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Relevance of Higher Order Risk Preferences

• Theoretically, higher order risk preferences are related to a
wide range of domains, e.g.,

• Precautionary saving (Leland, 1968; Kimball, 1990)

• Risky investment (Kimball, 1993)

• Ecological discounting and sustainable
development/climate change (Gollier, 2010; Bramoulle and Treich, 2009)

• Health outcomes (Modica and Scarsini, 2005; Menegatti, 2009; Attema 2019)

• Yet, suitable method for direct measurement of
(utility-based) intensity measures of higher order risk
preferences missing

• Fitting a parametric utility function not an option
• Linear interpolation not an option

Need for a sophisticated alternative!
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Contribution

We propose a method for direct (non-parametric) elicitation of
utility-based intensity coefficients of HORPs

• The method (a supervised machine learning approach)
• Data
• Model
• Objective function
• Algorithm/optimization

• Simulation and validation

• (Application to savings in Bogota w./ theoretical model)

Preview on the performance of the method:
• Correlation with DGP in simulation .96 (lin. interpol.: .37)
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Third Order Risk Preference: Prudence

Prudence: Preference for the left lottery

• Prefer allocation of risk in states of higher wealth
• Downside Risk Aversion (Menezes et al., 1980)
• Preference for (right) skewness Distribution of Options

(Modica and Scarsini, 2005; Ebert, 2013)
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Fourth Order Risk Preference: Temperance

Temperance: Preference for the right lottery

• Prefer disaggretation of risks over states of the world

• Dislike of Kurtosis, i.e., fat tails Distribution of Options

(Denuit and Eeckhoudt, 2010; Ebert, 2013)
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Higher Order Risk Preferences

Utility-based definitions

Risk Aversion u′′ < 0, i.e., concave utility function

Prudence u′′′ > 0, i.e., convex marginal utility function

Temperance u(iv) < 0, i.e., u′′ concave

Eeckhoudt & Schlesinger (2006)⇔

“Behavioral definitions” (previous slides)
Allocation/avoidance of mean zero risks
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Higher Order Risk Preferences

Intensity measures of (higher order) risk preferences

• Risk Aversion: rAP = − u′′

u′ (Arrow-Pratt)

• Prudence: m = u′′′

u′ (Crainich and Eeckhoudt)

• Temperance: t = − u(iv)

u′ (Denuit and Eeckhoudt)

?⇔

“Behavioral definitions” (previous slides)
Allocation/avoidance of mean zero risks
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Data: Utility Points via Certainty Equivalents

EUL = 0.5·U(140) + 0.5·U(0) = 0.5
U(CEL) = 0.5
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x

U(x)

• Iterative

• Over small and large
stakes

• Free of second-best
assumptions about the
shape of the utility
curve and sign of its
derivatives

• Challenges

• Utility between
elicited points?

• Error correction?
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Model: Lin. Model Using an Adapted P-Splines Approach

(a) B-spline basis

(b) Regression on B-spline basis
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Linear Regression

• Fit the following equation: yi = β1xi + εi

• Matrix notation

X =
[
x0 x1 . . . x6 x7

]⊤
=

[
0 0.125 . . . 0.875 1

]⊤
• Objective: argminβ Q(β) = ∥y − Xβ∥2

• Solution: β̂ = (X ′X )−1X ′y

10



Polynomial Regression

• Fit the following equation: yi = β0 + β1xi + β2x2
i + β3x3

i + εi

• Matrix notation

X =


1 x1 x2

1 x3
1

...
...

...
...

1 x7 x2
7 x3

7

 =



1 0 0 0
1 0.125 0.1252 0.1253

...
1 0.375 0.3752 0.3753

1 0.5 0.52 0.53

 ; β =


β1

β2

β3

β4



• Objective: argminβ Q(β) = ∥y − Xβ∥2

• Solution: β̂ = (X ′X )−1X ′y
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B-Spline Regression

• Generate basis functions B1, . . . ,Bd : De Boor or
differences of truncated power functions (TPF) Example

• Fit the following equation:
yi = β1B1(xi) + β2B2(xi) + · · ·+ βdBd(xi) + εi

• Matrix notation

X =


B1(x1) B2(x1) . . . Bd(x1)

...
...

...
...

B1(xn) B2(xn) . . . Bd(xn)

 ; β =


β1
...
βd


• Objective: argminβ Q(β) = ∥y − Xβ∥2

• Solution: β̂ = (X ′X )−1X ′y
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Model: Lin. Model Using an Adapted P-Splines Approach

(a) B-spline basis (b) Regression on B-spline basis

Analytical expression for derivative!
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P-spline regression

Objective function of the P-spline regression

argminβ Q(β) = ∥y − Xβ∥2 + ω∥Ddβ∥2,

where

• Dd the matrix representation of the d th diff. operator △d

• △daj := △(△d−1aj) with △aj := (aj − aj−1)

14



Model and Objective: Adapting the P-Spline Approach

Minimize MSPE by choice of penalty (i.e., choice of
smoothness parameter)

s. th.

• Monotonicity fulfilled

• Value conditions U(0) = 0 and U(1) = 1 fulfilled

• Roughness penalty jointly smoothes several derivatives

• Roughness penalty “suits” the data, i.e., choose a
data-driven minimum

15



Model and Objective: Adapting the P-Spline Approach

Minimize MSPE by choice of penalty (i.e., choice of
smoothness parameter) s. th.

• Monotonicity fulfilled

• Value conditions U(0) = 0 and U(1) = 1 fulfilled

• Roughness penalty jointly smoothes several derivatives

• Roughness penalty “suits” the data, i.e., choose a
data-driven minimum

15



Model and Objective: Adapting the P-Spline Approach

Minimize MSPE by choice of penalty (i.e., choice of
smoothness parameter) s. th.

• Monotonicity fulfilled

• Value conditions U(0) = 0 and U(1) = 1 fulfilled

• Roughness penalty jointly smoothes several derivatives

• Roughness penalty “suits” the data, i.e., choose a
data-driven minimum

15



Objective and Algorithm: Optimization via Cross Validation

How do we optimize the MSPE? Using the following algorithm:

For every iteration:

• Pick penalty weight
• Perform exhaustive K -fold cross validation where K =

(n
j

)
In our validation study: n = 6, j = 2, and thus K = 15

• Compute MSPE as

1
K

K∑
k=1

∑
i∈I(k)

{yi − ŷ(−k)(xi)}2,

with I(k) the set containing the k th choice of j points for
validation and ŷ−k (xi) the prediction of yi , obtained by
estimating the model using all points but those in I(k)

• Stop when MSPE minimized (or stopping criteria reached)
16



Simulation & Validation

To illustrate the suitability of our method, we conduct

• Simulation Study:

Comparable or superior to alternatives –
yet with the required flexibility! Show results• Generate data according to parametric function

• Elicit utility points using certainty equivalents
• Fit parametric function & our model
• Derive intensity coefficient for risk aversion
• Introduce decision error

• Validation Study:

Significantly related to standard
method – yet yielding proper intensity measures! Show results• Compare our method with elicitation using the “behavioral

defintion”
• Several variants, among them one for elicitation of premia
• Test-Retest-Reliability
• Online and in the lab, N1 = 585 = 527 + 58,
(N2 = 523 = 465 + 58)
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Conclusion

• Tailor-made solution for predicting utility functions

• Develop a new method for elicitation of (utility-based)
intensity measures of higher order risk preferences

• For higher order risk preferences, method yields very
favorable results

• Method has been used to uncover novel results on the
relation between field behavior and risk preferences and to
see previous results in a new light (Schneider & Sutter,
2021)

• Method not restricted to higher order risk preferences -
possible to study other fields!
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Thank You

Thank you very much for your attention!

sschneider@coll.mpg.de
@SebOSchneider

https://sebastianoschneider.com/
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Second Order Risk Preference: Risk Aversion

Risk Aversion: Preference for the left lottery

Distribution of Options
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Second Order Risk Preference: Risk Aversion

Definition: Risk Aversion
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Third Order Risk Preference: Prudence

• Downside Risk Aversion (Menezes et al., 1980)
• Preference for (right) skewness

(Modica and Scarsini, 2005; Ebert, 2013)

Definition: Prudence
23



Fourth Order Risk Preference: Temperance

• Dislike of Kurtosis, i.e., fat tails
(Denuit and Eeckhoudt, 2010; Ebert, 2013)

Definition: Temperance
24



Example of Local Basis Function: Truncated Power Function
of Degree 1 (Linear)

For a given knot κi , the truncated power function of degree 1 is
defined as

(x − κi)+ =

x − κi if x − κi > 0

0 if x − κi ≤ 0
(1)

Basis of the spline model is

B =
[
B1(x) . . . Bn(x)

]
=
[
x (x − κ1)+ (x − κ2)+ . . . (x − κn)+

]
Back to B-Spline Regression

25



Simulation Results

Simulation Results: Measurement Error, Error Propagation and Error
Correction

ARExpo-Power ARCRRA ARLinear ARSchneider et al.

Correlation ρ with ARDGP 0.95 0.97 0.37 0.96
∆ in ρ caused by error 0.04 0.00 0.38 0.00

Notes: This table shows in the first row the Pearson correlation coefficients between the “true” Arrow-Pratt measure

of risk aversion according to the assumed data generating process, ARDGP, and the Arrow-Pratt measures obtained

via elicitation of certainty equivalents and subsequent estimation of a utility curve according to the respective

methods. The entries in the second row denote the difference between the correlation coefficients in the first row

and correlation coefficients obtained when (simulated) measurement error is introduced.

Simulation & Validation
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Test-Retest Reliability: Prudence

Risk App. EW Schneider et al.

Mean Squared Prediction Error 1.63 1.55 1.19
Mean Absolute Prediction Error 0.96 0.89 0.76

Correlation Coeff. (Spearman) 0.18 0.14 0.25
p-value Correlation Coeff. 0.02 0.41 0.00

Outliers Wave 1 or 2 in % (Excluded) 0.00 0.00 4.27
N 175.00 36.00 359.00

Simulation & Validation
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Test-Retest Reliability: Temperance

Risk App. EW Schneider et al.

Mean Squared Prediction Error 1.62 1.41 1.10
Mean Absolute Prediction Error 0.96 0.83 0.61

Correlation Coeff. (Spearman) 0.18 0.14 0.15
p-value Correlation Coeff. 0.02 0.41 0.00

Outliers Wave 1 or 2 in % (Excluded) 0.00 0.00 5.87
N 175.00 36.00 353.00

Simulation & Validation
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