many empirically “priced” sources of risk as stock returns. Second, the so-called weak

factors (i.e., factors whose true covariance with asset returns is asymptotically zero) are likely

to both appear empirically relevant and invalidate inference on the true sources of risk (see,

e.g., Gospodinov, Kan, and Robotti (2019), and Kleibergen and Zhan (2020)). Nevertheless, to

the best of our knowledge, no general method has been suggested to date that: i) is applicable

to both tradable and non-tradable factors, ii) can handle the entire factor zoo, iii) remains

valid under misspecification, iv) is robust to the weak inference problem, and, importantly, v)

delivers an empirical pricing kernel that outperforms (in- and out-of-sample) popular models

(with either observable or latent factors). And that is exactly what we provide.

We develop a unified framework for tackling linear asset pricing models. In the case of

stand-alone model estimation, our method provides reliable price of risk estimates, hypothesis

testing, and confidence intervals for these parameters, as well as all other objects of interest –

alphas, R2’s, Sharpe ratios, etc. Furthermore, even when all the pricing kernels are misspecified

and non-nested, our approach delivers factor selection – if a dominant model exists – or model

averaging, if there is no clear winner given the data. The method is numerically simple, fast,

easy to use, and can be feasibly applied to literally quadrillions of candidate factor models.

Empirically, we find that the Stochastic Discount Factor (SDF) constructed as the Bayesian

Model Averaging (BMA) over the space of 2.25 quadrillion models, prices a wide cross-section of

anomalies better than both celebrated (observable) factor models and the latent factor approach

of Kozak, Nagel, and Santosh (2020). This outperformance arises not only in sample but also

out-of-sample in both time series and cross-sectional dimensions.1 There are three key drivers

of this performance. First, our method reliably identifies a small subset of observable factors

that should be included in any SDF with high probability. Second, although these factors

alone are already sufficient to outperform notable (observable) factor models, they do not fully

characterize the SDF. The latter, as we show, is dense in the space of observable factors. As

a result, the BMA optimally (in the predictive density sense) aggregates multiple imperfect

measures of the same sources of risk. Third, our method relies on a novel prior that is fully

driven by the researcher’s belief about the Sharpe ratio in the economy, and that effectively

controls potential overfitting. The BMA-SDF neither requires arbitrary tuning parameters nor

separates factor extraction and aggregation. Instead, unlike most of the existing literature, it

delivers an SDF in one step, driven by transparent and economically motivated priors.

1In cross-sectional out-of-sample exercises, we first estimate the BMA-SDF in a baseline cross-section, and
then use it to price several other cross-sections without any further parameter estimation.
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As stressed by Harvey (2017) in his AFA presidential address, the factor zoo naturally calls

for a Bayesian solution – and we develop one. Furthermore, we show that factor proliferation and

spurious inference are tightly connected problems, and a näıve Bayesian model selection fails in

the presence of weak factors. We develop a reliable solution focused on the SDF representation,

since the key question posed by the factor zoo lies in whether candidate risk factors have non-

zero price of risk. Our Bayesian SDF formulation (B-SDF) is intuitively similar to the standard

frequentist OLS/GLS estimation that imposes the self-pricing of tradable factors when they

are part of the test assets. However, it is robust to identification failure, allows us to easily

compare and aggregate non-nested models, and provides robust inference for all the quantities

of interest within stand-alone models and across the whole model space. Remarkably, unlike the

frequentist alternatives, the B-SDF estimator performs well in both small and large samples,

even with fairly large cross-sections.

Our empirical results are based on what is arguably a representative cross-section of test

assets: 60 portfolios based on a large number of firm-specific characteristics. We examine

51 factors proposed in the previous literature, yielding a total of 2.25 quadrillion possible

models to analyze. We find that only a handful of factors proposed in the literature are robust

explanators of the cross-section of returns, and a three (at most six) most likely factor model

easily outperforms canonical reduced-form benchmarks. Nevertheless, there is no clear “winner”

across the whole space of potential models: Hundreds of possible specifications that combine

tradable and non-tradable factors, none of which has been examined in the previous literature,

are virtually equally likely to price the cross-section of returns.

Furthermore, we find that the “true” latent SDF is dense in the space of observable fac-

tors; that is, a large subset of variables is needed to fully capture its pricing implications.2

Nonetheless, the SDF-implied maximum Sharpe ratio in the economy is not unrealistically

high, suggesting substantial commonality among the risks spanned by the factors in the zoo.

BMA, therefore, emerges naturally as an optimal way of aggregating models that load on the

same set of underlying risks: It aggregates all the possible factors and models based on their

likelihood to have generated the data. Crucially, this approach allows for both selection and

aggregation based on the posterior probabilities of the factors being part of the pricing kernel,

and allows the data to decide on the optimal structure of the SDF. Empirically, we find that

the BMA-SDF performs well both in- and out-of-sample (OOS). Its OOS performance is stable

across subsamples (going both into the future and into the past), and, most importantly, it

prices well cross-sections not used for its construction, including the notoriously challenging 49

industry portfolios.

Our contribution is fourfold. First, we develop a very simple Bayesian estimator for linear

2Interestingly, the SDF remains dense even when we include either the five principal components or the five
RP-PCs of Lettau and Pelger (2020).
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SDFs with both traded and non-traded factors. This approach makes weak factors easily

detectable in finite sample, while providing valid inference on the strong factors’ price of risk,

measures of cross-sectional fit, and other objects of interest. Our robust approach is very simple

to implement and use, and it does not require pre-testing or pre-estimation.

Second, we provide a method for inference on the entire factor zoo with model (and factor)

posterior probabilities. However, as we show, model and factor selection based on marginal

likelihoods (i.e., on posterior probabilities or Bayes factors) is unreliable under a flat prior for

the price of risk: Asymptotically, weakly identified factors are selected with probability one

even if they have zero price of risk.3 This observation, however, not only illustrates the nature

of the problem; it also suggests how to restore inference: use suitable, non-informative – but

yet non-flat – priors. Building upon the literature on predictor selection (see, e.g., Ishwaran,

Rao, et al. (2005) and Giannone, Lenza, and Primiceri (2021)), we provide a novel (continuous)

“spike-and-slab” prior that restores the validity of model and factor selection based on posterior

model probabilities and Bayes factors. It is uninformative (the “slab”) for strong factors but

shrinks away (the “spike”) the weak ones. This prior also: i) makes it computationally feasible

to analyze quadrillions of alternative factor models, ii) allows the researcher to encode prior

beliefs (or lack thereof) about the sparsity of the true SDF without imposing hard thresholds,

iii) restores the validity of hypothesis testing, and iv) performs well in numerous simulation

settings. The prior is entirely pinned down by economic quantities: It maps into beliefs about

the Sharpe ratio of the risk factors. We regard this approach as a solution for the high-

dimensional inference problem generated by the factor zoo.4

Third, we provide a new way of selecting robust observable factors. Indeed, we find a new

3–6 observable factor model, combining variables from different papers, that dominates all the

popular reduced-form benchmarks. However, even that model would be strongly rejected by

the data: No sparse factor model is among the most likely 2000 data-generating processes

that we consider. Furthermore, a unique best performing combination of the factors (sparse

or dense in observables) does not seem to exist: Hundreds of possible models, never proposed

in the previous literature, deliver almost equivalent performance, which indicates fragility of

conventional model selection and horse races, popular among reduced-form sparse factor models.

Fourth, our results do not rely on ex ante unverifiable assumptions of existence, uniqueness,

and sparsity of the true SDF representation among the candidate models (unlike LASSO and

3This is similar to the effect of “weak instruments” in IV estimations, as discussed in Sims (2007).
4Despite a seemingly prohibitive dimension of the model space, the estimation is numerically simple and

computationally feasible. Our Markov Chain, used to evaluate the whole space of 2.25 quadrillions of models
and deliver all the baseline results from the paper, takes about four hours on a 3.0GHz 10-core Intel Xeon W
processor and 128 GB of RAM. Furthermore, we formally test its convergence and establish that the posterior
distributions converge already after less than one fifth of the Markov Chain draws, making our method easily
applicable for most researchers.

3
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other popular frequentist methods). When a dominant model for the SDF does not arise in

the data (as in our analysis), our method does not stop at selection. Instead, it efficiently

aggregates pricing information from (potentially) the entire factor zoo. Interestingly, we show

that solely extracting leading standard latent factors from a wide range of predictors using

PCA or RP-PCA, is not sufficient to characterize the SDF. In fact, we find that observable and

(some) leading latent factors are complementary for such a characterization. Therefore, our

results indicate that there is scope for both more efficient latent factor extraction and better

aggregation informed by economic fundamentals.

The remainder of the paper is organized as follows. In the next subsection we review the

most closely related literature and our contribution to it. Section II provides a brief overview

of the benchmark frequentist approach, while Section III outlines the Bayesian SDF estimation

and its properties for inference, selection, and model aggregation. Section IV provides simu-

lation evidence on both small- and large-sample behavior of our method. Section V presents

our empirical results. Finally, Section VI discusses potential extensions of our procedure and

concludes.5

I.1 Closely Related Literature

There are numerous strands of literature relying on Bayesian tools, especially for asset allocation

(for an excellent overview, see Avramov and Zhou (2010)), model selection (e.g., Chib, Zeng,

and Zhao (2020)), and performance evaluation (Baks, Metrick, and Wachter (2001), Pástor and

Stambaugh (2002), and Harvey and Liu (2019)). Therefore, we aim to provide only an overview

of the literature that is most closely related to our paper.

Shanken (1987) and Harvey and Zhou (1990) are probably the first to use the Bayesian

framework in portfolio choice and develop GRS-type tests (cf. Gibbons, Ross, and Shanken

(1989)) for mean-variance efficiency. While Shanken (1987) is the first to examine the posterior

odds ratio for portfolio alphas in the linear factor model, Harvey and Zhou (1990) set the

benchmark by imposing priors on the deep model parameters. Interestingly, we show that

there is a tight link between using the most popular, diffuse, priors for the price of risk and the

failure of the standard estimation techniques in the presence of weak factors.

Pástor and Stambaugh (2000) and Pástor (2000) assign a prior distribution to the vector

of pricing errors α, α ∼ N (0,κΣR), where ΣR is the variance-covariance matrix of returns

and κ ∈ R+, and apply it to portfolio choice. This prior imposes a degree of shrinkage on the

alphas: When factor models are misspecified, pricing errors cannot be too large a priori. This

prior effectively places a bound on the Sharpe ratio achievable in this economy.

5Additional results are reported in the Internet Appendix: https://ssrn.com/abstract=3627010.
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Barillas and Shanken (2018) extend the aforementioned prior and derive a closed-form so-

lution for the Bayes factor when all the risk factors are tradable and use it to compare different

linear factor models exploiting the time series dimension of the data. Chib, Zeng, and Zhao

(2020) show that the improper prior specification of Barillas and Shanken (2018) is problematic

and propose a new class of priors that leads to valid comparison for traded factor models.

There is a general close connection between the Bayesian approach to model selection and

parameter estimation and the shrinkage-based one. Garlappi, Uppal, and Wang (2007) impose

a set of different priors on expected returns and the variance-covariance matrix and find that the

shrinkage-based analogue leads to superior empirical performance. The ridge-based approach

to recovering the SDF of Kozak, Nagel, and Santosh (2020) can also be interpreted from a

Bayesian perspective with priors on the expected returns distribution.

To the best of our knowledge, our paper is the first attempt to develop a general Bayesian

approach for both tradable and non-tradable factors, capable of imposing tradable restriction

on the price of risk when needed. Flat priors for the price of risk, we show, lead to erroneous

model selection in the presence of weak factors. Hence, we develop a novel one that depends on

the degree of parameter identification. This prior is heterogenous among factors, depending on

the correlation between test assets and the factor itself. In the spirit of Pástor and Stambaugh

(2000), our prior directly maps into beliefs about the Sharpe ratio achievable in the economy,

yet without imposing a hard threshold on it. Not only does it restore the validity of model

selection, but it also allows for sharp inference in small sample on all the economic quantities

of interest.

Our paper naturally contributes to the literature on weak identification in asset pricing.

Starting from the seminal papers of Kan and Zhang (1999a,b), identification of risk premia

has been shown to be challenging for traditional estimation procedures. Kleibergen (2009)

demonstrates that the two-pass regression of Fama-MacBeth lead to biased estimates of the risk

premia and spuriously high significance levels. Moreover, useless factors often crowd out the

impact of the true sources of risk in the model and lead to seemingly high levels of cross-sectional

fit (Kleibergen and Zhan (2015)). Gospodinov, Kan, and Robotti (2014, 2019) demonstrate

that most of the estimators used to recover risk premia in the cross-section are invalidated

by the presence of useless factors, and they propose alternative procedures that effectively

eliminate the impact of these factors. We build upon the intuition developed in these papers

and formulate the Bayesian solution to the problem by providing a prior such that when the

vector of correlation coefficients between asset returns and a factor is close to zero, the prior

variance for the price of risk also goes to zero, effectively shrinking the posterior toward zero.

Our method does not require any pretesting, works well in small and large time-series and

cross-sectional dimensions. Furthermore, due to its hierarchical structure, it can be feasibly

extended to handle time variation in the factor exposure and asset risk premia, and it accom-
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modates both observable and latent factors. Most importantly, our approach provides a robust

unified framework for evaluation of stand-alone models, factor and model selection, as well as

aggregation, even when all the potential models are misspecified.

Naturally, our paper also contributes to the very active (and growing) body of work that

critically re-evaluates existing findings in the empirical asset pricing literature and develop

robust inference methods. There is ample empirical evidence that most linear factor models are

misspecified (e.g., Chernov, Lochstoer, and Lundeby (2019), and He, Huang, and Zhou (2018)).

Following Harvey, Liu, and Zhu (2016), a large body of literature has tried to understand

which of the existing factors (or their combinations) drive the cross-section of asset returns.

Gospodinov, Kan, and Robotti (2014) develop a general approach for misspecification-robust

inference, while Giglio and Xiu (2021) exploit the invariance principle of the PCA and recover

the price of risk of a given factor from the projection on the span of latent factors driving a

cross-section of returns. Similarly, Uppal, Zaffaroni, and Zviadadze (2018) recover latent factors

from the residuals of an asset pricing model, effectively completing the span of the SDF. Giglio,

Feng, and Xiu (2020) combine cross-sectional asset pricing regressions with the double-selection

LASSO of Belloni, Chernozhukov, and Hansen (2014) to provide valid uniform inference on the

selected sources of risk when the true SDF is sparse. Huang, Li, and Zhou (2018) use a reduced

rank approach to select from not only the observable factors but their total span, effectively

allowing for sparsity in both factors and their combinations.

We do not take a stand on the origin of the factors, the “unique” true model being among

the candidate specifications, and a priori SDF sparsity. Instead, we consider the whole universe

of potential models that can be created from a wide set of factors proposed in the empirical

literature (observable and latent) and let the data speak. We find that the cross-sectional

likelihood across many best-performing (dense) models is flat. Hence, the data seem to call for

aggregation, rather than selection.

Avramov (2002, 2004) brought model uncertainty to the forefront of asset pricing. Building

on these seminal papers, Anderson and Cheng (2016) develop a BMA approach to portfolio

choice that, with formal recognition of model uncertainty, delivers robust asset allocation and

superior out-of-sample performance. Similarly, we find that there is a large degree of model

uncertainty in cross-sectional asset pricing, suggesting a large degree of model misspecification

and rendering canonical selection unreliable. We therefore develop a BMA method that explic-

itly targets cross-sectional pricing of asset returns. The resulting averaging over the space of

SDFs delivers superior pricing in- and out-of-sample.

In reality, the BMA-SDF has – endogenously – elements of both selection and aggregation:

While a small subset of factors delivers large individual contributions to the SDF, other factors

are efficiently bundled together to deliver the best predictive density of the cross-sectional

pricing kernel. In the recent literature, model selection (see, e.g., Giglio, Feng, and Xiu (2020))

6
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or aggregation (see, e.g., Kozak, Nagel, and Santosh (2020)) of pricing factors, have been largely

mutually exclusive alternatives. Our framework, instead, successfully combines both.

II Frequentist Estimation of Linear SDFs

This section introduces the notation and reviews the basics of linear SDF models as well as re-

lated (frequentist) Generalized Method of Moments (GMM) estimation. Suppose that there are

K factors, ft = (f1t . . . fKt)
⊤, t = 1, . . . T , which could be either tradable or non-tradable. The

returns of N test assets, which are long-short portfolios, are denoted by Rt = (R1t . . . RNt)
⊤.

Throughout the paper, E[X] or µX denotes the unconditional expectation of arbitrary random

variable X and X̄ denotes the sample mean operator.

Consider linear stochastic discount factors (M), that is models of the form Mt = 1 −
(ft − E[ft])

⊤λf . In the absence of arbitrage opportunities E[MtRt] = 0N , which implies that

expected returns are given by µR = E[Rt] = Cfλf , where Cf is the covariance matrix between

Rt and ft and λf ∈ RK denotes the vector of prices of risk associated with the factors. The

latter can therefore be estimated via the cross-sectional regression:

µR = λc1N +Cfλf +α = Cλ+α, (1)

where C = (1N ,Cf ), λ
⊤ = (λc,λ

⊤
f ), λc is a scalar average mispricing (equal to zero under the

null of the model being correctly specified), 1N denotes an N -dimensional vector of ones, and

α ∈ RN is the vector of pricing errors in excess of λc (also equal to zero under the null of the

model).

Such a model is usually estimated via GMM (see Hansen (1982)) with the following moment

conditions:

E[gt(λc,λf ,µf )] = E

!
Rt − λc1N −Rt(ft − µf )

⊤λf

ft − µf

"
=

!
0N

0K

"
, (2)

with corresponding sample analogue function gT (λc,λf ,µf ) ≡ 1
T

#
T

t=1 gt(λc,λf ,µf ). Com-

bining the latter with a weighting matrix W yields the GMM estimates as the minimizer of

the following objective function:

{$λc, $λf , $µf} ≡ argmin
λc,λf ,µf

gT (λc,λf ,µf )
⊤WgT (λc,λf ,µf ).

Different weighting matrices deliver different point estimates. Following Cochrane (2005, pp.256-
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258), two popular choices are

Wols =

!
IN 0N×K

0K×N κIK ,

"
, and Wgls =

!
Σ−1

R 0N×K

0K×N κIK

"
,

where ΣR is the covarince matrix of returns, and κ > 0 is a large constant so that $µf ≡
1
T

#
T

t=1 ft. These weighting matrices yield, respectively, the following prices of risk estimates:

$λols = ( $C⊤ $C)−1 $C⊤R̄, and (3)

$λgls = ( $C⊤Σ−1
R

$C)−1 $C⊤Σ−1
R R̄, (4)

where $C = (1N , $Cf ) and $Cf = 1
T

#
T

t=1 Rt(ft − $µf )
⊤.

GMM provides valid inference on the price of risk under a set of well-known assumptions

(Newey and McFadden (1994)). In particular, equations (3) and (4) make it clear that OLS

and GLS (but also GMM more generally) require the matrix of factor exposures C to have

full rank – that is, the price of risk to be identified. However, there is a growing body of

literature that finds this assumption to be often empirically violated.6 Most famously, this

problem arises in the case of a weak factor fj that does not have enough comovement with any

of the assets but is nonetheless considered to be a part of the SDF, that is Ci,j ∼ O(T−1/2), i ∈
1 . . . N . In such a model, risk prices are no longer identified and their estimates diverge with

the sample size, leading to wrong inference for both strong and weak factors (Kan and Zhang

(1999a)). Another widespread example of weak identification arises with the inclusion of a

level factor, fj, characterized by a lack of cross-sectional spread in factor exposures, that is,
#

N

i=1(Ci,j − C̄j)
2 ∼ O(T−1), where C̄j ≡ 1

N

#
N

i=1 Ci,j.

Identification problems arise not only when using the GMM in estimating linear SDF mod-

els but equally so in Fama-MacBeth regressions (Kan and Zhang (1999b), Kleibergen (2009))

and Maximum Likelihood Estimation (Gospodinov, Kan, and Robotti (2019)). In addition

to creating inference problems for model parameters, weak identification also tends to inflate

the standard measures of cross-sectional fit (Kleibergen and Zhan (2015)). Consequently, sev-

eral papers have attempted to develop alternative statistical procedures that are robust to the

presence of weak factors and general cases of rank deficiency of the matrix C. In particular,

Kleibergen (2009) proposes several novel statistics whose large sample distributions are un-

affected by the failure of the identification condition. Gospodinov, Kan, and Robotti (2014)

derive robust standard errors for GMM estimates of factor risk prices in the linear stochastic

discount factor framework and prove that t-statistics calculated using their standard errors

are robust even when the model is misspecified and a weak factor is included. Bryzgalova

6For recent applications, see Kleibergen and Zhan (2020) and Gospodinov and Robotti (2021a,b).
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(2015) introduces a LASSO-like penalty term that identifies weak factors and eliminates their

impact on the model. Finally, since factor strength depends on the choice of returns used in

the estimation, Giglio, Xiu, and Zhang (2021) recently developed an iterative procedure for

constructing a cross-section of model-specific test assets that specifically addresses the problem

of weak factors.

In this paper, we provide a Bayesian inference and model selection framework that i) can

be easily used for robust inference in the presence of weak and level factors (section III) and

ii) can be used for both model selection and model averaging, even in the presence of a very

large number of candidate (traded or non-traded, and possibly weak) risk factors – that is, the

entire factor zoo.

Although we focus on the estimation of linear SDF representations, our approach can be

adapted (with minimal adjustments) to deliver a robust Bayesian version of the canonical Fama-

MacBeth estimation approach (see Fama and MacBeth (1973) and Fama and French (1993)).

We consider this extension in a companion paper, Bryzgalova, Huang, and Julliard (2022).

III Bayesian Analysis of Linear SDFs

This section introduces our hierarchical Bayesian estimation of linear SDF models, B-SDF. A

more detailed derivation is presented in Appendix A.1.1.

Consider first the time-series dimension of the estimation problem. Let ft ≡ (f1t . . . fKt)
⊤,

t = 1, . . . T denote a vector of factors. Without loss of generality, we order the K1 tradable

factors first (f
(1)
t ), followed by K2 non-tradable factors (f

(2)
t ), hence, f ≡ (f

(1),⊤
t ,f

(2),⊤
t )⊤ and

K1 +K2 = K.

Let Yt denote the union of factors and returns, that is, Yt ≡ ft ∪ Rt, where Yt is a p-

dimensional vector. If one requires the tradable factors to price themselves (as we do in our

empirical applications), then Y ⊤
t ≡ (R⊤

t ,f
(2),⊤
t )⊤ and p = N +K2.

We assume that {Yt}Tt=1 follows an iid multivariate Gaussian distribution, that is, Yt
iid∼

N (µY ,ΣY ), where µY and ΣY denote, respectively, the unconditional means vector and the

unconditional covariance matrix. This modeling choice can easily be modified to accommodate

different distributional assumptions, predictability, and time-varying volatility, albeit at the

cost of losing analytical solutions in most cases. In particular, as discussed in Section VI,

we could accommodate time-varying means and variances, as well as autocorrelations. The

resulting likelihood function for the time-series layer of our hierarchical modeling is

p(Y|µY ,ΣY ) ∝ |ΣY |−
T
2 exp

%
−1

2
tr

&
Σ−1

Y

T'

t=1

(Yt − µY ) (Yt − µY )
⊤

()
, (5)
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where Y ≡ {Yt}Tt=1. For simplicity, we use the diffuse prior: π(µY ,ΣY ) ∝ |ΣY |−
p+1
2 . This

implies the following posterior distribution of (µY ,ΣY ):

µY |ΣY ,Y ∼ N (µ̂Y , ΣY /T ) , (6)

ΣY |Y ∼ W -1

!
T − 1,

T'

t=1

(Yt − $µY ) (Yt − $µY )
⊤

"
, (7)

where µ̂Y ≡ 1
T

#
T

t=1 Yt and W -1 is the inverse-Wishart distribution (a multivariate general-

ization of the inverse-gamma distribution). Note that the above posterior distribution is well

defined even in the presence of weak factors, since the time-series layer does not depend on the

strength of the factors or their tradability. Furthermore, the above posterior is analogous to

the canonical t-distribution result for the parameters of a linear regression model.

The Normal-inverse-Wishart posterior in equations (6)–(7) implies that we can sample the

distribution of the parameters (µY ,ΣY ) by first drawing the covariance matrix ΣY from the

inverse-Wishart distribution conditional on the data, and then by drawing µY from a multi-

variate normal distribution conditional on the data and the draw of ΣY .

If the SDF is correctly specified, in the sense that all true factors are included, expected

asset returns should be fully explained by their risk exposure, C, and the prices of risk λ, that

is, µR = Cλ, where µR is the sub-vector of µY corresponding to asset returns and C is the

corresponding covariance sub-matrix of ΣY . Therefore, we can define our first estimator.7 In

Appendix A.1.1 we show formally that it arises, under the assumption of correct specification,

as a particular case of our general posterior presented in equations (11)-(12) below.

Definition 1 (Bayesian SDF (B-SDF) Estimates) Conditional on µY , ΣY and the data

Y = {Yt}Tt=1, under the null of unique correct SDF specification8 and any diffuse prior, the

posterior distribution of λ is a Dirac distribution (that is, a constant) at (C⊤C)−1C⊤µR.

Therefore, conditional on only the data Y = {Yt}Tt=1 and the null, the posterior distribution of

λ can be sampled by drawing µY,(j) and ΣY,(j) from the Normal-inverse-Wishart (6)–(7) and

computing the draw λ(j) ≡
*
C⊤

(j)C(j)

+−1

C⊤
(j)µR,(j).

The posterior distribution of λ, defined above, accounts for both the uncertainty about

expected returns – via the sampling of µR – and the uncertainty about the factor loadings –

via the sampling of Cf . Note that for completeness in the above we have allowed for a common

7The B-SDF estimator, and its GLS version, as shown in Appendix A.1.1, are particular cases of the more
general posterior characterizations in equations (11)–(12) and (13)–(14). For expositional purposes we focus on
the particular OLS- and GLS-like Bayesian estimators. Nevertheless, for any conformable matrix A such that
AC is invertible, we have that under the null of unique correct specification, λ has (under any non-dogmatic
prior) a degenerated posterior at (AC)−1AµR conditional on A, C, and µR.

8That is, µR = Cλ holds for a unique value of λ as assumed in standard frequentist estimation.
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cross-sectional intercept, λc. However, this can be readily constrained to be equal to zero, and

we consider this case in our empirical analysis.

From the B-SDF definition, it is intuitive why we expect posterior inference to detect weak

factors in finite sample. For such factors, the near singularity of (C⊤
(j)C(j))

−1 will cause the

draws for λ(j) to diverge from zero (as in the frequentist point estimate). Nevertheless, the

posterior uncertainty about factor loadings and asset risk premia will cause C⊤
(j)µR,(j) to switch

sign across draws, causing the posterior distribution of λ to put substantial probability mass

on both values above and below zero. Hence, centered posterior credible intervals will tend to

include zero with high probability.

In addition to risk prices λ, we are also interested in estimating the cross-sectional fit of the

model, that is, the cross-sectional R2. Once we obtain the posterior draws of the parameters,

we can easily obtain the posterior distribution of the cross-sectional R2, defined as

R2
ols

= 1− (µR −Cλ)⊤(µR −Cλ)

(µR − µ̄R1N )⊤(µR − µ̄R1N )
, (8)

where µ̄R = 1
N

#
N

i
µR,i. That is, for each posterior draw of (µR, C, λ), we can construct the

corresponding draw for the R2 from equation (8), hence, tracing out its posterior distribution.

Equation (8) can be thought of as the population R2, where µR, C, and λ are unknown. After

observing the data, we infer the posterior distribution of µR, C, and λ , and from these we

can recover the distribution of the R2.

Often the cross-sectional step of the frequentist estimation is performed via GLS rather

than least squares. In our setting, under the null of the model, this leads to the following GLS

estimator (see Appendix A.1.1 for a formal derivation).

Definition 2 (Bayesian SDF GLS (B-SDF-GLS)) Conditional on µY , ΣY and the data

Y = {Yt}Tt=1, under the null of unique correct SDF specification and any diffuse prior, the pos-

terior distribution of λ is a Dirac distribution (that is, a constant) at (C⊤Σ−1
R C)−1C⊤Σ−1

R µR.

Therefore, conditional on only the data Y = {Yt}Tt=1 and the null, the posterior distribution of

λ can be sampled by drawing µY,(j) and ΣY,(j) from the Normal-inverse-Wishart (6)–(7) and

computing λ(j) ≡ (C⊤
(j)Σ

−1
R,(j)C(j))

−1C⊤
(j)Σ

−1
R,(j)µR,(j).

From the posterior sampling of the parameters in the definition above, we can also obtain

the posterior distribution of the cross-sectional GLS R2, defined as

R2
gls

= 1− (µR −Cλ)⊤Σ−1
R (µR −Cλ)

(µR − µ̄R1N )⊤Σ−1
R (µR − µ̄R1N )

. (9)

Once again, we can think of equation (9) as the unknown population GLS R2, which is a

function of the unknown quantities µR, C, and λ. Since after observing the data we infer the
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posterior distribution of the parameters, we obtain the posterior distribution of the R2
gls

as well.

Realistically, models are rarely true. Therefore, we now allow for the presence of model-

implied average pricing errors, α.9 This can be easily accommodated within our Bayesian

framework since in this case the data-generating process in the cross-section becomes µR =

Cλ+α. Adding an assumption on the cross-sectional distribution of the pricing errors yields

a Bayesian hierarchical structure to the estimation that naturally separates the time series and

cross-sectional dimensions of the inference problem. To continue the analogy with OLS and

GLS estimators, we consider two distributional assumptions for the average pricing errors α.

First, we consider the case of spherical cross-sectional errors, that is, αi

iid∼ N (0, σ2), in the

spirit of OLS. Under this assumption, the cross-sectional likelihood function (i.e., conditional

on the time-series parameters µR and C) is

p(data|λ, σ2) = (2πσ2)−
N
2 exp

,
− 1

2σ2
(µR −Cλ)⊤(µR −Cλ)

-
. (10)

In the cross-sectional regression, the “data” are the expected risk premia, µR, and the factor

loadings, C. These quantities are not directly observable to the researcher but can be sampled

from the Normal-inverse-Wishart posterior distribution in equations (6)–(7). Conceptually, this

is not very different from the Bayesian modeling of latent variables. In the benchmark case,

we assume a diffuse prior10 for (λ, σ2): π(λ, σ2) ∝ σ−2. In Appendix A.1.1, we show that the

posterior distribution of (λ, σ2) is then

λ|σ2,µR,C ∼ N
.
(C⊤C)−1C⊤µR/ 01 2

!λ

, σ2(C⊤C)−1

/ 01 2
Σλ

3
and (11)

σ2|µR,C ∼ IG
.
N −K − 1

2
,
(µR −Cλ̂)⊤(µR −Cλ̂)

2

3
, (12)

where IG denotes the inverse-Gamma distribution. The conditional distribution in equation

(11) makes it clear that the posterior takes into account both the uncertainty about prices of

risk stemming from the time series parameters C and µR (that are drawn from the Normal-

inverse-Wishart posterior in equations (6)–(7)) and the random pricing errors α that have

the conditional posterior variance distribution given in equation (12). If test assets’ expected

excess returns are fully explained by C, there are no pricing errors and σ2(C⊤C)−1 converges

to zero; otherwise, this layer of uncertainty always exists. Similarly, if one assumes that the

cross-sectional model is correctly specified, that is, σ2 → 0, we are back to the B-SDF estimator

9As we show in the next section, this natural assumption is essential for model selection.
10As shown in the next subsection, in the presence of weak factors, such a prior is not appropriate for model

selection based on Bayes factors and posterior probabilities, since it does not lead to proper marginal likelihoods.
Therefore, we introduce therein a novel prior for model selection.
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in Definition 1.11

The OLS assumption ignores the fact that average pricing errors could be cross-sectionally

correlated, which motivates our second, non-spherical, cross-sectional distributional assumption

for α. Suppose that the model is correctly specified, that is, Rt = λc1N +Cfλf + #t, where

#t
iid∼ N (0N ,ΣR). Since ET [Rt] = λc1N + Cfλf + ET [#t], the pricing error α should be

equal to ET [#t].
12 Hence, in the spirit of the central limit theorem, a natural distributional

assumption for the pricing errors is α | ΣR ∼ N (0N , 1
T
ΣR). However, since we allow for

mispricing, and its degree is endogeously determined by the observed data, a scaling of the

covariance matrix is desirable. Therefore, we assign the following distributional assumption for

α: α ∼ N (0N , σ2ΣR). We call this the GLS assumption. Recall that ΣR is the covariance

matrix of returns Rt. Hence, the difference between the OLS and GLS assumption is that

non-diagonal elements are non-zeros in the latter case. Since all models are misspecified to a

certain degree, we would expect the estimated σ2 to be larger than 1/T .

The posterior distribution of (λ, σ2) under the GLS distributional assumption, and condi-

tional on µR, ΣR and C, is then (see derivation in Appendix A.1.1)

λ|σ2,µR,C,ΣR ∼ N
.
(C⊤Σ−1

R C)−1C⊤Σ−1
R µR/ 01 2

!λ

, σ2(C⊤Σ−1
R C)−1

/ 01 2
Σλ

3
and (13)

σ2|µR,C,ΣR ∼ IG
.
N −K − 1

2
,
(µR −Cλ̂)⊤Σ−1

R (µR −Cλ̂)

2

3
. (14)

And once again µR, ΣR, and C can be sampled from the the Normal-inverse-Wishart posterior

in equations (6)–(7). Furthermore, as before, by setting σ2 → 0 we recover the B-SDF-GLS in

Definition 2.

Remark 1 (Generated factors) Often factors are estimated, as, for example, in the case of

principal components (PCs) and factor-mimicking portfolios (albeit the latter are not needed in

our setting). This generates an additional layer of uncertainty normally ignored in empirical

analysis due to the associated asymptotic complexities. Nevertheless, thanks to their hierarchical

structure, it is relatively simple to adjust the above-defined Bayesian estimators to account

for this uncertainty. In the case of a mimicking portfolio, under a diffuse prior and Normal

errors, the posterior distribution of the portfolio weights follow the standard Normal-inverse-

Gamma of Gaussian linear regression models (see, e.g., Lancaster (2004)). Similarly, in the

case of principal components as factors, under a diffuse prior, the covariance matrix from

11When pricing errors α are assumed to be exactly zero under the null, the posterior distribution of λ in
equation (11) collapses to a degenerate distribution, where λ equals (C⊤C)−1C⊤µR with probability one.

12Where ET is the sample analog of the unconditional expectation operator.
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which the PCs are constructed follows an inverse-Wishart distribution.13 Hence, the posterior

distributions in Definitions 1 and 2 can account for the generated factors uncertainty by first

drawing from an inverse-Wishart the covariance matrix from which PCs are constructed, or

from the Normal-inverse-Gamma posterior of the mimicking portfolios coefficients, and then

sampling the remaining parameters as explained above.

Note that while we focus on the case of linear SDF models, our method can be easily

extended to the estimation of beta representations of the fundamental pricing equation used

in the two-pass procedure, such as Fama-MacBeth regressions (see Bryzgalova, Huang, and

Julliard (2022)).

III.1 Model Selection and Aggregation

In the previous subsection we have derived simple Bayesian estimators that deliver, in a finite

sample, credible intervals robust to the presence of weak factors and avoid over-rejecting the

null hypothesis of zero prices of risk for such factors.

However, given the plethora of risk factors that have been proposed in the literature, a

robust approach for model selection, across not necessarily nested models, that can handle

a very large universe of possible models, as well as both traded and non-traded factors, is

of paramount importance for empirical asset pricing. The canonical way of selecting models

and testing hypotheses within the Bayesian framework is through Bayes factors and posterior

probabilities, which is the approach we present in this section. This is, for instance, the approach

suggested by Barillas and Shanken (2018) for tradable factors. The key elements of novelty of

the proposed method are that: i) our procedure is robust to the presence of weak factors, ii) it

is directly applicable to both traded and non-traded factors, and iii) it selects models based on

their cross-sectional performance (rather than on the time series), that is, on the basis of the

risk prices that the factors command.

Our approach hinges upon the introduction of suitable and economically driven priors that

deliver valid marginal likelihoods and posterior model probabilities. With valid posterior prob-

abilities, our framework allows to also aggregate multiple candidate factors and specifications

into the most likely, given the data, representation of the true unknown SDF (via BMA).14

Hence, our method endogenously selects a dominant subset of factors – if such a set exists

uniquely – and instead aggregates factors optimally, if no dominant low-dimensional represen-

tation arises. But, unlike the canonical dichotomy of observable factors selection versus pure

13Based on these two observations, Allena (2019) proposes a generalization of the Barillas and Shanken (2018)
model comparison approach for these type of factors.

14See, e.g., Raftery, Madigan, and Hoeting (1997), and Hoeting, Madigan, Raftery, and Volinsky (1999).
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aggregation (e.g., principal component and entropy methods), our approach combines both. In

a sense, it jointly delivers model selection and “smart” latent factor extraction.

In this subsection, we show first that flat priors for risk prices are not suitable for model

selection in the presence of weak factors. Given the close analogy between frequentist testing

and Bayesian inference with flat priors, this is not too surprising. But the novel insight is

that the problem arises exactly because of the use of flat priors and can therefore be fixed

by using non-flat, yet non-informative, priors. Second, we introduce “spike-and-slab” priors

that are robust to the presence of weak factors. These priors allow us to test hypotheses using

valid Bayes factors and model probabilities. Furthermore, they are particularly powerful in

high-dimensional model selection, that is, when one wants, as in our empirical application, to

consider all the factors in the zoo. Finally, we show how, as a by-product of the estimation and

selection method, factors and models can be optimally aggregated.

III.1.1 Pitfalls of Flat Priors for Risk Prices

We start this section by discussing why flat priors for prices of risk are not suitable for model

selection. Since we want to focus on and select models based on the cross-sectional asset pricing

properties of the factors, for simplicity we retain flat (in the sense of Jeffreys) priors for the

time-series parameters (µY ,ΣY ).

In order to perform model selection, we relax the (null) hypothesis that models are correctly

specified and allow instead for the presence of cross-sectional pricing errors. That is, we consider

the cross-sectional representation µR = Cλ+α. For illustrative purposes, we focus on spherical

cross-sectional errors (i.e., the case analogous to the GMM-OLS). Nevertheless, all the results

in this and following subsections are also generalized to the non-spherical error setting (i.e., the

case analogous to the GMM-GLS).

To model variable selection, we introduce a vector of binary latent variables γ⊤ = (γ0, γ1, . . . , γK),

where γj ∈ {0, 1}. When γj = 1, factor j (with associated loadings Cj) should be included

into the model and vice versa. Therefore, the number of included factors is pγ ≡
#

K

j=0 γj .

Note that we always include the intercept, that is, γ0 = 1 always. The notation Cγ = [Cj]γj=1

represents a pγ-columns sub-matrix of C.

When testing whether the risk price of factor j is zero, the null hypothesis is H0 : λj = 0.

In our notation, this null hypothesis can be expressed as H0 : γj = 0, while the alternative

is H1 : γj = 1. This is a small but important difference relative to the canonical frequentist

testing approach: For weak factors, risk prices are not identified; hence, testing whether they

are equal to any given value is problematic per se. Nevertheless, as we show in the next section,

with appropriate priors, whether a factor should be included or not is a well-defined question

even in the presence of weak factors.
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In the Bayesian framework, the prior distribution of parameters under the alternative hy-

pothesis should be carefully specified. Generally speaking, the priors for nuisance parameters,

such as µY , ΣY and σ2, do not greatly influence the cross-sectional inference. But, as we are

about to show, this is not the case for the priors about risk prices.

Recall that when considering multiple models, say, without loss of generality model γ and

model γ ′, by Bayes theorem we have that the posterior probability of model γ is

Pr(γ|data) = p(data|γ)
p(data|γ) + p(data|γ ′)

,

where we have given equal prior probability to each model and p(data|γ) denotes the marginal

likelihood of the model indexed by γ. In Appendix A.1.2 we show that, when using a flat prior

for λ, the marginal likelihood is

p(data|γ) ∝ (2π)
pγ
2 |C⊤

γ Cγ |−
1
2
Γ(N−pγ

2
)

(
N σ̂2

γ

2
)
N−pγ

2

, (15)

where σ̂2
γ = (µR−Cγ λ̂γ)⊤(µR−Cγ λ̂γ)

N
, λ̂γ = (C⊤

γ Cγ)
−1C⊤

γ µR, and Γ denotes the Gamma function.

Therefore, if model γ includes a weak factor (whose Cj asymptotically converges to zero),

the matrix C⊤
γ Cγ is nearly singular and its determinant goes to zero, sending the marginal

likelihood in (15) to infinity. As a result, the posterior probability of the model containing the

weak factor goes to one.15 Consequently, under a flat prior for risk prices, the model containing

a weak factor will always be selected asymptotically. However, the posterior distribution of λ

for the weak factor is robust, and particularly disperse, in any finite sample.

Moreover, it is highly likely that conclusions based on the posterior coverage of λ contradict

those arising from Bayes factors. When the prior distribution of λj is too diffuse under the

alternative hypothesis H1, the Bayes factor tends to favor the null H0, even though the estimate

of λj is far from 0. The reason is that even though H0 seems quite unlikely based on posterior

coverages, the data are even more unlikely under H1. Therefore, a disperse prior for λj may

push the posterior probabilities to favor H0 and make it fail to identify true factors.16

Note also that flat (hence improper) priors for risk prices are not appropriate, since they

render the posterior model probabilities arbitrary. Suppose that we are testing the null H0 :

λj = 0. Under the null hypothesis, the prior for (λ, σ2) is λj = 0 and π(λ−j, σ
2) ∝ 1

σ2 . However,

the prior under the alternative hypothesis is π(λj,λ−j, σ
2) ∝ 1

σ2 . Since the marginal likelihoods

of the data, p(data|H0) and p(data|H1), are both undetermined, we cannot define the Bayes’

15Note that a similar problem also arises when using mimicking portfolios of weak factors. In this case the
singularity in the determinant in equation (15) would be generated by the projection of the non-tradable factors
on the space of returns.

16This phenomenon is known as the Bartlett Paradox (see Bartlett (1957)).
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factor p(data|H1)
p(data|H0)

(as stressed in, e.g., Chib, Zeng, and Zhao (2020)). In contrast, for nuisance

parameters such as σ2, we can continue to assign improper priors. Since both hypothesesH0 and

H1 include σ
2, the prior for it will be offset in the Bayes factor and in the posterior probabilities.

Therefore, we can only assign improper priors for common parameters.17 Similarly, we can still

assign improper priors for µY and ΣY in the first time-series step.

The final reason why it might be undesirable to use a flat prior for risk prices is that it does

not impose any shrinkage on the parameters. This is problematic, given the large number of

members of the factor zoo, while we have only limited time-series observations of both factors

and test asset returns.

In the next subsection, we propose an appropriate prior for risk prices that is both robust to

weak factors and can be used for model selection, even when dealing with a very large number

of potential models.

III.1.2 Spike-and-Slab Prior for Risk Prices

To ensure that the integration of the marginal likelihood is well-behaved, we propose a novel

prior specification for the factors’ risk prices λ⊤
f = (λ1, ...,λK). Since the inference in time-series

regression is always valid, we only modify the priors of the cross-sectional regression parameters.

This prior belongs to the so-called spike-and-slab family. For illustrative purposes, in this

section we consider a Dirac spike and show analytically its implications for model selection. In

the next subsection we generalize the method to a “continuous spike” prior and study its finite

sample performance in our simulation setup.

In particular, we model the uncertainty underlying the model selection problem with a

mixture prior, π(λ, σ2,γ) ∝ π(λ|σ2,γ)π(σ2)π(γ). When γj = 1, and, hence, the factor

should be included in the model, the prior (the “slab”) follows a normal distribution, given

by λj|σ2, γj = 1 ∼ N (0, σ2ψj), where ψj is a (crucial) quantity that we define below. When

instead γj = 0, and the corresponding risk factor should not be included in the model, the prior

(the “spike”) is a Dirac distribution at zero – since, if the factor is not a part of the SDF, its

price of risk should be zero.18 For the cross-sectional variance of the pricing errors we keep the

canonical diffuse prior:19 π(σ2) ∝ σ−2.

Let D denote a diagonal matrix with elements c,ψ−1
1 , · · · ψ−1

K
, and Dγ the sub-matrix of

D corresponding to model γ, where c is a small positive number corresponding to the common

17See Kass and Raftery (1995) (and also Cremers (2002)) for a more detailed discussion.
18Obviously, this does not imply that the risk premium on the factor should be zero, since the factor might

correlate with the true sources of risk.
19Note that since the parameter σ is common across models and has the same support in each model, the

marginal likelihoods obtained under this improper prior are valid and comparable (see Proposition 1 of Chib,
Zeng, and Zhao (2020)).
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cross-sectional intercept (λc). The prior for the prices of risk (λγ) of model γ is then

λγ |σ2,γ ∼ N (0, σ2D−1
γ ).

Given this prior, we sample the posterior distribution by sequentially drawing from the

conditional distributions of the parameters (i.e., we use a Gibbs sampling approach)20 presented

in the following proposition.

Proposition 2 (B-SDF OLS Posterior with Dirac Spike-and-Slab) The posterior dis-

tribution of (λγ, σ
2,γ) under the assumption of Dirac spike-and-slab prior and spherical α

(OLS), conditional on the draws of µY and ΣY from equations (6)–(7), is given by the follow-

ing conditional distributions:

λγ |data, σ2,γ ∼ N
4
λ̂γ , σ̂

2(λ̂γ)
5
, (16)

σ2|data,γ ∼ IG
.
N

2
,
SSRγ

2

3
, and (17)

p(γ | data) ∝ |Dγ |
1
2

|C⊤
γ Cγ +Dγ |

1
2

1

(SSRγ/2)
N
2

, (18)

where λ̂γ = (C⊤
γ Cγ + Dγ)

−1C⊤
γ µR, σ̂2(λ̂γ) = σ2(C⊤

γ Cγ + Dγ)
−1, and SSRγ = µ⊤

RµR −
µ⊤

RCγ(C
⊤
γ Cγ+Dγ)

−1C⊤
γ µR = minλγ{(µR−Cγλγ)

⊤(µR−Cγλγ)+λ⊤
γDγλγ} and IG denotes

the inverse-Gamma distribution.

Proposition 3 (B-SDF GLS Posterior with Dirac Spike-and-Slab) The posterior dis-

tribution of (λγ, σ
2,γ) under the assumption of Dirac spike-and-slab prior and non-spherical α

(GLS), conditional on the draws of µY and ΣY from equations (6)–(7), is given by the following

conditional distributions:

λγ |data, σ2,γ ∼ N
4
λ̂γ , σ̂

2(λ̂γ)
5
, (19)

σ2|data,γ ∼ IG
.
N

2
,
SSRγ

2

3
, and (20)

p(γ | data) ∝ |Dγ |
1
2

|C⊤
γ Σ

−1
R Cγ +Dγ |

1
2

1

(SSRγ/2)
N
2

, (21)

where λ̂γ = (C⊤
γ Σ

−1
R Cγ +Dγ)

−1C⊤
γ Σ

−1
R µR, σ̂2(λ̂γ) = σ2(C⊤

γ Σ
−1
R Cγ +Dγ)

−1, and SSRγ =

µ⊤
RΣ

−1
R µR − µ⊤

RΣ
−1
R Cγ(C

⊤
γ Σ

−1
R Cγ + Dγ)

−1C⊤
γ Σ

−1
R µR = minλγ{(µR − Cγλγ)

⊤Σ−1
R (µR −

Cγλγ) + λ⊤
γDγλγ} and IG denotes the inverse-Gamma distribution.

20We do not standardize Yt in the time-series regression. In the empirical implementation, after obtaining
posterior draws for µY and ΣY , we calculate µR and Cf as the standardized expected returns of test assets
and correlation between test assets and factors. Then C is a matrix containing a vector of ones and Cf .
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The above propositions are proved, respectively, in Appendices A.1.3 and A.1.4.

Note that SSRγ is the minimized sum of squared errors under the spherical pricing errors

assumption, and is instead the minimized squared Sharpe ratio of pricing errors in the non-

spherical case, where the term λ⊤
γDγλγ is akin to a generalized ridge regression penalty.

Our prior modeling is analogous to introducing a Tikhonov-Phillips regularization (see

Tikhonov, Goncharsky, Stepanov, and Yagola (1995) and Phillips (1962)) in the cross-sectional

regression step, and has the same rationale: delivering a well-defined marginal likelihood in the

presence of rank deficiency (which, in our setting, arises in the presence of weak factors).

The key element and novelty of our method is that the “shrinkage” applied to the factors

is endogenously heterogeneous and designed to target weak factors: It leverages the correlation

between factors and returns by setting ψj as

ψj = ψ × ρ⊤
j ρj , (22)

where ρj is an N × 1 vector of correlation coefficients between factor j and the test assets, and

ψ ∈ R+ is a tuning parameter that controls the degree of shrinkage over all factors.21 But,

unlike tuning parameters in frequentist inference, as we show below, ψ is uniquely pinned down

by the researcher’s beliefs about Sharpe ratios being achievable in the economy.

When the correlation between fjt and Rt is very low, as in the case of a weak factor, the

penalty for λj, which is the reciprocal of ψρ⊤
j ρj ≡ ({Dγ}jj)−1, is very large and dominates the

sum of squared errors.

Equation (16) (and, similarly, equation (19)) makes clear why this Bayesian formulation is

robust to weak factors. When C converges to zero, (C⊤
γ Cγ + Dγ) is dominated by Dγ , so

the identification condition for the prices of risk no longer fails. When a factor is weak, its

correlation with test assets converges to zero; hence, the penalty for this factor, ψ−1
j
, goes to

infinity. As a result, the posterior mean of λγ , λ̂γ = (C⊤
γ Cγ +Dγ)

−1C⊤
γ µR, is shrunk toward

zero, and the posterior variance term σ̂2(λ̂) approaches σ2D−1
γ . Consequently, the posterior

distribution of λ for a weak factor is nearly the same as its prior. In contrast, for a normal

factor that has non-zero covariance with test assets, the information contained in C dominates

the prior information, since in this case the absolute size of Dγ is small relative to C⊤
γ Cγ .

Remark 4 (Level Factors) Identification failure of factors’ risk prices can arise in the pres-

ence of “level factors,” that is factors to which asset returns have non-zero exposure but lack

cross-sectional spread. These factors help explain the average level of returns but not their cross-

sectional dispersion, and, hence, are collinear with the common cross-sectional intercept. Our

21Alternatively, we could have set ψj = ψ×C⊤
j Cj , where Cj is a N×1 vector of covariances of the test assets

with factor j. However, ρj has the advantage of being invariant to the units in which factors are measured.
Furthermore, in the empirical analysis the cross-sectional step is implemented using returns and factors scaled
by their standard deviations, making the distinction immaterial.
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approach can handle this case by using variance standardized variables in the cross-sectional

part of the estimation and replacing the penalty in (22) with

ψj = ψ × 6ρj

⊤ 6ρj, (23)

where 6ρj ≡ ρj −
*

1
N

#
N

i=1 ρj,i

+
× 1N is the cross-sectionally demeaned vector of factor j corre-

lations with asset returns.

When comparing two models, using posterior model probabilities for specification selection

is equivalent to simply using the ratio of the marginal likelihoods, that is, the Bayes factor,

which is defined as

BFγ,γ′ = p(data|γ)/p(data|γ ′),

where we have given equal prior probability to model γ and model γ′. Corollary 1 shows that,

unlike in the flat prior case discussed earlier, under the Dirac spike, the Bayes factors (and

posterior probabilities) are well-defined even in the presence of weak factors.22 Therefore, they

can be used for model selection and hypotheses testing.

Corollary 1 (Model Selection via the Bayes Factor) Consider two nested linear factor

models, γ and γ ′. The only difference between γ and γ ′ is γp: γp equals 1 in model γ but 0

in model γ ′. Let γ−p denote a K × 1 vector of model index excluding γp: γ⊤ = (γ⊤
−p
, 1) and

γ ′⊤ = (γ⊤
−p
, 0) where, without loss of generality, we have assumed that the factor p is ordered

last.

Under the spherical assumption for α (OLS), the Bayes factor is

BFγ,γ′ =

.
SSRγ′

SSRγ

3N
2 771 + ψpC

⊤
p

8
IN −Cγ′(C⊤

γ′Cγ′ +Dγ′)−1C⊤
γ′
9
Cp

77− 1
2 , (24)

where SSRγ = µ⊤
RµR−µ⊤

RCγ(C
⊤
γ Cγ +Dγ)

−1C⊤
γ µR = minλγ{(µR−Cγλγ)

⊤(µR−Cγλγ)+

λ⊤
γDγλγ}. Under the non-spherical assumption for α (GLS), the Bayes factor is

BFγ,γ′ =

.
SSRγ′

SSRγ

3N
2 7771 + ψp

8
C⊤

p Σ
−1
R Cp −C⊤

p Σ
−1
R Cγ′

4
C⊤

γ′Σ−1
R Cγ′ +Dγ′

5−1
C⊤

γ′Σ−1
R Cp

9777
− 1

2
.

(25)

where SSRγ = µ⊤
RΣ

−1
R µR−µ⊤

RΣ
−1
R Cγ(C

⊤
γ Σ

−1
R Cγ+Dγ)

−1C⊤
γ Σ

−1
R µR = minλγ{(µR−Cγλγ)

⊤

Σ−1
R (µR −Cγλγ) + λ⊤

γDγλγ}.

The proof can be found in Appendix A.1.5.

22The corollary can be trivially extended to the case of different prior probabilities for the two models, since
in this case the Bayes factor is simply the ratio of marginal likelihoods multiplied by the prior odds.
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Since C⊤
p [IN −Cγ′(C⊤

γ′Cγ′ +Dγ′)−1C⊤
γ′ ]Cp is always positive, ψp plays an important role

in variable selection. For a strong and useful factor that can substantially reduce pricing errors,

the first term in equation (24) dominates, and the Bayes factor will be much greater than 1,

hence, providing evidence in favor of model γ.

Recall that SSRγ = minλγ{(µR − Cγλγ)
⊤(µR − Cγλγ) + λ⊤

γDγλγ}, hence, we always

have SSRγ ≤ SSRγ′ in sample. There are two effects of increasing ψp: i) when ψp is large,

the penalty for λp is small, hence, it is easier to minimize SSRγ, and SSRγ′/SSRγ becomes

much larger than 1; ii) large ψp decreases the second term in equation (24), lowering the Bayes

factor, and acting as a penalty for dimensionality.

A particularly interesting case is when the factor added by model γ is weak: Cp converges

to zero, but the penalty term 1/ψp ∝ 1/ρ⊤
pρp goes to infinity. On the one hand, the first term

in equation (24) will converge to 1; on the other hand, since ψp ≈ 0 in large sample, the second

term in equation (24) will also be around 1. Therefore, the Bayes factor for a weak factor

will go to 1 asymptotically.23 In contrast, a useful factor should be able to greatly reduce the

sum of squared errors SSRγ, so the Bayes factor will be dominated by SSRγ, yielding a value

substantially above 1.

Note that since our prior restores the validity of the marginal likelihood, any hypothesis

on the parameters (e.g., whether the pricing errors are jointly zero) can be tested via posterior

probabilities or, equivalently, Bayesian p-values. In particular, we obtain closed-form solutions

for testing hypothesis about prices of risk by centering the Dirac spike at the null value rather

than at zero.

Corollary 2 (Hypothesis Testing for Risk Prices (Bayesian p-values)) Suppose that we

want to test the point hypothesis λ−γ = λ̃−γ and as before we have the prior λγ |σ2,γ ∼
N (0, σ2D−1

γ ) in model γ. In this case, the posterior distributions in Propositions 2 and 3 still

hold with SSRγ therein replaced by the !SSRγ defined below.

Under the spherical assumption for α (OLS),

!SSRγ = (µR −C−γλ̃−γ)
⊤(µR −C−γλ̃−γ)−

(µR −C−γλ̃−γ)
⊤Cγ(C

⊤
γ Cγ +Dγ)

−1C⊤
γ (µR −C−γλ̃−γ)

= min
λγ

{(µ̃R −Cγλγ)
⊤(µ̃R −Cγλγ) + λ⊤

γDγλγ},

where µ̃R ≡ µR −C−γλ̃−γ denotes the vector of cross-sectional residual expected returns that

are unexplained by factors f−γ with prices of risk λ̃−γ.

23But in finite sample it may deviate from its asymptotic value, so we should not use 1 as a threshold when
testing the null hypothesis H0 : γp = 0.
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Under the non-spherical assumption for α (GLS),

!SSRγ = (µR −C−γλ̃−γ)
⊤Σ−1

R (µR −C−γλ̃−γ)−

(µR −C−γλ̃−γ)
⊤Σ−1

R Cγ(C
⊤
γ Σ

−1
R Cγ +Dγ)

−1C⊤
γ Σ

−1
R (µR −C−γλ̃−γ)

= min
λγ

{(µ̃R −Cγλγ)
⊤Σ−1

R (µ̃R −Cγλγ) + λ⊤
γDγλγ},

A Bayesian p-value for the null hypothesis is then constructed by integrating 1− p(γ | data)
in equation (18) (equation (21) in the case of spherical (non-spherical) pricing errors), with

respect to the Normal-inverse-Wishart in equations (6)–(7).

The proof of the corollary follows the same steps as the proofs of Propositions 2 and 3 in

Appendices A.1.3 and A.1.4.

Corollary 2 can be used for joint hypothesis testing within the Bayesian framework (e.g.,

building confidence intervals), and it is very similar in spirit to the standard frequentist identification-

robust inference.

III.1.3 Continuous Spike

We extend the Dirac spike-and-slab prior by encoding a continuous spike for λj, when γj equals

0. While the closed-form solutions obtained with a Dirac spike allow to feasibly evaluatemillions

of models, this extension allows to efficiently sample quadrillions of alternative specifications.

Following the literature on Bayesian variable selection (see, e.g., George and McCulloch

(1993, 1997) and Ishwaran, Rao, et al. (2005)), we model the uncertainty underlying model

selection with a mixture prior π(λ, σ2,γ,ω) = π(λ | σ2,γ)π(σ2)π(γ | ω)π(ω), where

λj | γj, σ2 ∼ N
4
0, r(γj)ψjσ

2
5
. (26)

Note the introduction of two new elements, r(γj) and π(ω), in the prior. When the factor

should be included, r(γj = 1) = 1, hence we have the same “slab” as before. When the factor

should not be in the model r(γj = 0) = r ≪ 1. Hence the Dirac “spike” is replaced by a

Gaussian spike, which is extremely concentrated at zero (we set r = 0.001 in our empirical

analysis). Note that in this case ψj has an effect on the spike, but given a small value for r this

effect is virtually immaterial. As we explain below, the additional prior π(ω) encodes our ex

ante beliefs about the sparsity of the true model in terms of observable factors.

We now redefine D as a diagonal matrix with elements c, (r(γ1)ψ1)
−1 , . . . , (r(γK)ψK)

−1,

where ψj is given as before by equation (22). In matrix notation, the prior for λ is therefore:

λ|σ2,γ ∼ N (0, σ2D−1). The term r(γj)ψj in D−1 is set to be small or large, depending on

whether γj = 0 or γj = 1. In the empirical implementation, we set r to a value much smaller
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than 1 since we intend to shrink λj toward zero when γj is 0. Hence, the spike component

concentrates the posterior mass of λ around zero, whereas the slab component allows λ to take

values over a much wider range. Therefore, the posterior distribution of λ is very similar to

the case of a Dirac spike in section III.1.2.

Furthermore, this prior encodes beliefs about the fraction of the total Sharpe ratio of the

test assets ascribable to the factors and to the pricing errors. To see this, consider the case

in which (as in our empirical applications) both factors and returns are standardized. It then

follows that
Eπ[SR

2
f | γ, σ2]

Eπ[SR2
α | σ2]

=

#
K

k=1 r(γk)ψk

N
=

ψ
#

K

k=1 r(γk)ρ̃
⊤
k
ρ̃k

N
, (27)

where SRf and SRα denote, respectively, the Sharpe ratios of all factors24 (ft) and of the

pricing errors of all assets (α), and Eπ denotes prior expectations. In the baseline sample of

our empirical applications,
#

K

k=1 ρ̃
⊤
k
ρ̃k/N ≃ 3.22.Hence, for ψ in the 1–5 range, if, say, 50% of

the factors are selected, our prior expectation is that the factors should explain about 62%–89%

of the squared Sharpe ratio of test assets.

The prior π(ω) not only gives us a way of sampling from the space of potential models,

but also encodes belief about the sparsity of the true model using the prior distribution π(γj =

1|ωj) = ωj. Following the literature on predictors selection, we set:

π(γj = 1|ωj) = ωj, ωj ∼ Beta (aω, bω) .

Different hyper-parameters aω and bω determine whether one a priori favors more parsimonious

models or not.25 Furthermore, aω and bω can be chosen to encode prior beliefs about the Sharpe

ratio achievable in the economy since Eπ[SR
2
f | σ2] = aω

aω+bω
ψσ2

#
K

k=1 ρ̃
⊤
k
ρ̃k as r → 0.

The considerations above imply that an agent’s expectations about the Sharpe ratio achiev-

able i) with only one factor, ii) with all the factors jointly, and iii) the sparsity of the “true”

model, uniquely determine the parameters ψ, aω, bω.
26

Potentially, this prior specification could be improved along two dimensions. First, we do

not formally rule out all near-arbitrage opportunities – hence, we potentially leave on the table

some performance improvement that could have been achieved by exploiting such an economic

constraint. Second, the prior does not make ex ante use of the covariance structure between

factors (but our posterior does): that is, equally strong variables are treated identically by the

24The squared Sharpe ratio implied by the SDF is λ⊤
f Σfλf . Since λf are assumed to be independently

distributed in the prior level, Eπ[SR
2
f | γ,σ2] is equal to

!K
k=1 Eπ[λ

2
k | γk,σ2].

25The prior expected probability of selecting a factor is simply aω

aω+bω
. We set aω = bω = 1 in the benchmark

case; that is, each factor has an ex ante expected probability of being selected equal to 50%. However, we could
for instance, set aω = 1 and bω >> 1 in order to favor a sparser model.

26For a discussion on the importance of using priors on observables and economic quantities, rather than deep
model parameters, see Jarociski and Marcet (2019).
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prior, irrespectively of their covariance structure. In principle, one could modify the prior to

be over the space of groups of factors rather than individual factors themselves.

When ωj is constant and equal to 0.5 and r converges to 0, the continuous spike-and-slab

prior is equivalent to the one with Dirac spike in Section III.1.2. Instead, treating ωj (hence,

γj), as a parameter to be sampled is particularly useful in high-dimensional cases. For instance,

suppose that there are 30 candidate factors. With the Dirac spike-and-slab prior we have

to calculate the posterior model probabilities for 230 different models. Given that we update

(µR,Cf ) at each sampling round, posterior probabilities for all models are re-computed for

every new draw of these quantities, rendering the computational cost very large. In contrast,

with the continuous spike-and-slab approach one can simply use the posterior mean of γj to

estimate the posterior marginal probability of the j-th factor, since they are the same quantity.

Similar to the Dirac spike-and-slab case, we use sequential sampling from the conditional

distributions of the parameters (λ,ω, σ2) and, most importantly, γ, as presented in the following

propositions.

Proposition 5 (B-SDF OLS Posterior with Continuous Spike-and-Slab) The posterior

distribution of (λ,γ,ω, σ2) under the assumption of continuous spike-and-slab prior and spher-

ical α (OLS), conditional on the draws of µY and ΣY from equations (6)–(7), is given by the

following conditional distributions:

λ|data, σ2,γ,ω ∼ N
4
λ̂, σ̂2(λ̂)

5
, (28)

p(γj = 1|data,λ,ω, σ2,γ−j)

p(γj = 0|data,λ,ω, σ2,γ−j)
=

ωj

1− ωj

p(λj|γj = 1, σ2)

p(λj|γj = 0, σ2)
, (29)

ωj|data,λ,γ, σ2 ∼ Beta (γj + aω, 1− γj + bω) , and (30)

σ2|data,ω,λ,γ ∼ IG
.
N +K + 1

2
,
(µR −Cλ)⊤(µR −Cλ) + λ⊤Dλ

2

3
, (31)

where λ̂ = (C⊤C +D)−1C⊤µR and σ̂2(λ̂) = σ2(C⊤C +D)−1.

Proposition 6 (B-SDF GLS Posterior with Continuous Spike-and-Slab) The posterior

distribution of (λ,γ,ω, σ2) under the assumption of continuous spike-and-slab prior and non-

spherical α (GLS), conditional on the draws of µY and ΣY from equations (6)–(7), differs

from the one in Proposition 5 only for the posterior distributions of (λ, σ2):

λ|data, σ2,γ,ω ∼ N
4
λ̂, σ̂2(λ̂)

5
, and (32)

σ2|data,ω,λ,γ ∼ IG
.
N +K + 1

2
,
(µR −Cλ)⊤Σ−1

R (µR −Cλ) + λ⊤Dλ

2

3
, (33)
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where λ̂ = (C⊤Σ−1
R C +D)−1C⊤Σ−1

R µR and σ̂2(λ̂) = σ2(C⊤Σ−1
R C +D)−1.

The proofs of the above propositions are reported in Appendix A.1.6.

III.1.4 Selection vs. Aggregation

The posterior probabilities of models and factors obtained above with spike-and-slab priors, can

be used not only for model selection but also efficient aggregation using all possible specification.

If we are interested in some quantity ∆ that is well-defined for every model m = 1, ..., m̄

(e.g., price of risk, risk premia, and maximum Sharpe ratio), from the Bayes theorem we have

E [∆|data] =
m̄'

m=0

E [∆|data,model = m] Pr (model = m|data) , (34)

where E [∆|data,model = m] = limL→∞
1
L

#
L

l=1 ∆(θ
(m)
l

) and
:
θ
(m)
l

;L

l=1
denote L draws from

the posterior distribution of the parameters of model m. That is, the BMA expectation of

∆, conditional on only the data, is simply the weighted average of the expectation in every

model, with weights equal to the models’ posterior probabilities (see, e.g., Raftery, Madigan,

and Hoeting (1997), and Hoeting, Madigan, Raftery, and Volinsky (1999)).

The BMA efficiently aggregates information about ∆ over the space of all models, rather

than conditioning on a particular model. At the same time, if a dominant model exists – hence

it has posterior probability approaching one – the BMA will use that model alone.

For each model γ that one could construct with the universe of factors, we have the cor-

responding SDF: Mγ,t = 1 − (fγ,t − E[fγ,t])
⊤ λγ . Therefore, one can construct a BMA of the

SDF using the model posterior probabilities derived in the previous sections. Note that these

probabilities are based upon the ability of the factors and models to explain the cross-section

of asset return; that is, they explicitly target the key property of a valid SDF. Aggregation is

particularly appealing when multiple candidate factors load on the same underlying sources of

risk (plus factor-specific noise). Crucially, BMA creates a weighted average that endogenously

maximizes the SDF signal-to-noise ratio for cross-sectional pricing.

The BMA is the optimal aggregation procedure for a very wide spectrum of optimality

criteria and, in particular, it is optimal under the quadratic loss function and is “optimal on

average”, that is, no alternative estimator can beat the BMA for all values of the true unknown

parameters (see, e.g., Raftery and Zheng (2003), and Schervish (1995)). Furthermore, the BMA

predictive distribution minimizes the Kullback-Leibler information divergence relative to the

true unknown data generating process. Hence, it delivers the most likely SDF given the data,

and the estimated density is as close as possible to the true unknown one, even if all the models

considered are misspecified.
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A powerful feature of the BMA method is that equation (34) can be evaluated by generating

a Markov Chain over the space of possible models. This is exactly what the continuous spike-

and-slab method allows us to do: We sample models in the unrestricted space of 2.25 quadrillion

specifications, computing all the desired quantities of interest for each specification sampled,

and then aggregate the results. The Markov Chain endogenously over-samples the more likely

specifications and under-samples the ones that are less likely to have generated the observed

data. The Markov Chain can then be stopped when the posterior means of interest have

converged according to the standard tests. We use as a convergence criterion the Separate

Partial Mean test (see, e.g., Geweke (2005)) for each factor specific parameter (i.e., posterior

probability and price of risk).

Recent literature has usually pursued either selection (see, e.g., Giglio, Feng, and Xiu (2020))

or aggregation (see, e.g., Kozak, Nagel, and Santosh (2020)) of pricing factors. Our approach,

instead, combines both. The BMA-SDF includes both factors that are clear drivers of asset

returns, that is, factors with posterior probability of inclusion (Pr[γj = 1|data]) approaching 1,

and also an optimal combination of factors that are, given the data, individually less salient.

IV Simulation

We build a simple setting for a linear factor model that includes both strong and weak factors

and allows for potential model misspecification.

The cross-section of asset returns mimics the empirical properties of 25 Fama-French port-

folios sorted by size and value. We generate both factors and test asset returns from normal

distributions, assuming that HML is the only useful factor. A misspecified model also includes

pricing errors from the GMM-OLS estimation, which makes the vector of simulated expected

returns equal to their sample mean estimates of 25 Fama-French portfolios. Finally, a use-

less factor is simulated from an independent normal distribution with mean zero and standard

deviation 1%. In summary,

ft,useless
iid∼ N (0, (1%)2),

!
Rt

ft,hml

"
iid∼ N

!&
µ̄R

f̄hml

(
,

&
Σ̂R

$Chml

$C⊤
hml $σ2

hml

("
, and

µR =

<
=

>
$λc1N + $Cf

$λHML, if the model is correct, and

R̄, if the model is misspecified,

where factor loadings, risk prices, and variance-covariance matrix of returns and factors are

equal to their sample estimates from the time series and cross-sectional regressions of the

GMM-OLS procedure, applied to 25 size-and-value portfolios and HML as a factor. All the

model parameters are estimated on monthly data from July 1963 to December 2017.
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To illustrate the properties of the frequentist and Bayesian approaches, we consider three

estimation setups: (a) the model includes only a strong factor (HML), (b) the model includes

only a useless factor as a stylized example for a weak factor, and (c) the model includes both

strong and useless factors. Each setting can be correctly or incorrectly specified, with the

following sample sizes: T = 100, 200, 600, 1,000, and 20,000. We compare the performance of the

OLS/GLS standard frequentist and Bayesian SDF estimators (GMM and B-SDF, respectively)

with the focus on risk prices recovery, testing, and identification of strong and useless factors

for model comparison.

IV.1 B-SDF Estimation of Risk Prices

In this section we focus on the most realistic (and challenging) model setup, which includes both

useless and strong factors and allows for model misspecification. We found similar performance

of the B-SDF approach in a wide range of alternative simulation settings (e.g., considering

correctly specified models and cross-sections of different dimensions).27

Table 1 compares the performance of frequentist and Bayesian estimators of the price of

risk and reports their empirical test size and confidence intervals for cross-sectional R2. In the

case of the Bayesian estimation we report results for both the flat and normal priors for the

price of risk (the latter, in a single stand-alone model case, corresponds to the spike-and-slab

approach). Since the model is misspecified, true cross-sectional R2 has the population value

of 43.87% (6.69%) for OLS (GLS)). In the case of the standard GMM approach, tests are

constructed using standard t-statistics, and in the case of the B-SDF we rely on the quantiles

of the posterior distribution to form the credible confidence intervals. The last two columns

also report the quantiles of the posterior distribution of the R2 mode across the simulations,

corresponding to the peak of the cross-sectional likelihood.

As expected, in the conventional frequentist estimation, the useless factor is often found to

be a significant predictor of the asset returns: Its OLS (GLS) t-statistic would be above a 5%-

critical value in more than 60% (87%) of the simulations in the asymptotic case of T = 20, 000.

On the contrary, the Bayesian confidence intervals detect the useless factor and reject the null

of zero price of risk attached to the useless factor with frequency asymptotically approaching

the size of the tests independently from the prior.

The presence of useless factors can also bias parameter estimates for the strong ones and

often leads to their crowding out from the model. Panel A in Table 1 serves as a good illustration

of this possibility, with the GMM price of risk estimates for the strong factor clearly biased due

to the weak identification problem. In this case B-SDF provides reliable, albeit conservative in

the flat prior case, confidence bounds for model parameters, and effectively restores statistical

27These additional results are reported in Internet Appendix IA.A.1.
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inference. Note that the empirical size of the B-SDF (normal prior) credible confidence intervals

is very close to the nominal one even for relatively small sample sizes.

Table 1: Price of risk tests in a misspecified model with useless and strong factors

λc λstrong λuseless R2
adj

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 5th 95th
Panel A: OLS

GMM–Wols 100 0.083 0.033 0.007 0.065 0.03 0.005 0.082 0.029 0.004 -4.35% 70.21%
200 0.084 0.039 0.006 0.058 0.025 0.003 0.119 0.047 0.006 -2.38% 69.17%
600 0.075 0.034 0.009 0.074 0.032 0.005 0.255 0.140 0.024 8.42% 67.27%
1000 0.078 0.03 0.004 0.070 0.031 0.001 0.311 0.181 0.048 16.85% 65.40%
20000 0.066 0.019 0.001 0.052 0.022 0.001 0.752 0.585 0.288 36.92% 58.64%

B-SDF, flat prior 100 0.037 0.015 0.001 0.032 0.007 0.001 0.003 0.001 0.000 16.62% 49.24%
200 0.054 0.021 0.002 0.036 0.013 0.001 0.006 0.001 0.000 13.54% 54.05%
600 0.053 0.027 0.005 0.047 0.015 0.002 0.019 0.006 0.001 14.72% 58.72%
1000 0.059 0.027 0.004 0.050 0.018 0.000 0.040 0.013 0.002 19.57% 58.85%
20000 0.015 0.005 0.000 0.010 0.003 0.000 0.089 0.043 0.009 39.19% 52.86%

B-SDF, normal prior 100 0.062 0.029 0.005 0.047 0.019 0.002 0.003 0.001 0.000 7.47% 43.43%
200 0.084 0.04 0.008 0.067 0.031 0.005 0.006 0.002 0.000 3.66% 48.19%
600 0.087 0.048 0.018 0.093 0.044 0.010 0.019 0.006 0.001 4.87% 54.33%
1000 0.094 0.052 0.011 0.106 0.051 0.010 0.040 0.013 0.002 9.64% 54.13%
20000 0.100 0.050 0.011 0.102 0.052 0.009 0.088 0.043 0.009 34.47% 46.84%

Panel B: GLS
GMM–Wgls 100 0.095 0.048 0.007 0.076 0.035 0.004 0.146 0.070 0.012 -7.66% 20.08%

200 0.104 0.051 0.008 0.086 0.045 0.007 0.235 0.142 0.031 -6.97% 19.19%
600 0.090 0.045 0.009 0.105 0.047 0.008 0.433 0.326 0.163 -4.81% 20.93%
1000 0.096 0.044 0.010 0.106 0.054 0.008 0.535 0.444 0.273 -3.38% 19.52%
20000 0.084 0.034 0.006 0.091 0.037 0.009 0.889 0.865 0.807 1.42% 19.32%

B-SDF, flat prior 100 0.114 0.061 0.011 0.046 0.020 0.001 0.029 0.009 0.000 -1.99% 9.64%
200 0.094 0.050 0.012 0.056 0.023 0.003 0.034 0.012 0.001 -3.04% 10.27%
600 0.090 0.045 0.008 0.066 0.028 0.004 0.068 0.029 0.004 -2.31% 12.68%
1000 0.080 0.036 0.007 0.071 0.026 0.002 0.075 0.035 0.007 -1.10% 12.98%
20000 0.017 0.002 0.000 0.013 0.004 0.002 0.105 0.050 0.011 3.43% 12.65%

B-SDF, normal prior 100 0.133 0.070 0.014 0.054 0.023 0.002 0.029 0.008 0.000 -3.50% 7.72%
200 0.111 0.057 0.018 0.075 0.033 0.006 0.034 0.012 0.001 -5.08% 7.24%
600 0.105 0.061 0.013 0.093 0.047 0.008 0.068 0.029 0.004 -5.30% 7.85%
1000 0.108 0.055 0.014 0.099 0.049 0.010 0.075 0.035 0.007 -4.42% 7.86%
20000 0.090 0.046 0.010 0.113 0.057 0.009 0.105 0.050 0.011 0.62% 4.10%

The table shows the frequency of rejecting the null hypothesis H0 : λi = λ∗
i for pseudo-true values of λc and

λstrong, λ
∗
useless ≡ 0 in a misspecified model with an intercept, a strong and a useless factor. The true value of

the cross-sectional R2
adj is 43.87% (6.69%) for the OLS (GLS) estimation. B-SDF estimates credible intervals

of risk prices under (1) a flat prior or (2) a normal prior λj ∼ N (0,σ2ψρ̃⊤j ρ̃jT
d), where d is chosen to be 0.5,

while ψ is equal to 5. The normal prior corresponds to a (annualized) prior SR of the factor model equal to
1.239, 1.305, 1.386, 1.413, and 1.497 for T ∈ {100, 200, 600, 1, 000, and 20, 000}.

Why does the Bayesian approach work while the frequentist one fails? The argument is

probably best illustrated by Figure 1, which plots posterior distributions of B-SDF λ̂ for both

strong and useless factors from one of the simulations, along with their pseudo-true values of

the price of risk (defined as 0 for the useless factor).

In this particular simulation, GMM estimates of λuseless imply significant price of risk for

both OLS and GLS versions of the weight matrix, with traditional hypothesis testing rejecting

the null of λuseless = 0, even at 1% significance level. Instead, the B-SDF posteriors (blue lines

in Figure 1) of the useless factor price of risk are diffuse and centered around 0. Intuitively,
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Figure 1: Distribution of the price of risk estimates
Posterior distribution of the price of risk (blue dashed line) from B-SDF estimation of a misspecified one-factor
model based on a single simulation with T = 1000 and asymptotic distribution of the frequentist GMM estimate
(red solid line). The dotted line corresponds to the pseudo-true value of the parameter (defined to be 0 for a
useless factor). Panels (a) and (c) correspond to the estimation of a model including a single useless factor.
Panels (b) and (d) correspond to the case of including a single strong, well-identified factor.

the main driving force behind it is the fact that in B-SDF, C (the covariance of factors with

returns) is updated continuously: When Ĉ is close to zero, the posterior draws of C will be

randomly positive or negative, which implies that the conditional expectation of λ in equation

(11) will also switch sign from draw to draw. As a result, the posterior distribution of λuseless

is centered around 0, and so is its confidence interval. The same logic applies to both OLS and

GLS B-SDF formulations. Note that the Bayesian prior does not have any significant impact

on the price of risk estimation of strong factors: In the case of well-identified sources of risk

(Figure 1, panels (b) and (d)), the Bayesian and frequentist approach give very similar results.

Our setting also allows us to perform formal hypothesis testing via posterior probabilities

and Bayes factors, following Corollary 2, even as T → ∞, using the spike-and-slab prior of

Section III.1.2. We report corresponding simulation results for the Bayesian p-value in Internet

Appendix IA.A.1. Figure IA1 shows that useless factors are easily detected (their p−values, as
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Figure 2: Cross-sectional distribution of OLS R2
adj

in a model with a useless factor

Empirical distribution of cross-sectional R2 achieved by a misspecified model with a useless factor across 2,000
simulations of sample size T = 20, 000. Blue dashed lines correspond to the distribution of the posterior mode
for R2

adj , while red solid lines depict the pointwise sample distribution of R2
adj evaluated at the frequentist GMM

estimates. The grey dotted line stands for the true value of R2
adj .

expected, are sharply concentrated around the prior inclusion probability of 50% for any sample

size), while true sources of risk are successfully selected with probability fast approaching 1.

IV.1.1 Evaluating Cross-Sectional Fit

Weak identification notoriously affects not only parameter estimates but also conventional mea-

sures of fit, such as cross-sectional R2 (Kleibergen and Zhan (2015)). We now show that the

B-SDF approach restores not only inference on the price of risk but also the validity of the

measures of cross-sectional fit.

Figure 2 shows the distribution of cross-sectional R2 across a large number of simulations

for the asymptotic case of T = 20, 000 and a misspecified process for returns. For brevity, we

focus on the most illustrative case of a single useless factor in the model. In this case frequentist

estimation yields an extremely spreadout distribution of R2 across simulations, which makes

the researcher likely to conclude that the useless factor actually has significant explanatory

power in the cross-section of returns.28 This unfortunate property of the frequentist approach

is not shared by our hierarchical Bayesian approach: The mode of the posterior distribution is

tightly concentrated (across simulations) in the proximity of the true R2 value.

However, the pointwise distribution of cross-sectional R2 across the simulations is only part

of the story, as it does not reveal the in-sample estimation uncertainty and whether the confi-

dence intervals are credible in reflecting it. While B-SDF incorporates this uncertainty directly

28Gospodinov, Kan, and Robotti (2019) show examples of perfect fit obtainable with artificially generated
useless factors and a family of one-step estimators.
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Figure 3: The estimation uncertainty of cross-sectional R2

Posterior densities of cross-sectional R2
adj in one representative simulation with centered 90% confidence interval

(shaded area). The blue dashed line denotes the true R
2
adj . The red dashed-dotted line depicts the GMM R

2
adj

estimate with 90% Lewellen, Nagel, and Shanken (2010) confidence intervals (red dotted lines).

into the shape of its posterior distribution, one needs to rely on bootstrap-like algorithms to

build a similar analogue in the frequentist case. As frequentist benchmark, we use the approach

of Lewellen, Nagel, and Shanken (2010) to construct the confidence interval.

Figure 3 presents the posterior distribution of cross-sectional R2 for a model that contains

a useless factor and contrasts it with the frequentist values and their confidence intervals. The

true adjusted R2 is marginally negative, yet not only are its frequentist estimates economically

large (29% and 19% for the OLS and GLS estimation types, respectively), but also the standard

approach of Lewellen, Nagel, and Shanken (2010) yields extremely wide confidence intervals.

Interestingly, they include a level of fit up to 100%, but not the true value. In contrast, while

there is still considerable estimation uncertainty, the posterior distribution of the adjusted R2

peaks in the proximity of 0 and is concentrated on much lower values. As shown in the last

two columns of Table 1, this is a general property of the B-SDF estimation across simulation

designs, sample sizes, and types of prior.

The B-SDF estimator performed well in a wide range of additional simulations that we

have conducted. In particular, in Section IA.A.2 of the Internet Appendix we show that the

B-SDF-based inference stays reliable even in the presence of what is typically considered a

large cross-section (100 portfolios). This is reassuring, as it implies that our estimator does not

require any specific adjustments for applications with either small time-series dimension or a

large cross-sectional one (unlike popular frequentist alternatives).
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IV.2 Selection via Bayes Factors

How well do flat and spike-and-slab priors work empirically in selecting relevant and detecting

useless factors in the cross-section of asset returns? We revisit the theoretical results from

Section III using the same simulation design therein.

Table 2: The probability of retaining risk factors using Bayes factors

T 55% 57% 59% 61% 63% 65% 55% 57% 59% 61% 63% 65%
Panel A: Flat prior

200 fstrong: 0.636 0.602 0.570 0.538 0.509 0.470 fuseless: 0.980 0.950 0.856 0.724 0.581 0.437
600 0.821 0.802 0.784 0.764 0.733 0.710 0.996 0.983 0.970 0.932 0.878 0.791
1,000 0.880 0.850 0.840 0.840 0.800 0.800 1.000 1.000 0.990 0.980 0.940 0.910

Panel B: Spike-and-Slab, prior of
?
Eπ[SR2

f | σ2] = 0.295

200 fstrong: 0.815 0.761 0.721 0.675 0.630 0.581 fuseless: 0.004 0.000 0.000 0.000 0.000 0.000
600 0.974 0.961 0.954 0.943 0.926 0.899 0.000 0.000 0.000 0.000 0.000 0.000
1,000 0.980 0.970 0.970 0.960 0.960 0.940 0.000 0.000 0.000 0.000 0.000 0.000

Panel C: Spike-and-Slab, prior of
?
Eπ[SR2

f | σ2] = 0.807

200 fstrong: 0.527 0.489 0.449 0.412 0.381 0.349 fuseless: 0.041 0.007 0.004 0.000 0.000 0.000
600 0.859 0.832 0.811 0.774 0.734 0.690 0.001 0.000 0.000 0.000 0.000 0.000
1,000 0.910 0.910 0.870 0.850 0.830 0.820 0 .000 0.000 0.000 0.000 0.000 0.000

Frequency of retaining risk factors using BF for different samples size (T=200, 600, and 1,000) across 2,000 sim-
ulations of a misspecified model with strong and useless factors. A factor is retained if its posterior probability,
Pr(γi = 1|data), is greater than a given threshold: 55%, 57%, 59%, 61%, 63%, and 65%. Returns and factors
are standardized. Panel A reports results for the flat prior. Panels B and C use the spike-and-slab approach of
Section III.1.3 with demeaned correlations, r = 0.001 and ψ = 1 or 10, mapping into the corresponding monthly

Sharpe ratios,
"
Eπ[SR2

f | σ2], listed in the table. The prior for each factor inclusion in Panels B and C is a

Beta(1, 1), yielding a prior expectation for factor inclusion of 50%.

We consider a misspecified model with both strong and useless factors and compute Bayes

factors for each of the potential sources of risk. Table 2 reports the empirical frequency of

variable retention in the model across 2,000 simulations of different sample sizes (T = 200,

600, and 1,000). We first report the probability of retaining a factor under a flat prior, which

is standard in the literature. Second, we use the continuous spike-and-slab prior for the price

of risk and compute the marginal probability of each factor as the posterior mean of γj. The

decision rule is based on a range of critical values, 55%–65%, such that when the posterior

factor probability (Pr[γj = 1|data]) is above a particular threshold, we retain the factor.

The difference generated by the two priors is drastic in the presence of useless factors. As

discussed in Section III.1.1, under a flat prior for the price of risk, the posterior probability of

including a useless factor in the model converges to 1 asymptotically. Table 2 makes it clear

that the same holds even for a very short sample, making the overall process of model selection

completely invalid. In turn, factor selection via the spike-and-slab prior approach of Section

III.1.3 is reliable in both retaining strong factors and excluding useless ones (even with a very

small sample size). As Panels B and C indicate, our results are robust to different prior values

for the factor Sharpe ratio.

Overall, we find the behavior of the spike-and-slab prior very encouraging for variable and
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model selection: It successfully eliminates the impact of the useless factors from the model and

identifies the true sources of risk.

V Empirical Analysis

In this section we apply our hierarchical Bayesian method to a large set of factors proposed in

the previous literature. First, we consider 51 tradable and non-tradable factors, yielding more

than two quadrillion possible models, and employ our spike-and-slab priors to compute factors’

posterior probabilities and risk prices (Section V.1). Second, based on the results of this estima-

tion, in Section V.2 we construct an SDF via Bayesian Model Averaging and show its superior

asset pricing properties. Following Martin and Nagel (2019), we consider not only in-sample

but also out-of-sample performance (both in the time-series and cross-sectional dimension) and

compare the BMA-SDF with both notable reduced-form models and the shrinkage-based ap-

proach to factor aggregation (Kozak, Nagel, and Santosh (2020)). Finally, in Sections V.3

and V.4 we study whether one can achieve an accurate representation of the SDF with low-

dimensional (observable) factor models, and show that such conjecture is not supported by the

data. Strikingly, our results indicate that there is scope for both selection and aggregation in

linear factor models.

V.1 Sampling Two Quadrillion Models

We now turn our attention to a large cross-section of candidate asset pricing factors. In partic-

ular, we focus on 51 (both tradable and non-tradable) monthly factors available from October

1973 to December 2016 (i.e. T ≃ 600). Factors are described in Table A1 in the Appendix,

with additional details available in Table IA13 of the Internet Appendix.

As test assets we consider a cross-section of 60 asset returns that are meant to capture well-

documented cross-sectional anomalies. These include all the (34) tradable (long-short) factors

in Panel A of Table A1 in the Appendix, and an additional set of 26 long-short portfolios

based on the univariate sorting of the characteristics listed in Panel B of the same table. The

inclusion of the tradable factors among the test assets, and the usage of the non-spherical

pricing error formulation (i.e., GLS), also imposes (asymptotically) the restriction of factors

pricing themselves.29

Since we do not restrict the maximum number of factors to include, all the possible combina-

tions of factors give us a total of 251 possible specifications, that is 2.25 quadrillion models. We

29Note that we could also have enforced this pricing restriction in finite sample using an ad hoc prior for these
factors – which is analogous to estimating the model via the GLS version of the beta representation of expected
returns, and then inverting the estimates to obtain the price of risk of the SDF formulation.
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use the continuous spike-and-slab approach of Section III.1.3 with non-spherical errors, since

it easily handles a very large number of possible models while remaining valid in the presence

of the most common identification failures. We report both posterior probabilities (given the

data) of each factor (i.e., E [γj|data], ∀j) as well as the posterior means of the factors’ price of

risk (i.e., E [λj|data], ∀j) computed as the Bayesian Model Average (BMA) across the universe

of models. We use the formulation of the penalty term ψj in equation (23) in order to also

handle identification failures of factors’ price of risk caused by level factors (see Remark 4).30

The posterior evaluation is performed and reported over a wide range for the parameter ψ

(in equation (23)) that regulates the degree of shrinkage of potentially useless factors. This

parameter controls the prior belief about the Sharpe ratio achievable with the pricing factors.

We tabulate the results in units of Sharpe ratio prior defined as
?

Eπ[SR2
f | σ2], since this is a

natural metric of beliefs. The lower value that we consider, a prior SR of 1, generates a strong

shrinkage (small ψ), while the highest value reported, a prior SR of 3.5, makes the shrinkage

virtually irrelevant. Since our prior gives non-zero probability to any SR value, these are not

hard constraints.31

The prior probability for each factor inclusion is drawn from a Beta(1, 1) (i.e., a uniform

on [0, 1]), yielding a prior expectation for γj equal to 50%. That is, a priori we have maximum

uncertainty about whether a factor should be included or not.32

Figure 4 plots the posterior probabilities of the 51 factors as a function of the prior SR. The

corresponding values are reported in Table 3.

First, there is particularly strong evidence for including the BEH PEAD factor of Daniel,

Hirshleifer, and Sun (2020), or (behavioral) post-earnings announcement drift anomaly, as the

source of priced risk in the SDF. This factor is meant to capture investors’ limited attention.

The posterior probability of this factor being part of the SDF is over 70% for most prior values.

This might not be too surprising, given that many anomaly portfolios seem to be associated

with short-term market inefficiencies.

Second, the excess return on the market (MKT) appears as a likely source of priced risk with

posterior probabilities significantly above the prior for a wide range of prior SR. This is both

surprising and reassuring. Surprising, since the market return is rarely found to be significant

30In Internet Appendix IA.B.2 we report results based on the formulation in equation (22) as well as the
Fisher transformation of the correlation coefficients. The findings therein are very similar to the ones discussed
below. Table IA15 reports the values of the squared correlations, and their cross-sectionally demeaned version,
of factors and test assets.

31We report results for an extended range of the SR prior, starting from a prior at 0 (corresponding to a 100%
dogmatic shrinkage) in Figure IA2 and Table IA16 of the Internet Appendix.

32We obtain virtually identical results using a Beta(2, 2), which still implies a prior probability of factor
inclusion of 50% but lower probabilities for very dense and very sparse models. Furthermore, using a prior in
favor of more sparse factor models (a Beta(1, 9)), the empirical findings are very similar to the ones reported.
These additional results are reported in Section IA.B.2 of the Internet Appendix.
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Figure 4: Posterior factor probabilities

Posterior probabilities of factors, E [γj |data], computed using the continuous spike-and-slab approach of Section
III.1.3 and 51 factors described in Table A1 of the Appendix. Sample: 1973:10–2016:12. Test assets: 60 anomaly
portfolios. Prior distribution for the j-th factor inclusion is a Beta(1, 1), yielding a 0.5 prior expectation for γj .

Posterior probabilities for different values of the prior Sharpe ratio,
"
Eπ[SR2

f | σ2], annualized.

for cross-sectional asset pricing. It is reassuring because Giglio and Xiu (2021) show that once

inference is corrected for potential misspecification, the market factor appears to be priced. In

our setting, estimation across all the universe of possible models is meant exactly to address

the misspecification problem, and it seems to do so successfully.

Third, the CMA∗ factor of Daniel, Mota, Rottke, and Santos (2020) shows a non-trivial

increase in the posterior probability of being part of the SDF. This is the investment factor of

Fama and French (2015) without its unpriced component.

Fourth, there are three more factors (RMW∗, STRev, and RMW∗, described in Table A1)

for which the posterior probability estimate provide some (albeit not strong) support.

Fifth, there is a substantial set of factors for which the posterior probability stays roughly

equal to the prior one. That is, these factors are likely to be weakly identified at best. Finally,

there is a large set of factors that is unlikely to be part of the SDF pricing our data (e.g.,

long-short portfolios sorted by the Ohlson O-score, long-term reversal, and asset growth).

Interestingly, the results are not very sensitive to the choice of prior maximum Sharpe ratio

unless there is almost no shrinkage, that is, there is no protection against weakly identified

factors. In this latter case, weakly identified factors seem to drive out the statistical support
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for likely components of the true SDF, which is consistent with the findings of Gospodinov,

Kan, and Robotti (2014) for the frequentist estimation of linear factor models.

In addition to the posterior probabilities of the factors, Table 3 reports the posterior means

of the price of risk computed as Bayesian Model Average (BMA), that is, the weighted average

of the posterior means in each possible factor model specification, with weights equal to the

posterior probability of each specification being the true data-generating process (see, e.g.,

Roberts (1965), Geweke (1999), and Madigan and Raftery (1994)).

Several observations are in order. First, the price of risk estimates for factors that are more

likely to be part of the SDF (top three to six factors) are relatively stable for non-extreme

values of the prior SR. Second, for factors that are likely to be at best weakly identified the

estimated price of risk is very close to zero but becomes large when the prior SR is very high,

and therefore the estimation is no more robust to the weak factors. This is to be expected given

the frequentist results on this issue. Third, for factors for which there is clear evidence that

they should not be part of the SDF, the estimates of the price of risk are stably around zero.

Furthermore, for these factors they are very close to zero even conditional on the factors being

included in the SDF. This quantity can be easily computed by dividing the posterior mean of

the price of risk by the factor posterior probability – both reported in Table 3.

As a reality check on the results in Table 3, in Table 6 of Section V.3 below, we expand our

set of candidate priced factors to include artificially generated weak factors and show that our

procedure successfully singles them out. Furthermore, in the above estimation we have allowed

for a common cross-sectional intercept due to allowing for an average level of mispricing. In

Tables IA18–IA19 of the Internet Appendix we repeat the estimation imposing a zero common

intercept and obtain virtually identical results.33

Finally, since we sample the space of 2 quadrillion models instead of estimating them one-by-

one, one might wonder whether the estimation is accurate. We address this formally with the

standard Separated Partial Means test (see, e.g., Geweke (2005)) for both posterior probabilities

and prices of risk, which clearly indicates fast and accurate convergence of the Markov Chain-

based estimates.34

A natural question is whether the posterior probabilities and prices of risk estimates, sum-

33The fact that imposing the zero intercept restriction leaves the results virtually unchanged is not too
surprising since, across all our estimates, the posterior mean of the common intercept is about 0.02–0.03 in
monthly SR unit. Hence, since the average monthly variance of the baseline test assets is about 4.5%, the
posterior mean of the common intercept is about 0.09%–0.135% in monthly returns units i.e. it is quite small.

34To implement the test we drop the first 50,000 draws and split our Markov Chain in five subsets. We
compute the average frequency of rejection of posterior probability of factor inclusion and price of risk being
the same for all the subsets for different values of the test size (i.e., 95%, 90%, and 80%). The corresponding
empirical frequencies of rejection are 6.0%, 9.9%, and 20.2% for the posterior probability of factor inclusion and
4.1%, 9.1%, and 20.4% for the price of risk. In addition, we have repeated the estimation increasing the number
of draws by a factor of 10, and found virtually identical parameter values.
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Table 3: Posterior factor probabilities, E [γj|data], and risk prices: 2.25 quadrillion models

Factor inclusion prob., E [γj|data] Price of risk, E [λj|data]
Total prior SR Total prior SR

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
BEH PEAD 0.555 0.618 0.704 0.779 0.853 0.811 0.018 0.043 0.085 0.146 0.231 0.278
MKT 0.505 0.539 0.578 0.613 0.630 0.508 0.017 0.040 0.073 0.114 0.170 0.186
CMA∗ 0.510 0.529 0.544 0.571 0.597 0.488 0.011 0.023 0.041 0.067 0.106 0.117
STRev 0.496 0.511 0.535 0.555 0.572 0.428 0.007 0.018 0.036 0.060 0.093 0.090
RMW∗ 0.499 0.502 0.522 0.546 0.569 0.417 0.009 0.020 0.038 0.065 0.105 0.099
BW ISENT 0.502 0.509 0.512 0.520 0.538 0.568 0.002 0.005 0.009 0.016 0.035 0.122
ROE 0.513 0.522 0.516 0.503 0.467 0.301 0.021 0.039 0.056 0.075 0.093 0.077
DIV 0.503 0.504 0.502 0.503 0.509 0.548 0.000 0.001 0.002 0.004 0.009 0.042
DEFAULT 0.501 0.501 0.502 0.505 0.501 0.500 0.000 0.001 0.001 0.003 0.006 0.022
TERM 0.501 0.498 0.498 0.500 0.505 0.520 0.000 -0.001 -0.002 -0.004 -0.008 -0.037
HJTZ ISENT 0.499 0.503 0.500 0.501 0.499 0.470 0.001 0.002 0.003 0.005 0.009 0.029
IPGrowth 0.501 0.501 0.500 0.496 0.498 0.494 0.000 0.000 -0.001 -0.002 -0.004 -0.014
PE 0.497 0.497 0.500 0.498 0.500 0.500 0.000 -0.001 -0.002 -0.003 -0.007 -0.029
FIN UNC 0.494 0.491 0.500 0.500 0.505 0.495 0.001 0.002 0.003 0.007 0.016 0.050
NONDUR 0.494 0.493 0.495 0.499 0.501 0.500 0.001 0.001 0.003 0.005 0.012 0.051
UNRATE 0.496 0.494 0.496 0.495 0.497 0.507 0.000 0.001 0.002 0.003 0.008 0.038
SERV 0.493 0.495 0.494 0.495 0.495 0.488 0.000 0.000 0.001 0.001 0.003 0.018
REAL UNC 0.496 0.495 0.493 0.492 0.495 0.480 0.000 0.000 0.001 0.002 0.005 0.010
QMJ 0.492 0.484 0.493 0.496 0.506 0.360 0.016 0.030 0.050 0.081 0.132 0.128
MACRO UNC 0.496 0.493 0.495 0.491 0.496 0.478 0.000 0.000 0.001 0.001 0.003 0.001
DeltaSLOPE 0.494 0.495 0.493 0.490 0.497 0.488 0.000 0.001 0.001 0.002 0.004 0.016
Oil 0.498 0.495 0.493 0.490 0.491 0.467 0.000 0.000 0.001 0.002 0.005 0.021
MKT∗ 0.502 0.502 0.500 0.490 0.462 0.358 0.007 0.015 0.024 0.034 0.043 0.057
LIQ NT 0.492 0.493 0.493 0.491 0.481 0.408 0.000 0.001 0.000 -0.002 -0.010 -0.026
HML DEVIL 0.471 0.463 0.466 0.490 0.543 0.403 0.008 0.017 0.036 0.073 0.152 0.163
BAB 0.513 0.516 0.496 0.474 0.419 0.284 0.015 0.027 0.037 0.046 0.052 0.049
SKEW 0.493 0.494 0.488 0.478 0.455 0.279 0.013 0.027 0.043 0.061 0.082 0.061
INTERM CAP RATIO 0.496 0.491 0.486 0.478 0.452 0.342 0.006 0.013 0.021 0.027 0.028 0.016
MGMT 0.498 0.494 0.479 0.469 0.427 0.264 0.020 0.032 0.044 0.061 0.077 0.062
HML∗ 0.503 0.497 0.485 0.469 0.410 0.248 0.010 0.020 0.031 0.041 0.045 0.033
PERF 0.489 0.489 0.478 0.466 0.436 0.272 0.012 0.022 0.034 0.047 0.065 0.053
NetOA 0.502 0.495 0.485 0.462 0.413 0.265 0.006 0.013 0.019 0.026 0.030 0.027
LIQ TR 0.494 0.490 0.481 0.466 0.415 0.262 0.003 0.007 0.012 0.018 0.023 0.019
ACCR 0.491 0.480 0.473 0.460 0.433 0.271 0.004 0.008 0.016 0.028 0.041 0.034
IA 0.503 0.486 0.466 0.432 0.379 0.224 0.018 0.028 0.037 0.044 0.051 0.041
INV IN ASS 0.495 0.489 0.464 0.431 0.365 0.205 0.009 0.015 0.021 0.025 0.026 0.018
UMD 0.486 0.475 0.456 0.424 0.386 0.254 0.007 0.010 0.011 0.011 0.015 0.023
SMB∗ 0.487 0.476 0.455 0.426 0.377 0.224 0.005 0.009 0.014 0.019 0.025 0.020
DISSTR 0.474 0.459 0.451 0.435 0.392 0.241 -0.002 -0.009 -0.020 -0.034 -0.047 -0.040
SMB 0.476 0.466 0.446 0.417 0.358 0.199 0.010 0.019 0.029 0.036 0.037 0.025
CMA 0.484 0.459 0.435 0.400 0.349 0.204 0.011 0.012 0.009 0.000 -0.015 -0.015
STOCK ISS 0.488 0.466 0.437 0.404 0.330 0.182 0.011 0.017 0.021 0.024 0.021 0.015
RMW 0.471 0.455 0.432 0.403 0.363 0.221 0.005 0.005 0.002 -0.006 -0.023 -0.019
GR PROF 0.475 0.454 0.434 0.406 0.352 0.198 0.001 0.002 0.004 0.006 0.007 0.001
BEH FIN 0.480 0.459 0.437 0.396 0.338 0.191 0.014 0.018 0.020 0.018 0.012 0.012
HML 0.470 0.443 0.422 0.394 0.372 0.232 0.005 0.001 -0.006 -0.019 -0.044 -0.042
ROA 0.472 0.457 0.432 0.400 0.333 0.186 0.009 0.013 0.015 0.014 0.009 0.003
COMP ISSUE 0.477 0.457 0.425 0.384 0.319 0.174 0.006 0.007 0.007 0.005 0.002 0.004
A Growth 0.474 0.452 0.421 0.378 0.312 0.168 0.007 0.008 0.006 0.002 -0.002 -0.003
LTRev 0.473 0.451 0.417 0.379 0.313 0.167 0.004 0.005 0.005 0.004 0.001 0.001
O SCORE 0.472 0.450 0.417 0.378 0.311 0.168 -0.004 -0.006 -0.006 -0.005 -0.007 -0.005

Posterior probabilities of factors, E [γj |data], and posterior mean of factors’ risk prices, E [λj |data], are computed
using the continuous spike-and-slab approach of Section III.1.3 and 51 factors yielding 251 ≈ 2.25 quadrillion
models. The prior for each factor inclusion is a Beta(1, 1), yielding a prior expectation for γj equal to 50%.
The 51 factors considered are described in Table A1 of the Appendix. Test assets: 34 tradable factors plus 26
investment anomalies, sampled monthly, 1973:10 to 2016:12. Results are tabulated for different values of the

(annualized) prior Sharpe ratio,
"
Eπ[SR2

f | σ2]. Light-shaded grey rows denote non-tradable factors.
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marized in Table 3, deliver a good representation of the true latent SDF.

V.2 Cross-Sectional Performance

We now focus on the cross-sectional asset pricing performance of our BMA estimates of the

Stochastic Discount Factor (BMA-SDF), both in- and out-of-sample, and compare it with

traditional popular reduced-form factor models. Table 4 reports root mean squared pricing

error (RMSE), mean absolute pricing errors (MAPE), and OLS and GLS cross-sectional R2

for a variety of models and test assets. For a benchmark comparison, we consider the CAPM,

Fama-French five-factor model, Carhart four-factor model, and the q4 model of Hou, Xue, and

Zhang (2015). Finally, we also present results for the 51 factor model that includes all the

candidate risk factors considered in our analysis, as well as the shrinkage-based approach of

Kozak, Nagel, and Santosh (2020) (KNS) with the optimal shrinkage level and number of factors

chosen by three-fold cross-validation.35 Results for the Bayesian (GLS) SDFs are reported for

a wide range of SR priors. All the frequentist SDFs are estimated via a GLS version of the

GMM (i.e., imposing the tradability restriction on the model-implied price of risk, whenever

factors are tradable).36

Panel A reports in-sample asset pricing statistics for the baseline set of assets used in our

estimation (60 anomaly portfolios).37 It is striking that the Bayesian SDF tends to outperform

conventional models across a wide range of metrics, and this result is stable across the whole

set of SR priors. Furthermore, unlike the benchmark models, the BMA-SDF delivers cross-

sectional OLS and GLS R2 measures that are consistent with each other – without explicitly

targeting any of them at the SDF estimation stage. The only model that seems to perform

better than the BMA-SDF is the one using 51 factors to price 60 assets and is very likely to

be overfitting the cross-section (as we show below). One might wonder whether part of the

Bayesian SDF success could also be due to overfitting. We address this issue by analyzing its

OOS performance, in both cross-sectional and time-series dimensions.

Panels B and C summarize the performance of SDFs estimated on a set of 60 anomaly port-

folios (@Mt) but then used to price a different cross-section – 25 portfolios sorted by size and value

(Panel B), and 49 industry portfolios (Panel C). Since we shrink away level factors in the BMA-

SDF, to put different models on equal footing we focus on cross-sectionally demeaned pricing

errors. Our findings make it clear that the superior performance of the BMA-SDF observed

35When applied to our sample of 60 portfolios, three-fold CV selects a model with 11 factors and the root
expected SR2 of 1.2.

36We have also obtained virtually identical results using time-series regressions (with tradable factors) instead
of GMM, as well as other cross-sections not reported in Table 4.

37The table reports the following measures: RMSE ≡
"

1
N

!N
i=1 α

2
i , MAPE ≡ 1

N

!N
i=1 |αi|, R2

ols ≡ 1 −
(α− 1

N α⊤1N)
⊤
(α− 1

N α⊤1N)
(µR− 1

N µ⊤
R1N )⊤(µR− 1

N µ⊤
R1N )

, and R
2
gls ≡ 1− α⊤Σ−1

R α

µ⊤
RΣ−1

R µR
.
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Table 4: Cross-sectional asset pricing

Model RMSE MAPE R2
ols

R2
gls

Model RMSE MAPE R2
ols

R2
gls

Panel A: In-sample pricing, test assets: 60 anomalies
BMA-SDF: SRpr = 1 0.287 0.227 39.2% 24.2% 51 factors 0.041 0.022 98.1% 97.7%

SRpr = 1.5 0.253 0.197 49.8% 30.3% CAPM 0.418 0.338 -29.4% 16.8%
SRpr = 2 0.223 0.170 59.1% 37.4% FF5 0.301 0.223 24.5% 23.2%
SRpr = 2.5 0.193 0.148 68.2% 45.5% Carhart 0.317 0.244 21.5% 21.2%
SRpr = 3 0.162 0.128 76.6% 54.7% q4 0.267 0.189 37.5% 28.1%
SRpr = 3.5 0.157 0.128 78.4% 58.8% KNSCV3 0.296 0.237 53.7% 19.6%
Panel B: Cross-sectional out-of-sample pricing, test assets: 25 size-value portfolios

BMA-SDF: SRpr = 1 0.108 0.082 42.1% 17.5% 51 factors 0.200 0.163 -98.5% -1653%
SRpr = 1.5 0.094 0.070 55.7% 24.5% CAPM 0.145 0.112 -4.6% 5.2%
SRpr = 2 0.085 0.063 64.5% 30.2% FF5 0.079 0.059 69.2% 28.0%
SRpr = 2.5 0.077 0.058 70.5% 34.9% Carhart 0.086 0.063 63.2% 27.1%
SRpr = 3 0.073 0.054 73.9% 38.4% q4 0.083 0.065 66.1% 28.2%
SRpr = 3.5 0.075 0.055 72.3% 36.8% KNSCV3 0.096 0.074 54.4% 28.0%
Panel C: Cross-sectional out-of-sample pricing, test assets: 49 industry portfolios

BMA-SDF: SRpr = 1 0.097 0.080 15.6% 11.8% 51 factors 0.420 0.310 -1474.3% -1694%
SRpr = 1.5 0.097 0.082 15.3% 12.8% CAPM 0.111 0.082 -10.6% 20.9%
SRpr = 2 0.097 0.082 15.7% 15.8% FF5 0.123 0.103 -35.8% 3.6%
SRpr = 2.5 0.098 0.081 14.9% 18.5% Carhart 0.117 0.089 -22.1% 13.7%
SRpr = 3 0.100 0.083 10.9% 19.7% q4 0.134 0.105 -60.5% -10.9%
SRpr = 3.5 0.100 0.083 11.5% 20.9% KNSCV3 0.100 0.082 10.9% 14.0%

This table compares in-sample and cross-sectional out-of-sample asset pricing performance of the BMA-SDF
and notable frequentist factor models. We use GMM-GLS to estimate factor prices of risk for the CAPM, FF5
model of Fama and French (2015), Carhart (1997) model, q4 model of Hou, Xue, and Zhang (2015), and the
model including all 51 factors. KNS stands for the SDF estimation of Kozak, Nagel, and Santosh (2020), with
tuning parameter and number of factors chosen by three-fold cross-validation. For the BMA-SDF, we report

results with risk prices under a range of (annualized) prior Sharpe ratio values:
"
Eπ[SR2

f | σ2] ∈ {1–3.5}. In

the cross-sectional OOS the models are first estimated using the baseline test assets of Panel A and then used
to price (without additional parameters estimation), the test assets listed in Panels B and C. All the data is
standardized, that is, pricing errors are in SR units. We report the annualized RMSE and MAPE.

in-sample is not due to overfitting. While the 51-factor model has a disastrous cross-sectional

OOS performance, this is not the case for the BMA-SDF. Consistent with our in-sample results,

the performance of the Bayesian SDF is stable across priors and metrics. Furthermore, it is

either on par with that of the best reduced-form benchmark model (the FF5 model when fo-

cusing on size-value portfolios) or better. The BMA-SDF pricing ability is particularly striking

in the case of industry portfolios that have long been considered a challenge for asset pricing

and often advocated as an appropriate testing ground for models (e.g., Lewellen, Nagel, and

Shanken (2010), and Daniel and Titman (2012)).

Figure 5 further illustrates the performance of different SDFs estimated on the baseline cross-

section and then used to price the 49 industry portfolios. The BMA-SDF is the only model that

generates predicted Sharpe ratios close to the observed ones and has positive (OLS and GLS)

cross-sectional R2s. Note that while some of the models yield predictions that have positive

correlation with the actual return realizations, they are still characterized by a substantially

negative R2 since we impose the theoretical pricing restriction of E[Rt] = −Cov(Mt,Rt) (using
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(a) B-SDF, SRpr = 2 (R2
ols

= 16%)
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(b) 51-factor model (R2
ols

= −1474%)
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(c) FF5 (R2
ols

= −36%)
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(d) Carhart (R2
ols

= −22%)
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(e) q4 (R2
ols

= −61%)
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(f) KNSCV3 (R2
ols

= 10%)

Figure 5: Out-of-sample cross-sectional pricing of 49 industry portfolios

For each model, the figure depicts the out-of-sample performance of the SDF, obtained by using 60 anomaly
portfolios as test assets, and applied to pricing 49 industry portfolios without re-estimation. All the data
are standardized; that is, pricing errors are in SR units. The 45-degree line corresponds to the theoretical
relationship of E[Rt] = −Cov(Mt,Rt), where SDFs are normalized to have unit mean.
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KNS (2020)
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Figure 6: Out-of-sample cross-sectional pricing (different time samples)

The figure depicts out-of-sample performance of the SDF (R2
ols and R

2
gls), obtained by using both BMA and

Kozak, Nagel, and Santosh (2020) approaches using a time series subsample of 60 anomaly portfolios. We use
half of the time-series sample for the model estimation and SDF recovery and evaluate its cross-sectional pricing
ability on the other subsample. Results are reported for a range of annualized SR prior, and in the case of KNS
(2020) for different number of PCs used, as well as a combination of tuning parameters and priors chosen by a
three-fold cross-validation (CV3) applied to the estimation period.

the innocuous normalization E[Mt] = 1).

We now turn to the time-series out-of-sample performance of the BMA-SDF.38 According to

38We follow the approach canonical in the literature of performing time series OOS via a split-sample (see,
e.g., Linnainmaa and Roberts (2018), Chen, Pelger, and Zhu (2019), Gu, Kelly, and Xiu (2020)). Nevertheless,
ideally, one might want to focus on the post publication sample of the factors. This is unfortunately unfeasible in
our empirical setting since a large share of the factors that we analyze have been only very recently documented.
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Table 4, only the shrinkage-based approach of Kozak, Nagel, and Santosh (2020) comes close to

matching the performance of our Bayesian approach overall. Hence, we use it as a benchmark

model for the time-series out-of-sample performance. Figure 6 reports out-of-sample model

performance, based on the time-series difference between estimation and prediction periods.

Following Martin and Nagel (2019), we use half of the time-series sample for the model estima-

tion and SDF recovery and evaluate its cross-sectional pricing ability on the other subsample.

Thus, we consider out-of-sample performance of the model, going into both future and past,

without re-estimating any of the parameters. For the same value of the prior SR, BMA-SDF

tends to outperform the cross-validated estimates (CV3) of KNS, despite the fact that cross-

validation was carried out on the full data sample. Furthermore, for a wide range of prior SR,

our Bayesian approach performs either as well as the ex-post best combination of tuning param-

eters in KNS or better. This is particularly evident when recent data is used as the evaluation

subsample. Finally, to compare the BMA-SDF and KNS-SDF on similar footing, albeit this is

not natural in a Bayesian setting, we select the prior hyper-parameters for the former using the

same three-fold cross-validation as for the latter (yielding a prior SR of 1, singled out in Figure

6). The resulting OOS performance of the BMA-SDF is in the same ballpark, or better, than

the KNS-SDF.39

V.3 Model Uncertainty: Selection or Aggregation?

In the previous section we have shown that averaging across the space of possible models yields

an accurate representation of the SDF. A natural question is whether in the universe of models

there is a single best model.

For consistency, frequentist model selection demands the existence of a unique first-best

model that can be reliably distinguished from the alternatives. This is a key assumption

underlying reliable factor selection via t- and χ2-tests, LASSO, and many other approaches.

In contrast, the existence of such a dominant model can be formally assessed within the

Bayesian paradigm. For instance, Giannone, Lenza, and Primiceri (2021) study the sparsity

assumption in popular empirical economic applications (using, like us, a spike-and-slab prior

approach for model and variable selection). They find that the posterior distribution does not

typically concentrate on a single sparse model but rather supports a wide set of models that

often include a large number of predictors.

Figure 7 presents the model posterior probabilities of the 2,000 most likely specifications

(with the annualized prior SR of 2).40 The first thing to notice is that even the most likely spec-

39The cross-sectional measures of fit in Figure 6 for the cross-validated BMA and KNS SDFs are, respectively:
Panel (a), 14.3% and 15.9%; Panel (b), 11.8% and -234%; Panel (c), 12.6% and 5.6%; Panel (d), 17.9% and
15.2%.

40Note that the posterior model probabilities decay in a step-like manner due to numerical rounding. This
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Figure 7: Posterior model probabilities of the 2,000 most likely models

Posterior model probabilities of the 2,000 most likely models computed using the continuous spike-and-slab of

Section III.1.3, 51 factors and an annualized prior SR:
"
Eπ[SR2

f | σ2] = 2 The horizontal axis uses a log scale.

Sample: 1973:10–2016:12. Test assets: 34 tradable factors plus 26 investment anomalies, sampled monthly,
1973:10 to 2016:12.

ification(s) is not a clear winner within the set of all possible models – its posterior probability

is only about 0.011%. This is a remarkable improvement relative to the prior model probabil-

ity that is of the order of 10−16, but it clearly does not represent a substantial resolution of

model uncertainty. Furthermore, we have 10 specifications with basically the same posterior

probability, and the posterior model probability decays very slowly as we move down the list

of most likely models: Moving from the best model, it takes more than a thousand models to

reach the relative odds of 2:1 (i.e., to reduce the posterior probability by 50%). That is, to

a first-order approximation, the frequentist likelihood ratio test of the best performing model

versus the 1000th one would yield a p-value of 30% at best (and a p-value of 15% after 2,000

models).

But how many of the factors proposed in the literature does it really take to price the

cross-section? Thanks to our Bayesian method, this question can be easily answered. In

fact, our framework is ideally suited for evaluating the assumption of sparsity (in observable

factors) in cross-sectional asset pricing. In particular, by using our estimations of about 2.25

quadrillion models and their posterior probabilities, we can compute the posterior distribution

of the dimensionality of the “true” model. That is, for any integer number between one and

51, we can compute the posterior probability of the (linear) SDF being a function with that

arises due to the fact that the estimated model probability is simply the number of times that a given model is
sampled by the Markov chain, divided by the total number of sampled models. Hence, models selected exactly
the same number of times have identical posterior probability.
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Figure 8: Posterior densities of model dimensionality and its implied Sharpe ratio

Left panel: posterior density of the true model having the number of factors listed on the horizontal axis. Right
panel: posterior density of the (annualized) Sharpe ratio implied by the linear factor model for various values
of the (annualized) prior Sharpe ratio. Sample: 1973:10–2016:12. Test assets: 34 tradable factors plus 26
investment anomalies, sampled monthly, 1973:10 to 2016:12. The prior for each factor inclusion is a Beta(1, 1),
yielding a prior expectation for γj equal to 50%. The 51 factors considered are described in Table A1 of the
Appendix.

number of factors.

Figure 8a reports the posterior distributions of the model dimensionality for various values of

prior SR. These distributions are also summarized in Table IA20 of Internet Appendix IA.B.2.

For the most salient values of the prior SR (1–3), the posterior mean of the number of

factors in the true model is in the 23–25 range, and the 95% posterior credible intervals are

contained in the 16–32 factors range. That is, there is substantial evidence that the SDF is

dense in the space of observable factors: Given the factors at hand, a relative large number of

them is needed to provide an accurate representation of the “true” model. Since most of the

literature has focused on very low-dimensional linear factor models, this finding suggests that

most empirical results therein have been affected by a very large degree of misspecification.

It is worth noticing that, as Figure 8a shows, for very large prior SR, that is, with basically

a flat prior for factors’ price of risk, the posterior dimensionality is reduced. This is due to two

phenomena we have already outlined. First, if some of the factors are useless (and our analysis

points in this direction), under a flat prior they tend to have a higher posterior probability and

drive out the true sources of priced risk. Second, a flat prior for the price of risk can generate

a “Bartlett Paradox” (see the discussion in Section III.1.1).

Our method allows to assess not only how many but also which type of factors we need to

characterise the SDF in the economy. Table 5 reports the posterior numbers of tradable and

non-tradable factors, as well as the associated estimation uncertainty around them. Strikingly,

about one third (5-12) of the selected factors are non-tradable while the remaining ones (5-17)
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Table 5: Posterior model dimensionality: Tradable versus non-tradable factors

(a) Number of non-tradable factors (b) Number of tradable factors
Total prior SR: Total prior SR:

1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
mean 8.45 8.45 8.45 8.45 8.46 8.25 16.68 16.48 16.17 15.67 14.56 9.66
median 8 8 8 8 8 8 17 16 16 16 15 10
5% 5 5 5 5 5 5 12 12 11 11 10 5
95th 12 12 12 12 12 12 21 21 21 21 20 15

Summary statistics for posterior distribution of the number of non-tradable (Panel (a)) and tradable (Panel (b))

factors in the SDF. Results tabulated for different values of the (annualized) prior Sharpe ratio,
"
Eπ[SR2

f | σ2].

All the parameters are estimated over the 1973:10-2016:12 sample using a cross-section of 34 tradable factors
plus 26 investment anomalies, computed using the continuous spike-and-slab approach of Section III.1.3 and 51
factors yielding 251 ≈ 2.25 quadrillion models. The prior for each factor inclusion is a Beta(1, 1), yielding a
prior expectation for γj equal to 50%. The 51 factors considered are described in Table A1 of the Appendix.

are portfolio-based, suggesting complementarity between the two groups of factors in explaining

asset returns.

Note that if the factors proposed in the literature were to capture different and uncorrelated

sources of risk, one might worry that a dense model in the space of factors could imply unre-

alistically high Sharpe ratios (see, e.g., the discussion in Kozak, Nagel, and Santosh (2020)).

Since, given a model, the SDF-implied maximum Sharpe ratio is merely a function of the

factors’ price of risk and covariance matrix, our Bayesian method allows us to construct the

posterior distribution of the maximum Sharpe ratio for each of the 2.25 quadrillion models

considered. Therefore, using the posterior probabilities of each possible model specification, we

can actually construct the (BMA) posterior distribution of the SDF-implied maximum Sharpe

ratio (conditional on the data only).

Figure 8b (and Table IA20b in Internet Appendix IA.B.2) reports the posterior distribution

of the SDF-implied maximum Sharpe ratio (annualized) for several values of the prior SR.

Except when a very strong shrinkage (small prior SR) is imposed (hence, Sharpe ratios are

shrunk) the posterior distributions of the Sharpe ratio are quite similar for all prior values.

Furthermore, despite the model being dense in the space of factors, the posterior maximum

Sharpe ratio does not appear to be unrealistically high: For example, for a prior SR ∈ [1.5, 3]

its posterior mean is about 1.17–2.19, and the 95% posterior credible intervals are in the 0.70–

2.96 range.

Note that a model that is dense in the space of observable factors might be in principle

sparse in the space of latent factors, for example, principle components. We address this issue

by directly including principal components in the set of candidate factors. In particular, we

consider the first five principal components of our cross-section of test assets, followed by a set

of five “Risk Premia” principal components (RP-PC) of Lettau and Pelger (2020). In addition,

to confirm that our method successfully handles weak identification, we add two artificially
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generated useless factors (independent of returns and i.i.d. distributed). Table 6 reports our

findings.

Panel A of Table 6 shows that the first five principal components do not seem to capture

priced risk: Their posterior probability is substantially lower than their prior probability, and

their estimated market price of risk is zero (despite them explaining 61% of the time-series

variation of returns). This is quite expected since standard principal components are not

designed to capture cross-sectional pricing information.

Clearly, the artificially generated useless factors are successfully handled by the estimation

procedure: As expected, their posterior probability remains at the prior level (50%), and their

estimated price of risk is basically zero.

In Panel B we replace the canonical PCs with RP-PCs. We find strong support for two of

them (first and third) capturing priced risk, while the other three have posterior probability

below the prior value and prices of risk close to zero. Interestingly, even though some of the

RP-PCs seem to successfully aggregate pricing information from the cross-section of returns

(and factors, since the tradable ones are part of the test assets), they do not drive out the

relevance of the robust stand-alone factors we identified earlier: BEAH PEAD, CMA&, RMW&,

among others. Consequently, the underlying SDF would be best described by a combination

of both observable factors and (some) latent variables. Hence, the results in Panel B highlight

that, in the quest of describing the sources of priced risk, there is scope for both selection

and aggregation. This is confirmed by Figure IA3 in Internet Appendix IA.B.2, which shows

that the most likely SDF is dense in the combined space of observable factors and principal

components.

V.4 A Quest for Sparsity

The previous subsections suggest that only a small number of observable factors – BEH PEAD,

MKT, CMA∗, and, to a lesser extent, STRev, RMW∗, and BW ISENT – are likely stand-alone

explanators of the cross-section of asset returns. A natural question is whether the Bayesian

factor posterior probabilities of Table 3 can help identify a low-dimensional benchmark model

for pricing asset returns.

Table 7 reports the model posterior probabilities, that is, the probability of any of these

models being the true data-generating process, for the SDFs built with the most likely factors

and notable linear factor models. Posterior model probabilities (for all models) are computed

using the closed-form solutions for the Dirac spike-and-slab prior method of Section III.1.2,

giving us very precise estimates.

Strikingly, for any value of SRpr, the best performing model is the one based on the most

likely factors: Just three most likely factors (see Panel A), BEH PEAD, MKT, and CMA∗, are
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Table 6: Observable factors versus Principal Components

Factor inclusion prob., E [γj|data] Price of risk, E [λj|data]
Total prior SR Total prior SR

Factors: 1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
Panel A: Principal Components as Factors

BEH PEAD 0.547 0.602 0.678 0.766 0.840 0.814 0.015 0.036 0.073 0.132 0.220 0.287
MKT 0.508 0.542 0.573 0.598 0.607 0.504 0.015 0.035 0.064 0.100 0.149 0.182
CMA& 0.509 0.523 0.539 0.564 0.597 0.516 0.009 0.020 0.037 0.061 0.101 0.124
BW ISENT 0.499 0.502 0.509 0.514 0.528 0.555 0.002 0.004 0.008 0.014 0.030 0.105
RMW& 0.500 0.499 0.514 0.537 0.568 0.450 0.007 0.017 0.032 0.057 0.097 0.107
STRev 0.495 0.503 0.522 0.546 0.555 0.435 0.006 0.016 0.030 0.052 0.083 0.089
...

...
...

...
...

...
...

...
...

...
...

...
...

Useless I 0.499 0.499 0.501 0.498 0.498 0.497 0.000 0.000 0.000 0.000 0.001 0.006
...

...
...

...
...

...
...

...
...

...
...

...
...

Useless II 0.496 0.495 0.495 0.494 0.498 0.500 0.000 0.000 0.001 0.001 0.002 0.010
...

...
...

...
...

...
...

...
...

...
...

...
...

PC5 0.489 0.490 0.488 0.482 0.459 0.336 0.000 0.000 0.000 0.000 0.000 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

PC4 0.497 0.487 0.480 0.471 0.451 0.322 0.000 0.000 0.000 0.000 0.000 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

PC3 0.483 0.477 0.467 0.449 0.420 0.280 0.000 0.000 0.000 0.000 0.000 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

PC1 0.478 0.467 0.457 0.437 0.399 0.248 0.000 0.000 0.000 0.000 -0.001 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

PC2 0.473 0.455 0.444 0.429 0.397 0.249 0.000 0.000 0.000 0.000 0.000 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

LTRev 0.477 0.464 0.437 0.402 0.347 0.204 0.003 0.005 0.004 0.002 -0.002 -0.003
COMP ISSUE 0.485 0.462 0.438 0.399 0.338 0.191 0.006 0.007 0.008 0.007 0.003 0.002
A Growth 0.481 0.462 0.436 0.399 0.337 0.189 0.007 0.008 0.006 0.003 -0.002 -0.003
O SCORE 0.473 0.450 0.425 0.385 0.323 0.186 -0.003 -0.005 -0.004 -0.002 -0.002 -0.003

Panel B: RP-Principal Components (Lettau and Pelger (2020)) as Factors
RP-PC1 0.600 0.631 0.640 0.634 0.592 0.448 -0.016 -0.030 -0.043 -0.056 -0.066 -0.067
RP-PC3 0.548 0.597 0.645 0.661 0.651 0.529 -0.004 -0.009 -0.017 -0.024 -0.032 -0.035
BEH PEAD 0.540 0.585 0.628 0.681 0.709 0.630 0.014 0.032 0.058 0.097 0.149 0.185
CMA& 0.510 0.523 0.542 0.571 0.616 0.531 0.009 0.020 0.037 0.062 0.104 0.129
RMW& 0.500 0.504 0.517 0.547 0.583 0.466 0.007 0.017 0.033 0.059 0.101 0.112
MKT 0.507 0.518 0.525 0.516 0.493 0.391 0.013 0.028 0.044 0.061 0.081 0.103
...

...
...

...
...

...
...

...
...

...
...

...
...

Useless I 0.499 0.499 0.500 0.500 0.499 0.497 0.000 0.000 0.000 0.000 0.001 0.007
...

...
...

...
...

...
...

...
...

...
...

...
...

Useless II 0.495 0.495 0.495 0.498 0.496 0.499 0.000 0.000 0.000 0.001 0.002 0.010
...

...
...

...
...

...
...

...
...

...
...

...
...

RP-PC5 0.481 0.487 0.488 0.484 0.459 0.338 0.001 0.003 0.005 0.008 0.011 0.012
...

...
...

...
...

...
...

...
...

...
...

...
...

RP-PC4 0.494 0.487 0.479 0.459 0.433 0.303 0.002 0.003 0.004 0.005 0.005 0.005
...

...
...

...
...

...
...

...
...

...
...

...
...

RP-PC2 0.479 0.464 0.458 0.439 0.403 0.267 0.000 -0.001 -0.001 -0.001 -0.001 0.000
...

...
...

...
...

...
...

...
...

...
...

...
...

COMP ISSUE 0.483 0.464 0.438 0.406 0.338 0.193 0.006 0.008 0.010 0.009 0.004 0.002
A Growth 0.483 0.466 0.443 0.396 0.337 0.196 0.007 0.007 0.005 0.000 -0.005 -0.007
LTRev 0.483 0.461 0.438 0.404 0.358 0.222 0.003 0.003 0.000 -0.006 -0.014 -0.015
O SCORE 0.472 0.456 0.426 0.386 0.331 0.189 -0.003 -0.002 0.001 0.005 0.005 0.001

Posterior probabilities of factors, E [γj |data], and posterior mean of factors’ risk prices, E [λj |data], are computed
using the continuous spike-and-slab approach of Section III.1.3 and 58 factors yielding 258 models. The factors
included are the 51 factors described in Table A1 of the Appendix plus two artificial i.i.d. useless factors, and
five principal components. Panel A uses simple time-series principal components while Panel B uses the RP-PCs
of Lettau and Pelger (2020). Test assets: 34 tradable factors plus 26 investment anomalies, sampled monthly,

1973:10 to 2016:12. Results tabulated for different values of the (annualized) prior Sharpe ratio,
"
Eπ[SR2

f | σ2].
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Table 7: Posterior probabilities of notable models versus most likely factors

Panel A: 3 most likely factors Panel B : 6 most likely factors Panel C : Most likely 5-factor model
model: SRpr: 1 1.5 2 2.5 3 1 1.5 2 2.5 3 1 1.5 2 2.5 3
Most likely factors 17.5% 24.9% 36.0% 48.8% 59.1% 17.8% 27.0% 44.0% 66.5% 83.7% 23.0% 35.3% 57.0% 77.6% 88.1%
CAPM 12.7% 12.5% 11.8% 11.3% 13.1% 12.7% 12.1% 10.3% 7.3% 5.2% 11.9% 10.8% 8.0% 5.0% 3.9%
FF3 10.3% 7.9% 5.3% 3.2% 1.7% 10.3% 7.7% 4.7% 2.1% 0.7% 9.6% 6.8% 3.6% 1.4% 0.5%
FF5 9.9% 7.0% 4.2% 2.1% 0.7% 9.8% 6.8% 3.7% 1.3% 0.3% 9.2% 6.0% 2.8% 0.9% 0.2%
Carhart 10.2% 7.8% 5.2% 2.9% 1.3% 10.2% 7.6% 4.6% 1.9% 0.5% 9.6% 6.7% 3.5% 1.3% 0.4%
q4 15.7% 17.8% 17.9% 14.9% 9.6% 15.6% 17.3% 15.7% 9.9% 3.9% 14.6% 15.3% 11.9% 6.4% 2.7%
Liq-CAPM 12.5% 12.0% 10.9% 9.6% 9.0% 12.5% 11.7% 9.5% 6.2% 3.6% 11.7% 10.4% 7.4% 4.3% 2.7%
FF3-QMJ 11.2% 10.1% 8.8% 7.4% 5.5% 11.1% 9.8% 7.7% 4.8% 2.1% 10.4% 8.6% 5.8% 3.1% 1.5%

Posterior model probabilities for the specifications in the first column, for different (annualized) prior Sharpe
ratio values, computed using the Dirac spike-and-slab prior method of Section III.1.2. Panel A includes the
factors BEH PEAD, MKT, CMA∗, while Panel B considers in addition STRev, RMW∗, and BW ISENT. Panel
C uses the most likely 5-factor model according to the posterior probability. Factors are: MKT, MGMT,
BAB, BEH PEAD, CMA# for SRpr = 1; STRev, BAB, BEH PEAD, RMW#, CMA# for SRpr = 1.5 to 2.5;
BW ISENT, BEH PEAD, MKT#, RMW#, CMA# for SRpr = 3. Factors are described in Table A1 of the
Appendix. Liq-CAPM stands for the liquidity-adjusted model of Pástor and Stambaugh (2003) and FF3-QMJ
corresponds to the 4-factor model of Asness, Frazzini, and Pedersen (2019). Sample: 1973:10 to 2016:12. Test
assets: 60 anomaly portfolios.

enough to outperform the most widely used empirical SDFs. This outperformance becomes

even more pronounced when we consider the six most likely factors (see Panel B). Note that

this drastic difference in performance understates the true power of our Bayesian approach to

factor and model selection. Indeed, a subset of the most (individually) likely factors does not

necessarily create the most likely model. Luckily, our approach can also be used to select the

most likely model of any dimension. In particular, in Panel C we run the horse race between the

most likely five-factor model that emerges using the Dirac Spike-and-Slab approach of Section

III.1.2. Clearly, for all the values of prior SR, the best five-factor model outperforms not only

all the notable models but also the combination of six overall most likely factors (from Panel B).

While different prior SR may lead to different most likely low-dimensional models, the subset

of selected factors is quite stable: All the specifications include BEH PEAD and CMA∗, while

RMW∗ and BAB are selected four times out of five, and STRev is part of the most likely model

three times out of five.

Our approach can also be used to formally evaluate the space of sparse factor models.

In particular, in Table 8 we consider the universe of all the possible models that include no

more than five factors, that is, 2.6 mln models. We evaluate all of those models individually,

computing each of their marginal likelihoods following the Dirac spike-and-slab approach of

Section III.1.2 (instead of sampling models, as in Section V.1). The table reports both posterior

probabilities of the factor inclusion and their posterior price of risk. For simplicity, we consider

the prior probability of a factor being included into the model being equal to 9.58% (since we

have 51 factors total and each model with up to five factors is given equal ex ante probability).

First, three factors clearly stand out in Table 8: BEH PEAD, BW SENT, CMA&, all of

which were also among the most likely factors in the SDF identified in the whole model space
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Table 8: Posterior factor probabilities, E [γj|data], and risk prices: 2.6 million models

Factor inclusion prob., E [γj|data] Price of risk, E [λj|data]
Total prior SR: Total prior SR:

Factors: 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
BEH PEAD 0.124 0.206 0.309 0.389 0.430 0.421 0.005 0.024 0.059 0.095 0.122 0.130
BW ISENT 0.099 0.109 0.128 0.161 0.225 0.343 0.001 0.002 0.007 0.016 0.041 0.111
CMA& 0.104 0.122 0.136 0.141 0.137 0.120 0.003 0.010 0.017 0.023 0.026 0.025
BAB 0.112 0.133 0.140 0.136 0.125 0.105 0.005 0.014 0.021 0.024 0.025 0.022
DIV 0.097 0.102 0.109 0.121 0.141 0.183 0.000 0.000 0.001 0.002 0.005 0.016
HJTZ ISENT 0.097 0.102 0.109 0.119 0.134 0.156 0.000 0.001 0.002 0.005 0.010 0.021
NONDUR 0.097 0.101 0.108 0.118 0.133 0.161 0.000 0.001 0.002 0.004 0.008 0.020
TERM 0.097 0.101 0.108 0.118 0.133 0.161 0.000 0.000 -0.001 -0.002 -0.005 -0.012
PE 0.097 0.101 0.108 0.117 0.132 0.160 0.000 0.000 -0.001 -0.002 -0.004 -0.012
FIN UNC 0.097 0.101 0.108 0.117 0.131 0.149 0.000 0.001 0.002 0.004 0.008 0.017
UNRATE 0.097 0.101 0.107 0.116 0.130 0.154 0.000 0.000 0.001 0.002 0.005 0.013
DeltaSLOPE 0.097 0.101 0.107 0.116 0.129 0.154 0.000 0.000 0.001 0.002 0.003 0.010
IPGrowth 0.097 0.101 0.107 0.115 0.127 0.148 0.000 0.000 0.000 -0.001 -0.002 -0.006
DEFAULT 0.097 0.101 0.107 0.115 0.127 0.146 0.000 0.000 0.001 0.001 0.003 0.007
SERV 0.096 0.101 0.106 0.114 0.126 0.146 0.000 0.000 0.000 0.001 0.002 0.006
REAL UNC 0.096 0.100 0.106 0.114 0.125 0.141 0.000 0.000 0.000 0.001 0.002 0.004
STRev 0.095 0.098 0.105 0.116 0.123 0.109 0.001 0.005 0.010 0.016 0.022 0.022
MACRO UNC 0.096 0.100 0.106 0.113 0.122 0.136 0.000 0.000 0.000 0.000 0.001 0.000
Oil 0.096 0.100 0.105 0.111 0.119 0.129 0.000 0.000 0.000 0.000 0.001 0.002
MKT& 0.097 0.101 0.104 0.105 0.103 0.105 0.002 0.005 0.009 0.013 0.015 0.020
RMW& 0.096 0.098 0.102 0.106 0.103 0.083 0.002 0.006 0.011 0.015 0.018 0.016
LIQ NT 0.096 0.098 0.100 0.102 0.101 0.096 0.000 0.000 0.001 0.001 0.002 0.003
MKT 0.094 0.099 0.103 0.103 0.095 0.080 0.003 0.009 0.014 0.018 0.020 0.018
ROE 0.107 0.113 0.106 0.093 0.078 0.060 0.006 0.013 0.016 0.017 0.015 0.012
MGMT 0.109 0.109 0.101 0.092 0.080 0.061 0.007 0.014 0.017 0.018 0.017 0.013
NetOA 0.098 0.102 0.101 0.094 0.084 0.068 0.002 0.005 0.008 0.010 0.010 0.009
IA 0.108 0.108 0.099 0.089 0.077 0.060 0.006 0.013 0.015 0.016 0.015 0.012
HML& 0.099 0.101 0.096 0.087 0.075 0.058 0.003 0.007 0.010 0.011 0.011 0.009
LIQ TR 0.095 0.095 0.093 0.087 0.078 0.063 0.001 0.002 0.004 0.006 0.006 0.005
INTERM CAP RATIO 0.093 0.090 0.087 0.083 0.075 0.062 0.001 0.004 0.006 0.008 0.009 0.008
INV IN ASS 0.098 0.097 0.090 0.079 0.067 0.051 0.003 0.006 0.009 0.009 0.008 0.007
PERF 0.096 0.091 0.082 0.071 0.059 0.044 0.003 0.007 0.009 0.009 0.008 0.006
STOCK ISS 0.098 0.092 0.081 0.070 0.058 0.043 0.004 0.008 0.009 0.009 0.008 0.006
ACCR 0.093 0.087 0.079 0.070 0.060 0.048 0.001 0.002 0.004 0.004 0.004 0.004
BEH FIN 0.099 0.089 0.077 0.067 0.057 0.043 0.005 0.009 0.010 0.010 0.009 0.007
QMJ 0.095 0.086 0.076 0.066 0.055 0.040 0.004 0.008 0.010 0.010 0.009 0.007
UMD 0.094 0.087 0.076 0.065 0.055 0.043 0.002 0.004 0.005 0.005 0.004 0.003
SMB& 0.092 0.083 0.073 0.063 0.052 0.039 0.001 0.003 0.004 0.004 0.004 0.003
HML DEVIL 0.085 0.073 0.067 0.066 0.062 0.050 0.002 0.004 0.006 0.009 0.011 0.010
CMA 0.095 0.084 0.071 0.059 0.049 0.037 0.004 0.007 0.007 0.006 0.005 0.004
SKEW 0.089 0.081 0.071 0.060 0.048 0.036 0.002 0.005 0.006 0.006 0.005 0.004
ASS Growth 0.093 0.081 0.068 0.057 0.047 0.035 0.003 0.005 0.005 0.005 0.004 0.003
COMP ISSUE 0.091 0.077 0.065 0.055 0.046 0.034 0.003 0.004 0.005 0.004 0.004 0.003
LTRev 0.089 0.076 0.064 0.053 0.043 0.032 0.001 0.003 0.003 0.003 0.003 0.002
RMW 0.088 0.074 0.062 0.052 0.043 0.032 0.002 0.003 0.004 0.004 0.003 0.003
ROA 0.089 0.075 0.062 0.051 0.041 0.030 0.002 0.004 0.004 0.004 0.003 0.002
GR PROF 0.087 0.073 0.061 0.051 0.042 0.031 0.000 0.001 0.000 0.000 0.000 0.000
SMB 0.086 0.073 0.061 0.051 0.040 0.029 0.002 0.004 0.004 0.004 0.004 0.002
DISSTR 0.084 0.069 0.059 0.051 0.043 0.033 0.001 0.000 -0.001 -0.002 -0.003 -0.002
HML 0.086 0.070 0.057 0.048 0.039 0.030 0.002 0.003 0.003 0.003 0.003 0.002
O SCORE 0.084 0.069 0.056 0.045 0.036 0.027 -0.001 -0.002 -0.002 -0.002 -0.001 -0.001

Posterior probabilities of factors, E [γj |data], and posterior mean of factors’ risk prices, E [λj |data], are computed
using the the Dirac spike-and-slab approach of Section III.1.2 and 51 factors described in Table A1 of Appendix.
Sample: 1973:10-2016:12. Test assets: 34 tradable factors and 26 investment anomalies. Prior probability of a
factor being included is about 9.58% since we give each possible model equal prior probability and a factor could
be included in a model with up to four other variables. Results tabulated for different values of the (annualized)

prior Sharpe ratio,
"
Eπ[SR2

f | σ2]. Light-shaded grey rows denote non-tradable factors.
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of Table 3. Second, and strikingly, there is a large set of factors that have posterior probability

of inclusion above the prior, providing support for them being included in a low-dimensional

model. This group includes not only the other robust factors identified in Section V.1 but

also 40% of both tradable and non-tradable macro-factors, such as nondurable consumption,

unemployment, and industrial production growth. This second finding is consistent with our

results in Section V.3, where we showed that many factors seem to load on the same underlying

sources of economic risks: Sparse models, therefore, tend to rely on them almost interchange-

ably. This is further illustrated in Figure IA4 of the Internet Appendix, which depicts posterior

probabilities for the top 2,000 sparse models under the (annualized) SR prior of 2. Similar

to our findings in Section V.3, the space of best performing models is quite flat, with their

corresponding posterior probability decaying slowly. In fact, up to a first-order approximation,

the frequentist likelihood ratio test of the best performing model versus the 100th (1000th) spec-

ification would yield a p-value of 19.0% (9.2%) at best. Interestingly, as outlined in Table IA22

of the Internet Appendix, non-tradable factors are very salient for low-dimensional models: the

overwhelming majority, 67%-99%, of the (top 10%) best-performing sparse SDFs include at

least one non-tradable factor.

Our findings indicate that low-dimensional models with observable factors are likely to be

severely misspecified, and in many cases reflect noisy measures of the same underlying economic

risks. While some of the factors still stand alone as significant drivers of the cross-section of

asset returns, the true latent SDF is still best approximated by an efficient aggregation of many

underlying variables, provided by the BMA. To further validate this point, we have performed

an OOS analysis (in both time-series and cross-sectional dimension) of the BMA versus the

best low-dimensional models and found that the former strongly outperforms the latter.

VI Conclusions and Extensions

We develop a novel (Bayesian) method for the analysis of linear factor models in asset pricing.

This approach can handle quadrillions of models generated by the zoo of traded and non-traded

factors and delivers inference that is robust to the common identification failures caused by weak

and level factors.

We apply our approach to the study of more than 2 quadrillion factor model specifications

and find that: 1) only a handful of factors seem to be robust explanators of the cross-section

of asset returns; 2) jointly, the three to six robust factors provide a model that substantially

outperforms notable benchmarks; 3) nevertheless, with very high probability the “true” latent

SDF is dense in the space of factors proposed in the previous literature, likely containing 23–

25 observable factors; and 4) a BMA over the universe of possible models delivers a novel

benchmark SDF for in- and out-of-sample empirical asset pricing.
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Our method can be feasibly modified to accommodate several salient extensions. First, one

might want to bound the maximum price of risk (or the maximum Sharpe ratios) associated

with the factors. This can be achieved by replacing the Gaussian distributions in our spike-

and-slab priors with (rescaled and centred) Beta distributions, since the latter have bounded

support. Furthermore, for the sake of expositional simplicity and closed-form solutions, we have

focused on regularizing spike-and-slab priors with exponential tails. Nevertheless, our approach,

which shrinks weak (and level) factors based on their correlation with asset returns, could also

be implemented using polynomial tailed (i.e., heavy-tailed) mixing priors (see Polson and Scott

(2011) for a general discussion of priors for regularization and shrinkage).41 The rationale for

heavy-tailed priors is that when the likelihood has thick tails while the prior has a thin tail, if

the likelihood peak moves too far from the prior, the posterior eventually reverts toward the

prior. Nevertheless, note that this mechanism (first pointed out by Jeffreys (1961)) is actually

desirable in our settings in order to shrink the price of risk of useless factors toward zero.42

Second, thanks to its hierarchical structure, our approach can formally handle the statistical

uncertainty caused by generated factors, for example, mimicking portfolios, and provides valid

inference in their presence. Furthermore, it can accommodate a wide range of both priced and

unpriced latent factors.

Third, thanks to the hierarchical structure of our method, time-varying expected returns and

SDF factor loadings could be accommodated by adopting the time-varying parameter approach

of Primiceri (2005). Furthermore, although this would significantly increase the numerical

complexity of the cross-sectional inference step, the time-varying parameters formulation could

also be used for modeling time-varying factor risk prices.
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A Appendix

A.1 Additional Derivations and Proofs

A.1.1 Derivation of the posterior distributions in Section III

Let’s consider first the time series layer of our hierarchical model. We assume that Yt
iid∼

N (µY ,ΣY ). The likelihood function of the observed time-series data Y = {Yt}Tt=1 is

p(Y|µY ,ΣY ) ∝ |ΣY |−
T
2 e−

1
2
tr[Σ−1

Y

"T
t=1(Yt−µY )(Yt−µY )⊤]

∝ |ΣY |−
T
2 e−

1
2
tr[Σ−1

Y

"T
t=1(Yt−µ̂Y )(Yt−µ̂Y )⊤+TΣ−1

Y (µY −µ̂Y )(µY −µ̂Y )⊤],

where µ̂Y = 1
T

#
T

t=1 Yt. After assigning a diffuse prior for (µY ,ΣY ), π(µY ,ΣY ) ∝ |ΣY |−
p+1
2 ,

the posterior distribution function of (µY ,ΣY ) is

p(µY ,ΣY |Y) ∝ |ΣY |−
T+p+1

2 e−
1
2
tr[Σ−1

Y

"T
t=1(Yt−µ̂Y )(Yt−µ̂Y )⊤+TΣ−1

Y (µY −µ̂Y )(µY −µ̂Y )⊤].

Hence, the posterior distribution of µY conditional on Y and ΣY is

p(µY |Y,ΣY ) ∝ e−
1
2
tr[TΣ−1

Y (µY −µ̂Y )(µY −µ̂Y )⊤],

and the above is the kernel of the multivariate normal in equation (6). If we further integrate

out µY , it is easy to show that p(ΣY |Y) ∝ |ΣY |−
T+p
2 e−

1
2
tr[Σ−1

Y

"T
t=1(Yt−µ̂Y )(Yt−µ̂Y )⊤]. Therefore,

the posterior distribution of Σ is the inverse-Wishart in equation (7).

Recall that C = (1N , Cf ), λ
⊤ = (λc, λ

⊤
f ). Assuming αi ∼ iid N (0, σ2), the cross-sectional

likelihood function conditional on the time-series parameters (µY and ΣY ), p(data|λ, σ2), is

given in equation (10), where “data” in this cross-sectional (second) step include the observed

time-series Y = {Yt}Tt=1, as well as µY and ΣY drawn from the time-series step.
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Assuming the diffuse prior π(λ, σ2) ∝ σ−2, the posterior distribution of (λ, σ2) is

p(λ, σ2|data) ∝ (σ2)−
N+2

2 e−
1

2σ2 (µR−Cλ)⊤(µR−Cλ) = (σ2)−
N+2

2 e−
1

2σ2 (µR−Cλ̂+C(λ̂−λ))⊤(µR−Cλ̂+C(λ̂−λ))

= (σ2)−
N+2

2 e−
1

2σ2 (µR−Cλ̂)⊤(µR−Cλ̂)− 1
2σ2 (λ−λ̂)⊤C⊤C(λ−λ̂), and

∴ p(λ|σ2, data) ∝ e−
(λ−λ̂)⊤C⊤C(λ−λ̂)

2σ2 ,

where λ̂ = (C⊤C)−1C⊤µR, σ̂
2 = (µR−Cλ̂)⊤(µR−Cλ̂)

N
, and the above is the kernel of a Gaussian

distribution. Note that sending σ2 → 0 the posterior p(λ|σ2, data) is proportional to a Dirac

at λ̂ as per Definition 1. For non-degenerate values of σ2, the conditional posterior of λ is

instead the one in equation (11). We derive the posterior of σ2 by integrating out λ in the joint

posterior, p(σ2|data) =
A
p(λ, σ2|data)dλ ∝ (σ2)−

N−K+1
2 e−

N σ̂2

2σ2 , hence, obtaining equation (12).

Under the GLS distributional assumption, α ∼ N (0N , σ2ΣR), where ΣR is the covariance

matrix of returns Rt. The posterior of (λ, σ2) is then

p(λ, σ2|data) ∝ (σ2)−
N+2

2 e−
1

2σ2 (µR−Cλ)⊤Σ−1
R (µR−Cλ)

= (σ2)−
N+2

2 e−
1

2σ2 (µR−Cλ̂)⊤Σ−1
R (µR−Cλ̂)− 1

2σ2 (λ−λ̂)⊤C⊤Σ−1
R C(λ−λ̂), and

∴ p(λ|σ2, data) ∝ e−
(λ−λ̂)⊤C⊤Σ

−1
R

C(λ−λ̂)

2σ2 ,

where λ̂ = (C⊤Σ−1
R C)−1C⊤Σ−1

R µR and the above is the kernel of a Gaussian distribution.

Note that sending σ2 → 0, the posterior p(λ|σ2, data) is proportional to a Dirac at λ̂ as per

Definition 2. For non-degenerate values of σ2 the conditional posterior of λ is instead the

one in equation (13). Further integrating out λ, we obtain p(σ2|data) =
A
p(λ, σ2|data)dλ ∝

(σ2)−
N−K+1

2 e−
1

2σ2 (µR−Cλ̂)⊤Σ−1
R (µR−Cλ̂). Hence, the posterior of σ2 is as in equation (14).

A.1.2 Formal derivation of the flat prior pitfall for the price of risk

Following the derivation in Section A.1.1, the cross-sectional likelihood is given by equation

(10). Assigning a flat prior to the parameters43 (λ, σ2), the marginal cross-sectional likelihood

function conditional on model index γ is

p(data|γ) =
BB

p(data|γ,λ, σ2)π(λ, σ2|γ)dλdσ2 ∝
BB

(σ2)−
N+2

2 e−
1

2σ2 (µR−Cγλγ)⊤(µR−Cγλγ)dλdσ2

=

BB
(σ2)−

N+2
2 e−

N σ̂2
γ

2σ2 e−
(λγ−λ̂γ )⊤C⊤

γ Cγ (λγ−λ̂γ )

2σ2 dλdσ2

= (2π)
pγ
2 |C⊤

γ Cγ |−
1
2

B
(σ2)−

N−pγ+2

2 e−
N σ̂2

γ

2σ2 dσ2 = (2π)
pγ
2 |C⊤

γ Cγ |−
1
2
Γ(N−pγ

2
)

(
N σ̂2

γ

2
)
N−pγ

2

,

43More precisely, the priors for (λ,σ2) are π(λγ ,σ
2) ∝ 1

σ2 and λ−γ = 0.
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where λ̂γ = (C⊤
γ Cγ)

−1C⊤
γ µR, σ̂

2
γ = (µR−Cγ λ̂γ)⊤(µR−Cγ λ̂γ)

N
and Γ denotes the Gamma function.

A.1.3 Proof of Proposition 2

Sampling λγ. From Bayes’ theorem we have that

p(λ|data, σ2,γ) ∝ p(data|λ, σ2,γ)π(λ|σ2,γ)

∝ (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 e−

1
2σ2 [(µR−Cγλγ)⊤(µR−Cγλγ)+λ⊤

γ Dγλγ ]

= (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 e−

(λγ−λ̂γ )⊤(C⊤
γ Cγ+Dγ )(λγ−λ̂γ )

2σ2 e−
SSRγ

2σ2 ,

where SSRγ = µ⊤
RµR−µ⊤

RCγ(C
⊤
γ Cγ +Dγ)

−1C⊤
γ µR = minλγ{(µR−Cγλγ)

⊤(µR−Cγλγ)+

λ⊤
γDγλγ}. Hence, defining λ̂γ = (C⊤

γ Cγ +Dγ)
−1C⊤

γ µR and σ̂2(λ̂γ) = σ2(C⊤
γ Cγ +Dγ)

−1, we

obtain the posterior distribution in (16).

Using our priors and integrating out λ yields

p(data|σ2,γ) =

B
p(data|λ, σ2,γ)π(λ|σ2,γ)dλ ∝ (σ2)−

N
2

|Dγ |
1
2

|C⊤
γ Cγ +Dγ |

1
2

e−
SSRγ

2σ2 .

Sampling σ2. From Bayes theorem, the posterior of σ2 is p(σ2|data,γ) ∝ p(data|σ2,γ)π(σ2) ∝
(σ2)−

N
2
−1e−

SSRγ

2σ2 . Hence, the posterior distribution of σ2 is the inverse-Gamma in (17).

Finally, we obtain the marginal likelihood of the data in (18) by integrating out σ2 as follows:

p(data|γ) =
B

p(data|σ2,γ)π(σ2)dσ2 ∝ |Dγ |
1
2

|C⊤
γ Cγ +Dγ |

1
2

1

(SSRγ/2)
N
2

,

where SSRγ = µ⊤
RµR − µ⊤

RCγ(C
⊤
γ Cγ +Dγ)

−1C⊤
γ µR.

A.1.4 Proof of Proposition 3

Sampling λγ. From Bayes’ theorem we have that

p(λ|data, σ2,γ) ∝ p(data|λ, σ2,γ)π(λ|σ2,γ)

∝ (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 e−

1
2σ2 [(µR−Cγλγ)⊤Σ−1

R (µR−Cγλγ)+λ⊤
γ Dγλγ ]

= (2π)−
pγ
2 |Dγ |

1
2 (σ2)−

N+pγ
2 e−

(λγ−λ̂γ )⊤(C⊤
γ Σ−1

R
Cγ+Dγ )(λγ−λ̂γ )

2σ2 e−
SSRγ

2σ2 ,

where SSRγ = minλγ{(µR − Cγλγ)
⊤Σ−1

R (µR − Cγλγ) + λ⊤
γDγλγ}. Hence, defining λ̂γ =

(C⊤
γ Σ

−1
R Cγ + Dγ)

−1C⊤
γ Σ

−1
R µR, σ̂2(λ̂γ) = σ2(C⊤

γ Σ
−1
R Cγ + Dγ)

−1, we obtain the posterior

distribution in (19).
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Using our priors and integrating out λ yields

p(data|σ2,γ) =

B
p(data|λ, σ2,γ)π(λ|σ2,γ)dλ ∝ (σ2)−

N
2

|Dγ |
1
2

|C⊤
γ Σ

−1
R Cγ +Dγ |

1
2

e−
SSRγ

2σ2 .

Obviously, the posterior distribution of σ2 is identical to that in equation (20).

Finally, we obtain the marginal likelihood of the data in (21) by integrating out σ2 as follows:

p(data|γ) =
B

p(data|σ2,γ)π(σ2)dσ2 ∝ |Dγ |
1
2

|C⊤
γ Σ

−1
R Cγ +Dγ |

1
2

1

(SSRγ/2)
N
2

.

A.1.5 Proof of Corollary 1

To begin with, we introduce the following matrix notations:

Cγ = (Cγ′ ,Cp), Dγ =

!
Dγ′ 0

0 ψ−1
p

"
,

where 0 denotes conformable matrices of zeros.

Under the spherical (OLS) distributional assumption for pricing errors α,

C⊤
γ Cγ +Dγ =

!
C⊤

γ′Cγ′ +Dγ′ C⊤
γ′Cp

C⊤
p Cγ′ C⊤

p Cp + ψ−1
p

"
,

|C⊤
γ Cγ + Dγ | = |C⊤

γ′Cγ′ + Dγ′ | × |C⊤
p Cp + ψ−1

p
− C⊤

p Cγ′(C⊤
γ′Cγ′ + Dγ′)−1C⊤

γ′Cp|, and

|Dγ | = |Dγ′ |× ψ−1
p
. Equipped with the above, we have by direct calculation

p(data|γj = 1,γ−j)

p(data|γj = 0,γ−j)
=

|Dγ |
1
2

|C⊤
γ Cγ +Dγ |

1
2

1

(SSRγ/2)
N
2

C
|Dγ′ | 12

|C⊤
γ′Cγ′ +Dγ′ | 12

1

(SSRγ′/2)
N
2

=

.
SSRγ′

SSRγ

3N
2

ψ
− 1

2
p

777C⊤
p Cp + ψ−1

p
−C⊤

p Cγ′
4
C⊤

γ′Cγ′ +Dγ′
5−1

C⊤
γ′Cp

777
− 1

2

=

.
SSRγ′

SSRγ

3N
2 7771 + ψpC

⊤
p

D
IN −Cγ′

4
C⊤

γ′Cγ′ +Dγ′
5−1

C⊤
γ′

E
Cp

777
− 1

2
,

where C⊤
p

D
IN −Cγ′(C⊤

γ′Cγ′ +Dγ′)−1C⊤
γ′

E
Cp = minb{(Cp −Cγ′b)⊤(Cp −Cγ′b) + b⊤Dγ′b}

is the minimal value of the penalized sum of squared errors when we use Cγ′ to predict Cp.

Similar to the above, in the non-spherical (GLS) pricing errors case we have

C⊤
γ Σ

−1
R Cγ +Dγ =

!
C⊤

γ′Σ−1
R Cγ′ +Dγ′ C⊤

γ′Σ−1
R Cp

C⊤
p Σ

−1
R Cγ′ C⊤

p Σ
−1
R Cp + ψ−1

p

"
,
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|C⊤
γ Σ

−1
R Cγ +Dγ | = |C⊤

γ′Σ−1
R Cγ′ +Dγ′ |× |C⊤

p Σ
−1
R Cp +

1
ψp

−C⊤
p Σ

−1
R Cγ′(C⊤

γ′Σ−1
R Cγ′ +Dγ′)−1C⊤

γ′Σ−1
R Cp|, and

|Dγ | = |Dγ′ |× ψ−1
p
. Equipped with the above, we have by direct calculation

p(data|γj = 1,γ−j)

p(data|γj = 0,γ−j)
=

|Dγ |
1
2

|C⊤
γ Σ

−1
R Cγ +Dγ |

1
2

1

(SSRγ/2)
N
2

C
|Dγ′ | 12

|C⊤
γ′Σ

−1
R Cγ′ +Dγ′ | 12

1

(SSRγ′/2)
N
2

=

.
SSRγ′

SSRγ

3N
2

ψ
− 1

2
p

7777C
⊤
p Σ

−1
R Cp +

1

ψp

−C⊤
p Σ

−1
R Cγ′

4
C⊤

γ′Σ−1
R Cγ′ +Dγ′

5−1
C⊤

γ′Σ−1
R Cp

7777
− 1

2

=

.
SSRγ′

SSRγ

3N
2 7771 + ψp

8
C⊤

p Σ
−1
R Cp −C⊤

p Σ
−1
R Cγ′

4
C⊤

γ′Σ−1
R Cγ′ +Dγ′

5−1
C⊤

γ′Σ−1
R Cp

9777
− 1

2
,

whereC⊤
p Σ

−1
R Cp−C⊤

p Σ
−1
R Cγ′

*
C⊤

γ′Σ−1
R Cγ′ +Dγ′

+−1

C⊤
γ′Σ−1

R Cp = minb{(Cp−Cγ′b)⊤Σ−1
R (Cp−

Cγ′b) + b⊤Dγ′b}, which is the minimal value of the penalized sum of squared errors when we

use Cγ′ to predict Cp, but the prediction errors are weighted by Σ−1
R .

A.1.6 Proof of Propositions 5 and 6

Sampling λγ. Combining the likelihood and the prior for λ we have the following:

p(λ|data, σ2,γ) ∝ p(data|λ, σ2,γ)p(λ|σ2,γ) ∝ e−
1

2σ2 [λ⊤(C⊤C+D)λ−2λ⊤C⊤µR].

Therefore, defining λ̂ = (C⊤C + D)−1C⊤µR and σ̂2(λ̂) = σ2(C⊤C + D)−1, we have the

posterior in equation (28).

Sampling {γj}Kj=1. Given a ωj, the conditional Bayes factor for the j-th risk factor is44

p(γj = 1|data,λ,ω, σ2,γ−j)

p(γj = 0|data,λ,ω, σ2,γ−j)
=

ωj

1− ωj

p(λj|γj = 1, σ2)

p(λj|γj = 0, σ2)

Sampling ω. From Bayes’ theorem we have p(ωj|data,λ,γ, σ2) ∝ π(ωj)π(γj|ωj) ∝ ω
γj
j
(1 −

ωj)
1−γjωaω−1

j
(1 − ωj)

bω−1 ∝ ω
γj+aω−1
j

(1 − ωj)
1−γj+bω−1. Therefore, the posterior distribution of

ωj is the Beta in equation (30).

Sampling σ2. Finally, p(σ2|data,ω,λ,γ) ∝ (σ2)−
N+K+1

2
−1e−

1
2σ2 [(µR−Cλ)⊤(µR−Cλ)+λ⊤Dλ]. Hence,

the posterior distribution of σ2 is the inverse-Gamma in equation (31). The proof of Proposition

6 follows the same identical steps, and is therefore omitted for brevity.

44If we had instead imposed ωj = 0.5, as in Section III.1.2, the Bayes factor would simply be
p(λj |γj=1,σ2)
p(λj |γj=0,σ2) .
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A.2 Data

Table A1: List of factors and anomalies for cross-sectional asset pricing

Panel A: asset pricing factors

Factor ID Reference Factor ID Reference
MKT Sharpe (1964, JF), Lintner (1965, JF) HML DEVIL Asness and Frazzini (2013, JPM)
SMB Fama and French (1992, JF) QMJ Asness, Frazzini, and Pedersen (2019, RAS)
HML Fama and French (1992, JF) FIN UNC Jurado, Ludvigson, and Ng (2015, AER), Ludvig-

son, Ma, and Ng (2019, AEJ-M)
RMW Fama and French (2015, JFE) REAL UNC Jurado, Ludvigson, and Ng (2015, AER), Ludvig-

son, Ma, and Ng (2019, AEJ-M)
CMA Fama and French (2015, JFE) MACRO UNC Jurado, Ludvigson, and Ng (2015, AER), Ludvig-

son, Ma, and Ng (2019)
UMD Carhart (1997, JF), Jegadeesh and Titman (1993,

JF)
TERM Chen, Ross and Roll (1986, JB), Fama and French

(1993, JFE)
STRev Jegadeesh and Titman (1993, JF) DELTA SLOPE Ferson and Harvey (1991, JPE)
LTRev Jegadeesh and Titman (2001, JF) CREDIT Chen, Ross and Roll (1986, JB), Fama and French

(1993, JFE)
q IA Hou, Xue, Zhang (2015, RFS) DIV Campbell (1996, JPE)
q ROE Hou, Xue, Zhang (2015, Review of Financial Stud-

ies)
PE Basu (1977, JF), Ball (1978, JFE)

LIQ NT Pastor and Stambaugh (2003, JPE) BW INV SENT Baker and Wurgler (2006, JF)
LIQ TR Pastor and Stambaugh (2003, JPE) HJTZ INV SENT Huang, Jiang, Tu, and Zhou (2015, RFS)
MGMT Stambaugh and Yuan (2016, RFS) BEH PEAD Daniel, Hirshleifer, and Sun (2019, RFS)
PERF Stambaugh and Yuan (2016, RFS) BEH FIN Daniel, Hirshleifer, and Sun (2019, RFS)
ACCR Sloan (1996, AR) MKT∗ Daniel, Mota, Rottke, and Santos (2020, RFS)
DISSTR Campbell, Hilscher, and Szilagyi (2008, JF) SMB∗ Daniel, Mota, Rottke, and Santos (2020, RFS)
A Growth Cooper, Gulen, and Schill (2008, JF) HML∗ Daniel, Mota, Rottke, and Santos (2020, RFS)
COMP ISSUE Daniel and Titman (2006, JF) RMW∗ Daniel, Mota, Rottke, and Santos (2020, RFS)
GR PROF Novy-Marx (2013, JFE) CMA∗ Daniel, Mota, Rottke, and Santos (2020, RFS)
INV IN ASSETS Titman, Wei, and Xie (2004, JFQA) SKEW Langlois (2019, JFE)
NetOA Hirshleifer, Kewei, Teoh, and Zhang (2004, JAE) NONDUR Chen, Ross and Roll (1986, JB), Breeden, Gib-

bons, and Litzenberger (1989, JF)
OSCORE Ohlson (1980, JAR) SERV Breeden, Gibbons, and Litzenberger (1989, JF),

Hall (1978, JPE)
ROA Chen, Novy-Marx, and Zhang (2010, working pa-

per)
UNRATE Gertler and Grinols (1982, JMCB)

STOCK ISS Ritter (1991, JF), Fama and French (2008, JF) IND PROD Chan, Chen, and Hsieh (1985, JFE), Chen, Ross
and Roll (1986, JB)

INTERM CR He, Kelly, and Manela (2017, JFE) OIL Chen, Ross and Roll (1986, JB)
BAB Frazzini and Pedersen (2014, JFE)

Panel B: additional anomalies used for the construction of test assets

Anomaly ID Reference Anomaly ID Reference
CashAssets Palazzo (2012, JFE) Volume Garfinkel (2009, RAS)
FCFBook Hou, Karolyi, and Kho (2011, RFS) SGASales Freyberger, Neuhierl, and Weber (2020, RFS)
CFPrice Desai, Rajgopal, and Venkatachalam (2004, AR) Q Kaldor (1996, REStud)
CapTurnover Haugen and Baker (1996, JFE) IVolCAPM Ang, Hodrick, Xing, and Zhang (2006, JF)
CapIntens Gorodnichenko and Weber (2016, AER) IVolFF3 Ang, Hodrick, Xing, and Zhang (2006, JF)
DP tr Litzenberger and Ramaswamy (1979, JFE) DayVariance Ang, Hodrick, Xing, and Zhang (2006, JF)
PPE delta Lyandres, Sun, and Zhang (2008, RFS) ProfMargin Soliman (2008, AR)
Lev Lewellen (2015, CFR) PriceCostMargin Bustamante and Donangelo (2017, RFS)
SalesPrice Lewellen (2015, CFR) OperLev Novy-Marx (2011, RF)
IntermMom Novy-Marx (2012, JFE) FixedCostSale D’Acunto, Liu, Pflueger, and Weber (2018, JFE)
YearHigh George and Hwang (2004, JF) LTMom Bondt and Thaler (1985, JF)
PE tr Basu (1983, JFE) NetSalesNetOA Soliman (2008, AR)
BidAsk Chung and Zhang (2014, JFM) AssetsMarket Bhandari (1988, JF)

The table presents the list of factors and anomalies used in Section V.1. For each of the variables, we present their
identification index, the nature of the factor, and the source of data for downloading and/or constructing the
time series. Full description of the factors, anomalies, sources, and references can be found in Tables IA13 and
IA14 of the Internet Appendix. The journal acronyms used in the table are: AEJ-M = AEJ: Macroeconomics;
AER = American Economy Review; AR = Accounting Review; CFR = Critical Finance Review; JAE = Journal
of Accounting and Economics; JAR = Journal of Accounting Research; JB = Journal of Business; JF= Journal
of Finance; JFE = Journal of Financial Economics; JFM = Journal of Financial Markets; JFQA = Journal
of Financial and Quantitative Analysis; JMCB = Journal of Money, Credit, and Banking; JMP = Journal of
Portfolio Management; JPE = Journal of Political Economy; RAS = Review of Accounting Studies; REStud =
Review of Economic Studies; RF = Review of Finance; RFS = Review of Financial Studies.
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