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Abstract

We use French data over the 1994-2013 period to study how imports of industrial

robots affect firm-level outcomes. Guided by a simple model, we develop various em-

pirical strategies to identify the causal effects of robot adoption. Our results suggest

that, while demand shocks generate a positive correlation between robot imports and

employment at the firm level, exogenous exposure to automation leads to job losses.

We also find that robot exposure increases productivity and some evidence that it may

raise the relative demand for high-skill professions.
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1 Introduction

The widespread diffusion of industrial robots has fuelled growing concerns about the future

of work. Robots are programmable machines that have the capability to move on at least

three axes. As such, unlike other pieces of equipment, they are designed to replicate human

actions. The first prototype, the Unimate, was introduced in 1961 at General Motors to

perform basic welding and carrying tasks. Other machines of this type were developed to

assist human workers with a wide array of tasks, including heavy lifting, as well as hazardous

or repetitive work, and their diffusion has grown at a staggering rate.1 Industrial robots are

technologies adopted by firms. To understand their effects, one must know how they affect

the firms using them in the first place. Do robots substitute or complement humans in firms

that automate? Are the effects heterogeneous across firms and workers? Do robots increase

the productivity of firms using them? From a theoretical perspective, the answer to these

questions is ambiguous. From an empirical perspective, the available evidence is worringly

scarce and often limited to correlations.

This paper is one of the first attempts to fill this gap. Our main innovations are to measure

automation using detailed imports of industrial robots by French manufacturing firms and to

use a novel empirical strategy to identify causality. To guide the analysis, we build a simple

model in which heterogeneous firms invest in automation, whose effect is to replace workers

with capital in a set of tasks. Consistent with the conventional view, the effect of automation

on employment is potentially ambiguous: while robots displace some workers, they also

increase productivity, which raises the demand for all factors. More importantly, the model

shows that demand shocks are likely to increase employment and automation simultaneously,

thereby generating a positive correlation between these variables. To overcome this bias, the

model also illustrates how to build a measure of automation intensity that is independent of

demand shocks and how to isolate exogenous variation in firm-level exposure to automation

that can be used to identify causal effects.

Our empirical results are consistent with the predictions of the theory. Focusing on the

manufacturing sector, where automation is more prevalent, we first find that robot adopters

are larger, more productive, and have a larger employment share of high-skill professions.

Second, looking at the evolution over time of firm-level outcomes, we find that robot import

1By 2018, there were an estimated 2.44 million industrial robots performing a variety of tasks that
humans used to do. The future scale of the phenomenon is diffi cult to predict. Frey and Osborne (2017)
argue that almost half of U.S. employment is at risk of being automated over the next two decades. See also
Brynjolfsson and McAfee (2014) and Baldwin (2019).
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occurs after periods of expansion in firm size, suggesting that adoption may be driven by

demand shocks, but it is followed by a decline in employment. Third, we find that an increase

in robot intensity, defined as the ratio between cumulated robot imports and the capital

stock, is associated with a fall in employment. Fourth, using a new measure of exposure to

automation based on pre-determined technological characteristics, we find that firms that

are more prone to adopt robots experience a stronger reduction in employment than other

firms. We also confirm that our proxy for exposure to automation is a significant predictor of

robot imports. Throughout all specifications, we find that robots increase labor productivity

and some evidence that they may raise the relative demand for high-skill professions.

These results suggest that demand shocks lead firms to both expand and automate,

resulting in a positive correlation between robot adoption and employment. However, ex-

ogenous changes in automation lead to job displacement. Hence, they warn that caution

should be exercised in interpreting the positive correlation between robot adoption and em-

ployment often found in the literature. In particular, there is a nascent body of work that

studies automation at the firm level. Some papers, like ours, measure automation with ro-

bot imports. These include Humlum (2019) for Denmark, Dixen, Hong and Wu (2020) for

Canada, and Acemoglu, Lelarge and Restrepo (2020) for France. Other papers use dummies

from survey data. These include Koch, Manuylov and Smolka (2021) for Spain, Cheng et

al. (2019) for China, Dinlersoz and Wolf (2018) for the U.S., and a study by the European

Commission (2015) for 7 European countries. None of these papers uses exogenous variation

in automation across firms and, as a result, they find positive correlations with employment.

We are aware of two papers that try to identify causal effects using firm-level data. The

first is Aghion et al. (2020), who use the same French data as us, but proxy automation with

investment in industrial equipment and electricity consumption. Employing a shift-share IV

design, they find positive employment effects. As shown in our sensitivity analysis, we believe

this result to be driven by the broader measure of capital inputs that they consider, which is

more likely to be complementary to labor. The second paper is Bessen et al. (2019), who use

matched employer-employee data for the Netherlands. In line with our findings, they show

that spikes in expenditure on "third-party automation services" increase job separations.

Finally, our findings are consistent with Acemoglu and Restrepo (2020b) and Dauth et

al. (2021), who identify the causal effects of automation across commuting zones using

data from the International Federation of Robotics (IFR). Yet, by comparing firms within

industries, our results reveal a new dimension of heterogeneity that cannot be observed in

more aggregated data.
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2 The Model

To guide the empirical analysis, we build a partial equilibrium model of endogenous au-

tomation across heterogeneous firms.2 Consider a firm i facing a demand function with a

constant price-elasticity, yi = Aip
−σ
i . Production requires a unit measure of symmetric tasks.

Tasks z ∈ [0, κi] are automated, and thus can be performed by capital. The remaining tasks,

z ∈ (κi, 1], can only be performed by workers. Hence, κi represents the extent of automation.

Let (ki, li) denote the quantity of capital and workers, respectively, used by firm i. Denote

with r the rental rate of capital and with w the wage of workers. We assume r < w, which

implies that automated tasks are performed by capital only. Production of task z is:

xi(z) =

{
ki(z) for z ∈ [0, κi]

li(z) for z ∈ (κi, 1]
. (1)

The production function of a firm with productivity ϕi and automation κi is:

yi = ϕi exp

(∫ 1

0

lnxi(z)dz
)

= ϕi

(
ki
κi

)κi ( li
1− κi

)1−κi
, (2)

where ki/κi (li/(1− κi)) is capital (workers) per task.
Firms are monopolistically competitive and choose capital, labor and automation so as

to maximize profit:

max
ki,li,κi

{piyi − rki − wli − hfi (κi)} ,

where hfi (κi) is a fixed cost increasing in automation. This fixed cost is in units of a

composite input, which may include managers, scientists and engineers, with price h. The

first-order conditions for capital and labor are:

rki =

(
1− 1

σ

)
κipiyi (3)

wli =

(
1− 1

σ

)
(1− κi) piyi. (4)

Eq. (3) shows that the demand for capital is increasing in automation, κi. Using (3)-(4) into

2Proofs are in Appendix A. The model adds firm heterogeneity to theories of automation such as
Acemoglu and Autor (2011), Acemoglu and Restrepo (2018), Hemous and Olsen (2022), Aghion, Jones and
Jones (2019), but also Acemoglu, Gancia and Zilibotti (2015). See Martinez (2021) for a model of automation
embodied in capital goods generating a distribution of technologies.
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(2) also shows that output per worker is increasing in κi if w > r, as assumed:

yi = ϕi
li

1− κi

(w
r

)κi
. (5)

Eq. (4) shows that automation, κi, has two opposite effects on the demand for labor. First,

there is a direct negative displacement effect, given by the fact that more tasks are performed

by capital. Second, as (5) shows, there is a positive productivity effect: an increase in κi
raises production, which in turn increases the demand for labor. The derivative of li with

respect to κi is:
d ln li
dκi

= (σ − 1) ln
(w
r

)
− 1

1− κi
,

which is positive for κi < 1− [(σ − 1) ln (w/r)]−1. This condition is more likely to be satisfied

when σ and w/r are high, i.e., when the productivity effect is strong enough. If σ is high,

production can be scaled up without a large countervailing fall in prices; and if w/r is high,

the cost saving of automation is stronger. If (σ − 1) ln (w/r) < 1, instead, the displacement

effect always dominates.3

Finally, consider the choice of automation, κi. We assume that automating more tasks

poses an increasingly diffi cult challenge. For tractability, we focus on the following functional

form:

hfi (κi) = h
ρi

1− ρi

[
(1− κi)−

1−ρi
ρi − 1

]
,

with ρi ∈ (0, 1). The parameter 1/ρi captures the rate at which the marginal cost of au-

tomation increases with κi.4 Hence, we interpret ρi as an index of replaceability of tasks in

the production process and we allow it to vary across firms.5 The first-order condition for

κi is:
1

1− κi
=

[(
1− 1

σ

)
piyi
h

ln
(w
r

)]ρi
. (6)

Larger firms (higher Ai and ϕi) have a stronger incentive to pay the fixed automation cost

to save on the variable production cost; automation is also increasing in the cost-saving it

entails (w/r) and decreasing in its own cost h and in 1/ρi.
6

3Acemoglu and Restrepo (2018) allows new tasks to be created when others are automated. We abstract
from this additional mechanism which would reinforce the positive productivity effect on employment.

4To see this, note that the marginal cost of automation, hf ′i (κi) = h (1− κi)−1/ρi , increases at a faster
rate with κi the lower ρi is.

5For any given task automation cost, firms with a higher ρi have a larger share of tasks below that cost.
6We show in Appendix B that a variant of the model where automation is a discrete choice yields

qualitatively similar results.
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The model shows that the effect of κi on li is potentially ambiguous, so that whether

or not automation raises employment is ultimately an empirical question. It also illustrates

that the key empirical challenge is the endogeneity of κi. Specifically, demand shocks trigger

automation but also have a direct positive effect on labor demand. Yet, the model offers

possible remedies to this bias. A first possibility is to use a measure of automation intensity

independent of demand shocks. Using (3) into (6), we can write:

κi
rki

=
1

hf ′i(κi)
ln
(w
r

)
. (7)

This equation shows that normalizing κi by capital expenditure isolates the costs and benefits

of automation independent of size and demand. The reason is that shocks to demand raise

both κi and ki, leaving the ratio unchanged. Yet, automation intensity still depends on

variables that could affect employment directly. A second possibility is to focus on exogenous

characteristics that exclusively affect the automation choice. In the model, a firm-level

parameter that has no effect other than through κi is replaceability, ρi. Eq. (6) shows

that firm-level replaceability interacts with the industry-level characteristics capturing the

suitability of the production process to automation as in (7). Based on this insight, we will

build a measure of exposure to robots by combining information on which industries are

more suitable to automation with firm-level measures of replaceability of employment.

3 Data and Preliminary Evidence

Our empirical analysis uses firm-level data for France over the 1994-2013 period and com-

bines several datasets administered by the French statistical agency (INSEE), covering the

universe of French firms (legal entities) that report a complete balance sheet. For each firm,

we have data on sales, material purchases, capital stock (value of physical assets) and total

employment from the BRN and FARE datasets; using this information, we also compute

firm-level value added.7 We complement the balance sheet data with information on the

occupational structure of employment in each firm from DADS Etablissement. For each

sample year, this dataset contains employment data disaggregated into five two-digit oc-

cupations. For the year 1994, it also contains a finer employment disaggregation into 29

occupations, which we exploit when constructing our proxy for robot exposure.8 For the

7Value added is computed as sales minus changes in inventories minus purchases of final goods minus
purchases of materials plus changes in material inventories minus other purchases.

8Yearly employment data for the 29 occupations are available starting from the 2010s, and are thus
missing for most of our sample period.
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descriptive analysis, we use the full set of years (1994-2013) while for identification we focus

on the 1996-2013 period and take 1994 as a pre-sample year.

For each firm and year, we also have data on values and quantities of exports and imports

for all 8-digit products of the Combined Nomenclature (CN) classification from the French

customs authority (DOUANE). The CN classification records trade in industrial robots into

a specific product code, CN 84795000 (CN 84798950 before 1996). Accordingly, we identify

firms that import robots in a given year as firms with positive imports for this product code.

We also measure the stock of robot capital employed by a firm at a given point in time as

the sum of robot imports by the firm up to that point. We thus have a proxy not only

for whether a given firm adopts robots or not but also for the intensity with which it uses

robots.

Robot imports are recognized as a good proxy for automation because of the high con-

centration of this sector.9 For instance, Japan and Germany alone account for 50% of the

total volume of global exports, while France’s share is about 5% only. Yet, the use of import

data is subject to some measurement issues. On the one hand, they include imports by robot

integrators or resellers, which do not represent actual instances of adoption. On the other,

they do not include purchases of robots from domestic suppliers. Moreover, in the case of

intra-EU transactions, firms are not required to report the list of imported products as long

as their overall intra-EU imports are below a given threshold.10 To mitigate these issues,

we restrict the sample to the manufacturing sector, where robot users are more prevalent,

and drop the “Installation and Repair of Machinery and Equipment”industry. The sector

of operation and the characteristics of robot importers, such as sales and size, in our final

sample make it unlikely that these are just robot integrators. We also restrict the analysis

to firms with more than ten employees, for which the reporting threshold is less likely to

be binding. More importantly, our identification strategy will circumvent all the limitations

of import data by exploiting variation in proxies for robot exposure based on technological

characteristics that are observed for all firms and not just importers.

Consistent with other studies, Appendix Figure C1 shows that robot importers are par-

ticularly frequent in the production of motor vehicles, machinery, and electrical equipment.

However, robot importers are likely to be undercounted in the “Manufacture of Motor Ve-

9See, for instance, Acemoglu and Restrepo (2022), Blanas, Gancia and Lee (2019) and Bonfiglioli et al.
(2022).

10The threshold equals 40,000 Euros before 2002; 100,000 Euros over 2002-2006; 150,000 Euros over 2007-
2010; and 460,000 Euros from 2011 onwards. These thresholds are not very high given the average price of
a robot.
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hicles” industry because our data lack information for the two biggest car manufacturers

in France.11 After removing this industry, the correlation between the number of robot

importers and the stock of installed robots from the IFR is 0.79.

Our baseline sample is an unbalanced panel of 64,173 manufacturing firms, of which

765 have imported robots at least once over 1994-2013 (henceforth, "robot adopters"). This

number is consistent with Acemoglu, Lelarge and Restrepo (2020), who collected information

on robot adoption in France from multiple sources for the 2010-2015 period. While robot

adopters are a small minority, they account for a large and growing fraction of manufacturing

activity. Between 1994 and 2013, the shares of robot adopters in manufacturing employment

and value added have increased steadily to reach 8% and 14%, respectively.12 This indicates

that robot adopters are faring better than other manufacturing firms. Moreover, the value

added share has grown significantly more than the employment share, suggesting that the

expansion of robot adopters may have been accompanied by the adoption of labor-saving

technologies.13

Appendix Table C1 reports summary statistics separately for robot adopters and non

adopters, showing that the former firms are systematically larger, more productive, and

more skill-intensive than the latter, on average. To gain further insight into the differences

between the two groups of firms, we estimate conditional correlations between robot adoption

and firm-level characteristics by running OLS regressions of the following form:

Yit = αi + αjt + β · Adoptionit +X′it · γ + εit, (8)

where i denotes a firm; j indicates the 5-digit NACE industry in which the firm operates;

and t stands for time. Yit is an outcome and Adoptionit is a dummy that takes on value

1 in the first year in which the firm imports robots and in all subsequent periods, and is

equal to 0 otherwise. We control for (i) firm fixed effects, αi, to absorb time-invariant firm

characteristics; (ii) 5-digit industry×year fixed effects, αjt, to account for differences in the
industry of operation and for industry-specific shocks; and (iii) firm characteristics– namely,

log sales and dummies for firms that export or import goods other than robots– measured

11For large multinational firms (e.g., Peugeot Société Anonym and Renault), INSEE reports only consol-
idated balance sheets of the entire group. Since the identity and composition of these groups is not constant
across periods, they cannot be included for comparisons over time.

12These figures refer to a consistent sample of firms that are active in all years and import robots at least
once over 1994-2013.

13Preliminary evidence from a 2019 survey run by the U.S. Census shows similar patterns. In particular,
Acemoglu et al. (2021) report that about 2% of firms use robotics for automation and these firms account
for about 15% of employment.
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Table 1: Firm-Level Outcomes, Robot Adoption and Robot Intensity

(1) (2) (3) (4)
Ln Sales Ln No. of 

Employees
Ln VA 
per Worker

Empl. Sh. 
High Skill

Adoptionit 0.230*** 0.106*** 0.057*** 0.003
[10.458] [5.763] [3.630] [1.030]

Obs. 596,166 597,282 585,886 597,282
R2 0.95 0.87 0.85 0.70

Ln RobIntit -0.129*** -0.144*** 0.040*** 0.015***
[-4.150] [-5.427] [2.654] [2.815]

Obs. 5,706 5,711 5,542 5,711
R2 0.97 0.93 0.84 0.89

a) Robot Adoption

b) Robot Intensity

The subscripts i and t denote firms and years, respectively. The dependent variables are annual observations of the
firm-level outcomes indicated in columns' headings. Adoption it is a dummy equal to 1 for all years since the firm
starts importing robots, and equal to 0 otherwise. Ln RobInt it is the log ratio between the stock of robot capital and
the total capital stock of the firm. All specifications include firm fixed effects and 5-digit industry x year fixed effects.
They also control for log sales and dummies for whether the firm is an importer or an exporter; each control variable
is observed in the first year in which the firm appears in the sample and is interacted with a full set of year dummies.
Standard errors are corrected for clustering within firms; t-statistics are reported in square brackets. ***, **, *: denote
significance at the 1, 5 and 10% level, respectively.

in the first year in which the firm is observed and interacted with a full set of year dummies,

Xit. These interactions flexibly control for heterogeneous trends across firms characterized

by different initial conditions. We estimate eq. (8) for four major outcomes on which we

focus throughout the paper: (i) log sales, (ii) log employment, (iii) log value added per

worker and (iv) the employment share of high-skill professions (scientists, managers, and

engineers).14 The results are reported in panel a) of Table 1; standard errors are corrected

for clustering at the firm level and t-statistics are shown in square brackets. All estimates of

β are positive and, with the exception of the regression for the employment share of high-skill

workers, they are also highly statistically significant.

Do robot adopters differ from other firms already before adopting robots, or do they

start diverging afterwards? To shed light on this question, we use a difference-in-differences

event study approach to analyze how the four outcomes evolve over time in firms that adopt

robots relative to the rest. To this purpose, we extend eq. (8) by adding the first five lags

14We focus on these outcomes because they can be constructed directly from the data.
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and leads of Adoptionit:

Yit = αi + αjt +

5∑
s=−5

βs · Adoptionit−s + εit. (9)

The coeffi cients βs illustrate how a given outcome evolves over time within robot adopters

relative to non adopters, over a ten-year window around the first instance of robot imports

(s = 0).

The results are displayed in Figure 1. The estimation coeffi cients corresponding to each

plot are reported in Appendix Table C2. The figure shows that robot adoption is antedated

by significant differences in the trends of sales and employment between robot adopters

and non adopters. In particular, the former group of firms grow faster than the latter

in terms of both variables over the five-year period preceding adoption. Conversely, no

clear differential pre-trend is detected in terms of effi ciency and the skill composition of

the workforce. After adoption, the diverging trend in employment is reversed: while robot

adopters still grow faster than non adopters, the differential gradually vanishes. Robot

adopters also experience a relatively stronger shift in the skill composition of the workforce

towards high-skill professions, and a faster increase in effi ciency. These results suggest that

robot adoption occurs after periods of expansion in firm size, and is followed by employment

losses, improvements in effi ciency, and labor demand shifts towards high-skill workers, with

limited changes in total sales.

The above evidence suggests that the correlations between robot adoption and other

firm characteristics may be confounded by demand shocks. To provide additional evidence

on this hypothesis, we re-estimate eq. (8) using a continuous measure of robot intensity,

lnRobIntit, defined as the log ratio between the stock of robot capital and the total capital

stock of the firm. This variable may proxy for the theoretical measure introduced in eq. (7)

as long as robot capital is proportional to κ. By scaling robot capital with the total capital

stock of the firm, lnRobIntit neutralizes demand shocks affecting both the numerator and

the denominator of the ratio. The log transformation implies that lnRobIntit is only defined

for robot adopters. Because the specification controls for firm and industry×year fixed
effects, the coeffi cients β are identified from changes in robot intensity over time within

robot adopters, controlling for common shocks hitting all firms in an industry.

The results are reported in panel b) of Table 1. Compared to panel a), the estimate

of β switches sign, from positive to negative, in the regressions for sales and employment,

and is highly statistically significant. This pattern is consistent with demand shocks leading

9



Each graph plots coefficients and confidence intervals on various lags and leads of Adoption it estimated using eq. 
(9) for a different outcome variable (indicated in the heading of the graph). Adoption it is a dummy that takes on
value 1 in the first year in which a firm imports robots and in all subsequent periods, and is equal to 0 otherwise.
Lags and leads of Adoption it are indicated on the horizonthal axis of each graph, with t=0 referring to the first year
in which a firm imports robots. The estimated coefficients corresponding to each graph are reported in Appendix
Table C2.

Ln Sales Ln No. Of Employees

Ln VA per Worker Empl. Sh. High Skill

Figure 1: Difference-in-Differences Event Studies

firms to both expand and automate, resulting in a spurious positive correlation between

robot adoption and firm size. Once demand shocks are neutralized, however, automation

may lead to job displacement. The negative effect on sales suggests that lnRobIntit may be

partly driven by increases in wages, which trigger automation but also raise production costs.

The estimates of β for the other outcomes remain positive, suggesting that automation is

associated with improvements in firm effi ciency and labor demand shifts towards high-skill

workers.15

4 The Effect of Robot Exposure

We now exploit differential cross-firm variation in robot exposure stemming from pre-determined

technological characteristics to identify a causal effect of automation on firm-level outcomes.

15As shown in Appendix Table C3, these results are very similar if we compute the stock of robot capital
with an annual depreciation rate of 15%.
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4.1 Variables and Specification

Our model suggests that the predisposition of firms to automate depends on the interplay

between cost of machines and replaceability of employment. In particular, a lower cost of

machines stimulates robot adoption relatively more at firms whose employment can more

easily be replaced by robots. It is well known that differences in the production process make

some industries more suitable to automation than others, implying a larger cost-advantage

of machines in these industries. At the same time, within any given industry, some firms

are more prone to automate production than others, because they perform activities that

are relatively easier to assign to robots. Building on these insights, our robot exposure

measure, RobExp, exploits the interplay between a proxy for automation suitability in a

given industry, RobSuit, and a proxy for replaceability of worker activities by robots within

a given firm, Repl. Using this measure, we study how robot exposure affects outcomes and

adoption decisions at the firm level.

In a given 5-digit NACE industry j, RobSuit is defined as the average robot intensity of

all firms i′ 6= i ∈ j in the initial year, namely,

RobSuitj−i = sinh−1

(∑
i′ 6=i∈j RobStocki′∑
i′ 6=i∈j CapStocki′

)
, (10)

where RobStocki′ and CapStocki′ denote, respectively, the initial stock of robots and the

initial total capital stock of firm i′. The hyperbolic sine transformation preserves the zeros.

Industries in which this ratio is higher are relatively more suitable to automation. Our

measure of replaceability, Repl, is similar to the indicator proposed by Graetz and Michaels

(2018) but is defined at the firm-level rather than at the industry level. We source from

Graetz and Michaels (2018) information on whether each of 377 U.S. Census occupations is

replaceable or not, where an occupation is defined as replaceable if its title corresponds to

at least one of the robot application categories identified by the IFR (e.g., welding, painting,

assembling). We map each U.S. Census occupation into the 29 French occupations for which

we have employment data in 1994 and construct firm-level replaceability as follows:

Repli =
29∑
o=1

ωoi ·Replo, (11)

where Replo is the replaceability of French occupation o and ωoi is the share of occupation

11



o in firm i’s employment in 1994. We finally obtain RobExp as16

RobExpi = RobSuitj−i ·Repli. (12)

We focus on long-run changes and estimate specifications of the following form:

∆Yi = αj + β1 ·RobExpi + β2 ·RobSuitj−i + β3 ·Repli +X′i · γ + εi, (13)

where ∆Yi is the annualized change in outcome Y for firm i between the first and the last

year in which the firm is present in the sample; αj are 5-digit industry fixed effects; Xi

are start-of-period values of log firm sales and of indicators for exporting and importing

firms; and εi is an error term. The use of long differences implies that identification exploits

cross-sectional (across firms) variation in the pre-determined level of robot exposure and

in the long-run growth of outcomes. The industry fixed effects absorb differential trends in

outcomes across industries, and the covariates remove heterogeneous trends across firms with

different initial conditions within the same industry. In particular, these variables account

for the fact that larger and more trade-oriented firms may be more exposed to robots and

may systematically follow different paths in terms of key outcomes compared to other firms.

We correct the standard errors for clustering within 5-digit industries to account for possibly

correlated shocks among firms in the same industry.17

We believe that neither Repli nor RobSuitj−i alone is suffi cient to capture a firm’s ex-

posure to robots. In particular, replaceability of employment cannot trigger automation in

industries where robots are not available. Recognizing this, our empirical approach goes

beyond the level effect of these variables and focuses instead on their interaction in the

spirit of a difference-in-differences specification. Moreover, while Repli and RobSuitj−i are

pre-determined and thus do not respond to subsequent changes in firm-level outcomes, they

could still be correlated with other firm or industry variables affecting the outcomes of inter-

est. Being identified by both firm- and industry-level variation, the interaction coeffi cients

β1 are less likely to be confounded by omitted firm or industry characteristics than the linear

terms.

16See Appendix Table C4 for descriptive statistics on RobExpi and the other variables used in this section.
17We winsorize the change in each outcome at the top and bottom 5% of the distribution to prevent

results from being driven by extreme observations.
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4.2 Baseline Results and Sensitivity Analysis

The baseline estimates of β1 are shown in panel a) of Table 2, where the change in each

outcome is multiplied by 100 to express it in percentages.18 The coeffi cient on RobExpi is

negative and precisely estimated in the employment regression, indicating that firms that are

more exposed to robots experience a relatively larger and statistically significant reduction in

employment over the sample period. As for the other outcomes, β1 is positive and precisely

estimated in the regression for value added per worker, implying that higher robot exposure

induces larger effi ciency gains within firms. The effect of robot exposure on sales, while

positive, is not statistically significant. While reinforcing the view that demand shocks bias

the relation between robot adoption and firm size, this result also suggests that productivity

gains may not always translate into lower prices. Finally, the results point towards a positive,

albeit imprecisely estimated, effect of robot exposure on the skill structure of employment.

Our working hypothesis is that robot exposure affects outcomes by inducing firms to

adopt robots. To study this mechanism, in column (5), we estimate eq. (13) with a different

dependent variable, namely, a dummy equal to 1 for firms that start importing robots over the

sample period, Adopteri. The coeffi cient on RobExpi is positive and very precisely estimated,

implying that firms that are more exposed to robots do indeed show a greater tendency to

adopt robots in subsequent years. The point estimates imply that a change in automation

suitability equal to the interquartile range of its distribution (12.12) is associated with a 67%

higher probability of adoption and an employment fall of 0.36 percentage points (p.p.) per

year in firms at the 75th percentile of the replaceability distribution (0.52) relative to firms

at the 25th percentile (0.20). As an example, the firm with average replaceability in the

"Manufacture of Parts and Accessories for Motor Vehicles" industry (high suitability) would

have a 56% higher adoption probability and experience a 0.30 p.p. per year employment fall

relative to the firm with average replaceability in the "Manufacture of Wine from Grape"

industry (low suitability). Moreover, the average increase in RobSuitj−i over 1994-2013

(8.55) would induce a 48% higher adoption probability and a 0.26 p.p. per year employment

fall at the 75th percentile of the replaceability distribution relative to the 25th percentile.19

18In Appendix Table C5, we estimate eq. (13) replacing RobExpi, RobSuitj−i and Repli with a dummy
for firms that adopt robots over the sample period. Consistent with our preliminary evidence, these firms
experience a relatively larger increase in size and effi ciency, and a relatively faster shift in labor demand
towards high-skill workers.

19We refrain from interpreting our estimates in a Two-Stage Least Squares (2SLS) framework. We believe
that, due to the aforementioned limitations of the import data, Adopteri provides a qualitative measure of
robot adoption but does not accurately capture all instances of adoption and the intensity of automation.
This complicates the quantitative interpretation of the estimate in column (5) as a first-stage coeffi cient.
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Table 2: Firm-Level Outcomes and Robot Exposure, Main Results and Robustness

(1) (2) (3) (4) (5)
D Ln Sales Δ Ln No. of 

Employees
D Ln VA per 
Worker

D Empl. Sh. 
High Skill

Adopter

RobExpi 0.148 -0.094** 0.302*** 0.006 0.174***

[1.343] [-2.095] [2.702] [1.106] [2.893]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.142 -0.108** 0.310*** 0.008 0.224***

[1.192] [-2.230] [2.629] [1.396] [2.666]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.06 0.05 0.069

RobExpi 0.148 -0.095** 0.303*** 0.005 0.171***

[1.329] [-2.101] [2.695] [0.837] [2.847]
Obs. 35,759 36,040 34,647 36,040 36,040
R2 0.10 0.04 0.07 0.04 0.052

RobExpi 0.127 -0.038 0.187* 0.010** 0.261*

[1.314] [-0.810] [1.768] [2.096] [1.830]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.11

RobExpi -0.160 -0.203** -0.061 0.001 0.065

[-0.737] [-2.020] [-0.270] [0.111] [0.414]
RobExpi x Elasth 0.069* 0.023 0.076* 0.002 0.023

[1.963] [1.405] [1.955] [0.774] [0.838]
Obs. 32,427 32,679 31,365 32,679 32,679
R2 0.11 0.04 0.07 0.04 0.05

RobExpi 3.331*** 0.248 3.537*** 0.070** 0.625***

[9.669] [1.043] [11.543] [2.537] [3.469]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05
The subscript i denotes firms. In columns (1)-(4), the dependent variables are 100 x the annualized changes in the firm-level
outcomes indicated in columns' headings. In columns (5), the dependent variable is Adopter i , a dummy equal to 1 for firms that
start importing robots over the sample period and equal to 0 for non importers. With the exception of panel f), RobExp i is the
product between the initial firm-level employment share of occupations that can be replaced by robots (Repl i ) and the initial
ratio between the overall stock of robots and the total capital stock of all other firms in each 5-digit industry j (RobSuit j-i ). In
panel f), RobExp i is constructed by replacing RobSuit j-i with the log stock of installed robots in each firm's sector in the U.S.,
based on data from the International Federation of Robotics (IFR) for 13 manufacturing sectors. The regressions in panel b) are
weighted by the initial number of employees in each firm. The sample in panel c) excludes firms in the "Manufacture of Motor
Vehicles" industry. In panel d), robot imports include CN codes 842489, 842890, 851580, 847950, 851531, 851521 and 84864.
In panel e), Elast h is the elasticity of demand, defined at the 3-digit sector level, h ; the specification also includes interactions of
Elast h with Repl i and RobSuit j-i (coefficients unreported). All regressions also include the linear terms in Repl i and RobSuit j-i , 
initial values of log sales and of dummies for importing and exporting firms, and 5-digit industry fixed effects. Standard errors
are corrected for clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote significance at
the 1, 5 and 10% level, respectively.

a) Baseline Regressions

b) Weighted Regressions

c) Excluding Manufacturing of Motor Vehicles

d) Broader Definition of Robot Imports

e) Interactions with Demand Elasticity

f) Alternative Proxy for Robot Exposure (IFR)
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The remaining panels of Table 2 contain an extensive sensitivity analysis. In panel b),

we weigh the observations by the initial number of employees in each firm. The estimated

coeffi cients are similar to those obtained from unweighted regressions. In panel c), we further

exclude firms in the "Manufacture of Motor Vehicles" industry. The qualitative and quanti-

tative pattern of results is unchanged. In panel d), we extend the definition of automation

suitability to include not just industrial robots but all types of machinery designed for lift-

ing, handling, loading, unloading and welding. Robot exposure no longer has a statistically

significant effect on employment but induces a stronger shift in labor demand towards high-

skill professions. These results are consistent with the notion that broader forms of capital

equipment are more complementary to labor, as found in Aghion et al. (2019), especially to

high-skill workers.

The model predicts that in industries where demand is more elastic, the productivity

effect of automation should be stronger because firms can scale up production without large

reductions in prices (see also Bessen, 2019). We therefore extend eq. (13) by interacting

RobExpi, Repli, and RobSuitj−i with the elasticity of substitution in each sector sourced

from Broda and Weinstein (2006). The results in panel e) confirm that robot exposure

causes a relatively larger increase in sales in sectors where products are more substitutable.

Similarly, robot exposure has a relatively less negative effect on employment in sectors where

demand is more elastic, although the interaction coeffi cient is marginally insignificant. The

effect of robot exposure on productivity is also relatively stronger in sectors where products

are more substitutable.

Finally, we use an alternative proxy for robot exposure, which is obtained by replacing

RobSuitj−i with the initial value of the log stock of installed robots in each firm’s sector in

the U.S. from the IFR. This variable may be a better proxy for automation suitability in

industries where firms predominantly source robots from domestic suppliers. Being based

on data for the U.S. rather than France, it also further allays concerns with endogeneity.

However, the IFR data are only available for 13 aggregate manufacturing sectors, so variation

is much more limited. The qualitative evidence is similar with this alternative proxy for

robot exposure. In particular, the coeffi cient on RobExpi in the employment regression is

not statistically significant, consistent with an upward bias in the correlation between robot

adoption and employment. The alternative proxy also confirms the positive effects of robot

exposure on robot adoption, effi ciency, skill composition of labor demand and now even sales.
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4.3 Threats to Identification

Our identification strategy requires that, conditional on the fixed effects and control variables

included in eq. (13), RobExpi is uncorrelated with omitted variables that could influence

the outcomes. Because RobExpi is the interaction between Repli and RobSuitj−i, this iden-

tifying assumption could be violated in two cases: (i) if Repli was correlated with other firm

characteristics that affect outcomes differentially across industries with varying levels of au-

tomation suitability; and (ii) if RobSuitj−i captured other industry characteristics affecting

outcomes heterogeneously across firms with different degrees of replaceability. To address

these concerns, we extend the specification by adding interactions of Repli and RobSuitj−i
with some of the most likely confounders, and study how the coeffi cients on RobExpi are

affected.

In panel a) of Table 3, we add the interaction between RobSuitj−i and the routine inten-

sity of each firm.20 While routine intensity is known to be correlated with the adoption of

skill-intensive technologies such as computers (e.g., Autor, Levy and Murnane, 2003), Cheng

et al. (2019) find that robots are more prevalent at firms where employees are commonly

doing manual tasks rather than routine tasks. Consistently, we find the new interaction

to have no significant effect on robot adoption, and its inclusion to leave the evidence on

RobExpi unaffected. In panel b), we extend the specification by adding interactions between

RobSuitj−i and all the control variables included inXi. While larger and more trade-oriented

firms could have different levels of replaceability, the main results are preserved. Similarly,

panel c) shows that the results are unchanged when controlling for the interaction between

each variable in Xi and Repli.

Next, we consider the possibility that Repli interacts with industry characteristics other

than RobSuitj−i. In panel d), we add interactions between Repli and: (i) total imports and

exports; (ii) the average unit values of imports and exports; and (iii) imports of capital and

technology goods.21 Controlling for these interactions leaves the coeffi cients on RobExpi
close to the baseline estimates. Finally, we add interactions between Repli and a full set of

2-digit sector dummies. Contributing to the identification of β1 is now only the remaining

variation in RobSuitj−i across narrow (5-digit) industries within the same 2-digit sector. As

20This variable is defined as the share of routine-intensive occupations in the firm’s total employment in
1994. Data on routine intensity by occupation are sourced from Autor and Dorn (2013) and matched to the
29 French occupations in our data. The linear term in routine intensity is included in the specification but
untabulated.

21Similar to RobSuitj−i, we construct each of these variables in the initial year by aggregating across
firms other than i in each 5-digit industry. Each of these characteristics also enters the specification linearly.
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Table 3: Firm-Level Outcomes and Robot Exposure, Threats to Identification

(1) (2) (3) (4) (5)
D Ln Sales Δ Ln No. of 

Employees
D Ln VA per 
Worker

D Empl. Sh. 
High Skill

Adopter

RobExpi 0.151 -0.090** 0.297*** 0.006 0.181***

[1.385] [-1.994] [2.676] [1.005] [3.055]
RobSuitj-i x Routinei -2.934 4.864 9.589 1.193*** 2.545

[-0.129] [0.829] [0.433] [2.781] [0.355]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.137 -0.091** 0.283** 0.007 0.167***

[1.260] [-2.006] [2.564] [1.174] [2.730]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.148 -0.095** 0.304** 0.008 0.169***

[1.245] [-2.070] [2.534] [1.286] [2.906]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.173 -0.137*** 0.399*** 0.012* 0.136**

[1.591] [-2.771] [3.969] [1.795] [2.252]
Obs. 36,254 36,537 35,134 36,537 36,903
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.155 -0.089* 0.306*** 0.006 0.175***

[1.353] [-1.934] [2.620] [0.968] [2.853]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05
The subscripts i and j denote firms and 5-digit industries, respectively. In columns (1)-(4), the dependent variables are
100 x the annualized changes in the firm-level outcomes indicated in columns' headings. In columns (5), the dependent
variable is Adopter i , a dummy equal to 1 for firms that start importing robots over the sample period and equal to 0 for
non importers. RobExp i is the product between the initial firm-level employment share of occupations that can be
replaced by robots (Repl i ) and the initial ratio between the overall stock of robots and the total capital stock of all other
firms in each 5-digit industry j (RobSuit j-i ). In panel a), Routine i is the initial firm-level employment share of routine-
intensive occupations; the specification also includes the linear term in Routine i (coefficient unreported). The 
specifications in panels b) and c) include interactions of RobSuit j-i and Repl i , respectively, with the initial values of log
sales and of dummies for importing and exporting firms. The specification in panel d) includes the initial values of
sectoral exports and imports, export and import unit values, capital goods and technology goods imports, as well as the
interactions of these variables with Repl i . The specification in panel e) includes interactions of Repl i with a full set of 2-
digit sector dummies. All regressions also include the linear terms in Repl i and RobSuit j-i , initial values of log sales and of
dummies for importing and exporting firms, and 5-digit industry fixed effects. Standard errors are corrected for
clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote significance at the 1, 5
and 10% level, respectively.

a) Interaction of Robot Suitability with Routine Intensity

c) Interactions of Replaceability with Firm Characteristics

e) Interactions of Replaceability with Sector Dummies

b) Interactions of Robot Suitability with Firm Characteristics

d) Interactions of Replaceability with Industry Characteristics
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shown in panel e), our main results are qualitatively and quantitatively unchanged also in

this case.

5 Conclusions

We have studied the effects of industrial robots using data for French firms between 1994 and

2013. Our results suggest that, while robot adopters are growing in employment relative to

other firms, exogenous exposure to automation leads to significant job losses. There is also

some evidence that automation may increase the relative demand for high-skill professions.

These results are important because the normative literature has shown that automation

may call for corrective measures if it displaces workers and/or increases inequality.22 We

also view our results as a building block for a comprehensive study of the macroeconomic

effects of automation.23 While we have focused attention to firms that import robots, so

as to shed light on the micro adjustment, it would be interesting to study what happens to

other firms in the same industry. Since robot adoption is likely to induce a reallocation away

from non adopters, it is likely to have further negative effects on employment. Estimating

these industry-level effects seems an important avenue for future research.24 We have also

found that, while robot adoption increases productivity, its effect on sales is less strong.

This suggests that the effi ciency gains may be partly offset by an increase in markups. Since

automation is prevalent among top firms, investigating its relationship with market power

seems another important avenue for future research.

22See, for instance, Beraja and Zorzi (2022), Costinot and Werning (2018), Thuemmel (2018) and Guer-
reiro, Rebelo, and Teles (2022).

23See, for instance, Jaimovich et al. (2022) and Moll, Rachel and Restrepo (2022).
24See Hubmer and Restrepo (2022), Acemoglu, Lelarge and Restrepo (2020) and Koch, Manuylov and

Smolka (2021) for some evidence on this reallocation.
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For Online Publication

A Model: Derivations and Proofs

Using equation (5) into (4) yields:

li = w−σ
(

1− 1

σ

)σ
Aiϕ

σ−1
i

(w
r

)κi(σ−1)
(1− κi) . (A1)

This equation shows how employment depends on κi and other exogenous parameters, and
can be used to compute d ln li

dκi
.

Substituting (A1) in (5) we can express output as a function of automation and other
exogenous parameters:

yi = Aiϕ
σ
i w
−σ
(

1− 1

σ

)σ (w
r

)κiσ
. (A2)

This equation confirms that automation raises output as long as capital is cheaper than
production workers:

d ln yi
dκi

= σ ln
(w
r

)
, (A3)

and it illustrates that the productivty effect is stronger in industries where demand is more
elastic (σ).
Consider now the choice of automation. Firms choose the level of κi that maximizes

profit:
max
κi

{piyi
σ
− hfi (κi)

}
.

The first-order condition for κi is:(
1− 1

σ

)
piyi ln

(w
r

)
= hf ′i (κi) .

Using yi = Aip
−σ
i , (A2) and hf

′
i (κi) = h (1− κi)−1/ρi yields:(

1− 1

σ

)σ
Ai

(ϕi
w

)(σ−1) (w
r

)κi(σ−1)
ln
(w
r

)
= h (1− κi)−1/ρi .

This expression shows the exogenous determinants of the marginal benefit of automation and
can be used to solve implicitly for the equilibrium level of κi. The second-order condition is
necessarily satisfied if (σ − 1) ln (w/r) < 1/ρi and the unique solution is interior if:(

1− 1

σ

)σ
Ai

(ϕi
w

)(σ−1)
ln
(w
r

)
> h.

We assume both conditions to be satisfied. Denote the marginal benefit and the marginal

22



cost of automation as MBi and MCi, respectively. Then:

∂MBi

∂κi
= MBi × (σ − 1) ln

(w
r

)
∂MCi
∂κi

=
MCi

ρi (1− κi)
.

Under the assumption (σ − 1) ln
(
w
r

)
< 1/ρi, profits are concave in κi so that:

∂MBi

∂κi
<
∂MCi
∂κi

.

We now derive the comparative statics for the optimal level of automation, κ∗i , with
respect to the primitives of the model and prove that:

dκ∗i
dAi

> 0;
dκ∗i
dϕi

> 0;
dκ∗i

d(w/r)
> 0;

dκ∗i
dρi

> 0 ;
dκ∗i
dh

< 0.

Differentiating the first-order condition, we obtain the implicit derivative of κ∗i with respect
to any parameter v as

dκ∗i
dv

=
∂MC
∂v
− ∂MB

∂v
∂MB
∂κi
− ∂MC

∂κi

.

The denominator is always negative. Hence, to find the sign of the derivatives of interest,
we just need to compute the numerator of the expression above for Ai, ϕi, (w/r), ρi and h
as follows:

∂MC

∂Ai
− ∂MB

∂Ai
= −MB

Ai
< 0→ dκ∗i

dAi
> 0

∂MC

∂ϕi
− ∂MB

∂ϕi
= − (σ − 1)

MB

ϕi
< 0→ dκ∗i

dϕi
> 0

∂MC

∂ (w/r)
− ∂MB

∂ (w/r)
= − MB

(w/r)

[
κi (σ − 1) +

1

ln (w/r)

]
< 0→ dκ∗i

d(w/r)
> 0

∂MC

∂ρi
− ∂MB

∂ρi
=

h

ρ2i

ln (1− κi)
(1− κi)1/ρi

< 0→ dκ∗i
dρi

> 0

∂MC

∂h
− ∂MB

∂h
=

MC

h
> 0→ dκ∗i

dρi
< 0.

B Discrete Choice of Automation

We now consider the case in which firm i can choose whether to keep the current level of
automation κ0 at no additional cost or increase it to κ1 > κ0, subject to the cost hκ1

ρi
. The
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discrete choice problem facing firm i is

max
κi∈{κ0,κ1}

{
pi (κi) yi (κi)

σ
− hfi (κi)

}
.

The condition for i to choose κ1 is

pi (κ1) yi (κ1)− pi (κ0) yi (κ0)
σ

>
hκ1
ρi
,

which, after using yi = Aip
−σ
i and (A2), becomes

Ai
σ

[
ϕσw−σ

(
1− 1

σ

)σ]1−1/σ [(w
r

)κ1σ
−
(w
r

)κ0σ]1−1/σ
>
hκ1
ρi
.

The left-hand side captures the benefit of further automation, while the right-hand side
corresponds to its cost.
In this case, we can express the comparative statics in terms of the probability that an

increase in any parameter induces a switch from κ0 to κ1. In particular, we are interested in
the effect of an increase in (w/r) and its interaction with Ai, ϕi and ρi. It is easy to show
that the left-hand side, denoted by Bi, is increasing in (w/r):

∂Bi

∂
(
w
r

) =
(σ − 1)Ai

σ

[
ϕσi w

−σ
(

1− 1

σ

)σ]1−1/σ [κ1 (wr )κ1σ−1 − κ0 (wr )κ0σ−1][(
w
r

)κ1σ − (w
r

)κ0σ]1/σ > 0.

This means that increasing automation is more likely to be optimal for lower relative cost of
capital (r/w).
To characterize the interaction with Ai and ϕi, we compute the cross derivatives of Bi,

∂2Bi

∂
(
w
r

)
∂Ai

=
∂Bi

∂
(
w
r

)A−1i > 0,

∂2Bi

∂
(
w
r

)
∂ϕi

=
∂Bi

∂
(
w
r

)σϕ−1i > 0,

which imply that the likelihood of further automation increases more with (w/r) for larger
and more productive firms.
The derivative of the automation cost with respect to ρi,

∂

∂ρi

(
hκ1
ρi

)
= −hκ1

ρ2i
< 0,

suggests that an increase in (w/r) increases more the likelihood of further automation for
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Table C1: Descriptive Statistics, Whole Sample

Obs. No. Firms Mean Median Std. Dev.  Mean D  
(annualized)

Adoption 6,373  765   1 1   1 0
Robot Intensity 6,373  765  0.078  0.005  0.520  0.182
No. of Employees 6,373  765  852  191  3,129  -0.016
Empl. Sh. High Skill 6,373  765  0.153  0.108  0.142  0.006
Sales (€'000) 6,373  765  761,597  46,050  6,812,860  -0.075
VA per Worker (€'000) 6,225  761  178  65  2,715  -0.070
Dummy Importer 6,373  765  0.972  1  0.164  0.001
Dummy Exporter 6,373  765  0.947  1  0.224  0.002

Adoption 598,925  63,408  0 0 0 0
Robot Intensity 586,785  63,448  0 0 0 0
No. of Employees 598,925  63,448  78  27  313  -0.030
Empl. Sh. High Skill 598,925  63,448  0.081  0.056  0.106  0.003
Sales (€'000) 598,922  63,448  54,703  7,615  683,130  -0.092
VA per Worker (€'000) 587,342  62,741  190  71  1,973  -0.066
Dummy Importer 598,925  63,448  0.568  1  0.495  0.001
Dummy Exporter 598,925  63,448  0.561  1  0.496  0.004

Robot Adopters

Non Robot Adopters

The whole sample consists of all manufacturing firms with more than 10 employees excluding firms in the "Installation and Repair
of Machinery and Equipment" industry (64,173 firms). Adoption is a dummy taking on value 1 since the first year in which a firm
imports robots. Robot Intensity is the ratio between the stock of robot capital and the total capital stock of the firm; the stock of
robot capital is constructed as the sum of robot imports over time. Importer and Exporter are dummies taking on value 1 if the firm
imports (resp. exports) goods other than robots in a given year and 0 otherwise. All statistics are computed on firm-level
observations for the 1994-2013 period. Changes are computed as annualized log differences, except for Employment Sh. High Skill , 
Exporter  and Importer dummies, for which annualized changes in levels are reported.

firms with higher replaceability ρi, since these face a lower cost.

C Additional Empirical Results

Table C1 contains summary statistics on the firm-level variables, separately for firms that
import robots at least once over 1994-2013 ("robot adopters") and for firms that do not
("non robot adopters"). The statistics are computed on the whole sample, comprising 64,173
manufacturing firms, of which 765 are robot adopters. Robot intensity, defined as the ratio
between the stock of robot capital and the total physical capital stock of the firm, equals
7.8% on average for robot adopters. The average robot adopter is around 11 times larger
than the average non adopter in terms of employment and around 14 times larger in terms
of sales. The skill composition of employment also differs across robot adopters and non
adopters, with the share of employment in high-skill professions roughly twice as high on
average in the former group of firms than in the latter. Robot adopters are also more likely
to import and export goods other than robots.
Table C1 also reports the average annualized change in each variable over 1994-2013,

separately for the two sets of firms. Robot adopters increased robot intensity at an average
rate of 0.18 log points per year. While employment decreased in both groups of firms, robot
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Figure C1: Cumulative Number of French Robot Importers by Sector (1994-2013)

adopters shed workers at a slower rate than non adopters (0.016 vs. 0.03 log points per year,
respectively).25 Robot adopters also experienced a relatively slower reduction in sales and a
relatively faster increase in the employment share of high-skill professions.
As for the sectoral distribution of robot adopters, Figure C1 shows that these firms are

present in all 2-digit manufacturing sectors but are particularly frequent in the production
of motor vehicles, machinery, and electrical equipment.
Table C2 contains the estimation coeffi cients corresponding to the difference-in-differences

event studies shown in Figure 1.
Table C3 replicates the conditional correlations between the outcomes and robot intensity,

lnRobIntit, but it does so computing the stock of robot capital with a perpetual inventory
method combined with an annual depreciation rate of 15%. The latter falls within the
range of depreciation rates normally assumed for robots in manufacturing (see, e.g., Graetz
and Michaels, 2018). The results are similar, both qualitatively and quantitatively, to the
baseline estimates reported in panel b) of Table 1.
Table C4 contains descriptive statistics for the variables used in the long-differences spec-

ifications. Both replaceability and robot exposure are higher on average for robot adopters.
Employment, sales and value added per worker have decreased less among robot adopters
than among other firms, and robot adopters have experienced a relatively larger increase
in the employment share of high-skill professions. As shown in Table C5, these differences
persist even after controlling for the industry of operation of the firm and for differences in
initial conditions. In particular, the table reports estimates of eq. (13), in which RobExpi,
RobSuitj−i and Repli are replaced with a dummy, Adopteri, which takes on value 1 if firm i
starts importing robots over the sample period, and is equal to 0 both for non-adopters and
for firms that were already using robots initially. The control variables are 5-digit industry

25Manufacturing employment significantly declined in France during the sample period.
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Table C2: Difference-in-Differences Event Studies

(1) (2) (3) (4)
Ln Sales Ln No. of 

Employees
Ln VA 
per Worker

Empl. Sh. 
High Skill

Adoptionit-4 0.066** 0.015 0.052* 0.002

[2.434] [0.833] [1.798] [0.974]
Adoptionit-3 0.091*** 0.067*** 0.022 0.001

[3.046] [3.751] [0.799] [0.476]
Adoptionit-2 0.112*** 0.072*** 0.010 0.004

[3.551] [3.425] [0.356] [1.616]
Adoptionit-1 0.153*** 0.090*** 0.015 0.006**

[4.679] [3.851] [0.517] [2.399]
Adoptionit 0.205*** 0.121*** 0.018 0.006*

[6.115] [5.004] [0.611] [1.942]
Adoptionit+1 0.214*** 0.127*** 0.002 0.009***

[6.056] [4.939] [0.063] [2.739]
Adoptionit+2 0.200*** 0.090*** 0.035 0.013***

[5.385] [2.938] [1.057] [3.465]
Adoptionit+3 0.204*** 0.051 0.081** 0.017***

[5.339] [1.530] [2.255] [4.008]
Adoptionit+4 0.190*** 0.037 0.073** 0.018***

[4.699] [0.975] [1.967] [3.787]
Adoptionit+5 0.214*** 0.053 0.073** 0.013***

[5.104] [1.533] [2.087] [2.837]
Obs. 689,846 593,312 581,715 593,312
R2 0.93 0.88 0.82 0.67
The subscripts i and t denote firms and years, respectively. The dependent variables are
annual observations at time t of the firm-level outcomes indicated in columns' headings.
Adoption it is a dummy that takes on value 1 in the first year in which a firm imports robots
and in all subsequent periods, and is equal to 0 otherwise. All specifications include firm fixed
effects and 5-digit industry x year fixed effect. Standard errors are robust to
heteroskedasticity; t-statistics are reported in square brackets. ***, **, *: denote significance at
the 1, 5 and 10% level, respectively.
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Table C3: Firm-Level Outcomes and Robot Intensity with Depreciation

(1) (2) (3) (4)
Ln Sales Ln No. of 

Employees
Ln VA 
per Worker

Empl. Sh. 
High Skill

Ln RobIntit -0.085*** -0.098*** 0.030** 0.011***

[-3.458] [-4.672] [2.380] [2.740]
Obs. 5,706 5,711 5,542 5,711
R2 0.97 0.93 0.84 0.89
The subscripts i and t denote firms and years, respectively. The dependent variables are annual observations of the
firm-level outcomes indicated in columns' headings. Ln RobInt it is the log ratio between the stock of robot capital and
the total capital stock of the firm; the stock of robot capital is constructed using a perpetual inventory method with a
depreciation rate of 15%. All specifications include firm fixed effects and 5-digit industry x year fixed effects. They
also control for log sales and dummies for whether the firm is an importer or an exporter; each control variable is
observed in the first year in which the firm appears in the sample and is interacted with a full set of year dummies.
Standard errors are corrected for clustering within firms; t-statistics are reported in square brackets. ***, **, *: denote
significance at the 1, 5 and 10% level, respectively.

fixed effects and initial values of log sales and of dummies for importing and exporting firms.
The standard errors are corrected for clustering within 5-digit industries to account for possi-
bly correlated shocks among firms in the same industry. The coeffi cients on Adopteri reflect
cross-sectional differences in the growth of outcomes between robot adopters and other firms.
The results show that firms that adopt robots over the sample period experience a relatively
larger increase in size, a relatively stronger improvement in effi ciency, and a relatively faster
shift in labor demand towards high-skill workers.
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Table C4: Descriptive Statistics, Sample Used for Specifications in Long Differences

Obs. Mean Median Std. Dev.
Δ Ln No. of Employees 497 -0.009 0.003 0.077
Δ Empl. Sh. High Skill 497 0.005 0.003 0.009
Δ Ln Sales 493 -0.093 -0.081 0.093
Δ Ln VA per Worker 470 -0.096 -0.094 0.095
Ln Initial Sales 497 11.778 11.644 1.768
Dummy Initial Importer 497 0.924 1.000 0.266
Dummy Initial Exporter 497 0.889 1.000 0.314
Replaceability 497 0.378 0.416 0.183
Robot Exposure 497 -5.872 -5.330 3.730

Δ Ln No. of Employees 36,087 -0.033 -0.012 0.095
Δ Empl. Sh. High Skill 36,087 0.003 0.001 0.011
Δ Ln Sales 35,808 -0.132 -0.108 0.131
Δ Ln VA per Worker 34,710 -0.104 -0.101 0.141
Ln Initial Sales 36,087 9.882 9.686 1.376
Dummy Initial Importer 36,087 0.550 1.000 0.498
Dummy Initial Exporter 36,087 0.519 1.000 0.500
Replaceability 36,087 0.358 0.360 0.190
Robot Exposure 36,087 -6.681 -5.946 4.300

Robot Adopters

Non Robot Adopters

The sample for the specifications in long differences consists of 36,584 manufacturing firms with more than
10 employees excluding firms in the "Installation and Repair of Machinery and Equipment" industry. Statistics
are reported for the annualized changes in the outcomes and for the initial values of the Importer and Exporter 
dummies, Ln Sales , Replaceability and Robot Exposure . The latter variable is the product between the initial firm-
level employment share of occupations that can be replaced by robots (Replaceability ) and the initial ratio
between the overall stock of robots and the total capital stock of all other firms in each 5-digit industry (Robot 
Suitability ). 

Table C5: Firm-Level Outcomes and Robot Adoption, Long Differences

(1) (2) (3) (4)
D Ln Sales Δ Ln No. of 

Employees
D Ln VA per 
Worker

D Empl. Sh. 
High Skill

Adopteri 4.438*** 2.434*** 1.517*** 0.007
[11.032] [7.775] [3.609] [0.155]

Obs. 36,301 36,584 35,180 36,584
R2 0.10 0.04 0.06 0.04
The subscript i denotes firms. In each regression, the dependent variable is 100 x the annualized
change in the firm-level outcome indicated in the corresponding column. Adopter i is a dummy
equal to 1 for firms that start importing robots over the sample period and equal to 0 for non
importers. All specifications include 5-digit industry fixed effects as well as initial values of log
sales and of dummies for importing and exporting firms. Standard errors are corrected for
clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote
significance at the 1, 5 and 10% level, respectively.
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