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Abstract

The Efficiency Adjusted Deferred Acceptance Rule (EDA) is a promising

candidate mechanism for public school assignment. A potential drawback of

EDA is that it could encourage students to game the system since it is not

strategy-proof. However, to successfully strategize, students typically need

information that is unlikely to be available to them in practice. We model

school choice under incomplete information and show that EDA is regret-free

truth-telling, which is a weaker incentive property than strategy-proofness and

was introduced by Fernandez (2020). We also show that there is no efficient

matching rule that weakly Pareto dominates a stable matching rule and is
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our own. Chen and Möller acknowledge financial support from the Cologne Graduate School of
Management, Economics and Social Sciences (University of Cologne). Chen and Möller are funded
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1 Introduction

Efficiency and fairness are incompatible in the school choice problem.1 The Efficiency

Adjusted Deferred Acceptance Rule (EDA) (Kesten, 2010) elegantly circumvents

this incompatibility by allowing students to give their consent to relax the fairness

constraint. Its desirable features made EDA a candidate for school assignment in

Belgium’s Flanders region in 2019 (Cerrone et al., 2022). However, EDA belongs to

the class of stable dominating (matching) rules (Alva and Manjunath, 2019a) of which

no candidate is strategy-proof except the Student-Proposing Deferred Acceptance Rule

(DA) (Alva and Manjunath, 2019b).2,3 To address possible incentive issues with EDA,

we examine whether it satisfies an incentive criterion by Fernandez (2020) which is

weaker than strategy-proofness and is based on participants’ wish to avoid regret.

We employ a many-to-one school choice model with consent (Kesten, 2010) under

incomplete information, where students can reconsider their admission chances for

alternative reports through an observational structure based on the cutoff terminology.

We express each school’s individual priorities over students in the form of scores and

for each school, the cutoff is the lowest score among all students that have been

admitted to that school. Once the final matching has been determined, each student

makes an observation that consists of the final matching and each school’s cutoff and

can then draw inferences about the set of market unknowns that are consistent with

1A student has justified envy at a matching, if there exists a lower prioritized student assigned to
a school and the corresponding school is preferred to her assignment (Abdulkadiroğlu and Sönmez,
2003). A matching is fair if no justified envy exists and a matching rule is fair if it only produces
matchings which are fair. The trade-off between efficiency and fairness follows from Balinski and
Sönmez (1999).

2A matching rule is stable if it produces outcomes which are fair, individually rational and
non-wasteful. A matching is non-wasteful if there is no object that is unassigned although there is an
agent that prefers it over her assignment. A matching is individually rational if no agent prefers her
outside option over her final assignment. A stable dominating rule always implements a matching
that weakly Pareto dominates a stable matching (Alva and Manjunath, 2019a).

3Strategy-proofness requires that it is a weakly dominant strategy for students to report their
true preferences. DA was introduced by Gale and Shapley (1962) and shown to be strategy-proof by
Dubins and Freedman (1981) and Roth (1982). For related results regarding the incompatibility of
strategy-proofness with rules that Pareto dominate DA, see also Abdulkadiroğlu et al. (2009), Erdil
and Ergin (2008) or Kesten (2010).
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her observation. Our choice of a student’s unknowns is motivated by characteristics

common in the context of public school assignment, and includes other students’ scores

and their reported preferences. Specifically, it is common in practical applications

that students’ scores are based on proximity, walk-zone areas, sibling-status and other

socioeconomic variables. The composition of scores is usually public information,

whereas accurate information on other students’ scores and reported preferences will

generally be covered by privacy protection.

In this framework, we adopt an incentive notion by Fernandez (2020) that is

based on regret. A student regrets her report at an observation if she finds another

report, which does not assign her worse for all market unknowns compatible with

the observation and assigns her strictly better for some of the compatible market

unknowns. A rule is regret-free truth-telling if no student ever regrets reporting her

preferences truthfully.

The main finding of this paper is that EDA is regret-free truth-telling (Theorem 1)

and that under EDA, truth-telling is the unique option which never leads to regret

(Proposition 2). We thus provide an appropriate statement for the intuition that truth-

telling can be a focal strategy under EDA and contribute to the strand of literature

that outlines the many desirable features of EDA for practical implementation. Note

that we assume that students make their inferences subject to the uncertainty and

unobservability of other students’ consents. The just described uncertainty plays a

key role in the proof of Theorem 1.

We also study stable dominating rules without consent decisions. Under these rules,

students indicate only their preference rankings over schools, so there is no uncertainty

about the consent decisions of other students. As argued by Alva and Manjunath

(2019a) stable dominating rules without consent decisions address the efficiency and

fairness trade-off as follows: Students who complain that they experienced justified

envy under a matching can always be offered a corrective, namely the stable matching

which the implemented matching Pareto dominates. Since the corrective makes all
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students, including the students who complain, weakly worse off, it does not pay off

to complain.

We show that there is a stable dominating rule without consent decisions which is

not equivalent to DA and which is regret-free truth-telling (Proposition 3). However,

we also show that stable dominating rules which are regret-free truth-telling cannot

be efficient (Theorem 2). Stable dominating rules which are efficient contain some

interesting candidates for practical applications such as a version of EDA that improves

to the efficiency frontier without students’ consents. Note that the original version of

EDA for which Theorem 1 is satisfied, is not efficient since it respects improvements

on efficiency only with students’ consents.

Related Literature

To our knowledge, Fernandez (2020) is the first to introduce regret-based incentives

in the matching literature.4 In marriage markets, Fernandez (2020) shows that

truth-telling is the unique regret-free strategy under DA for both men and women

and that DA is the unique regret-free truth-telling rule among a subclass of stable

rules which are called quantile stable rules.5 Fernandez (2020) sheds light on college

admissions problems. He shows that the student-proposing variant of DA is regret-free

truth-telling. However, under the college-proposing variant of DA, being truthful does

not need to be free of regret for colleges. The key differences of our work to that of

Fernandez (2020) is that in our contribution only the students are strategic. Moreover,

whereas in Fernandez (2020) participants only observe the realized matching, students

in our model additionally observe cutoffs.

4Regret-based incentives have a long tradition in economic theory. For instance, in auction theory,
regret-based incentives of bidders in first-price auctions have been studied by Filiz-Ozbay and Ozbay
(2007) and Engelbrecht-Wiggans (1989). For a more detailed discussion we refer to Fernandez (2020).
See Gilovich and Medvec (1995) and Zeelenberg and Pieters (2007) for psychological treatments of
regret.

5For more information on quantile stable rules we refer to Teo and Sethuraman (1998), Klaus
and Klijn (2006), or Chen et al. (2014).
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This paper mainly contributes to the literature that deepens the understanding

of EDA’s incentive properties. Our results complement those of Troyan and Morrill

(2020), who show that for cognitively limited participants beneficial misreporting

under EDA is not obvious in the following sense: a profitable misreport is an obvious

manipulation if the best-case outcome of the misreport is better than the best-case

outcome of telling the truth or, if the worst-case outcome of the misreport is better

than the worst-case outcome of telling the truth. The main difference between our

work and that of Troyan and Morrill (2020) concerns the source of uncertainty that

students face. A profitable misreport is obvious if it is easy to recognize for students

whose knowledge on the matching rule is imperfect, given that these students have full

access to the scores of other students. That is, non-obvious manipulability is mainly

driven by participants’ limited understanding of the matching rule. By contrast,

students in our model know how the matching rule works and our results are driven

by students’ incomplete access to the scores of other students. Notably, the positive

result of Troyan and Morrill (2020) covers both EDA and stable dominating rules,

where we reach a negative result for efficient stable dominating rules.

Previous results on EDA’s incentive properties are inspired by the theoretical

benchmark for low information environments from Roth and Rothblum (1999) and

Ehlers (2008). Kesten (2010) studies Bayesian incentives of EDA in a setting where

it is common knowledge that students’ preferences over schools are ordered into

shared quality classes and students’ beliefs on how other students order schools within

each quality class are symmetrically distributed. Kesten (2010) shows that if other

students submit their true preferences, then truth-telling stochastically dominates any

other strategy. The key difference to our model is that we do not specify any prior

probability distribution regarding the beliefs or distribution on other participants’

preferences and thus do not impose any symmetry assumptions or correlation of

preferences over schools. Thus, in contrast to the approach of Kesten (2010) our

information environment follows the “Wilson doctrine” (Wilson, 1987).
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Related to our work are also some more recent findings on EDA’s incentive features.

Reny (2021) shows that under EDA, truth-telling is a maxmin optimal strategy for

students that do not know other students’ preferences. Decerf and Van der Linden

(2021) find that rules that Pareto dominate DA are harder to manipulate than the

well-known Boston mechanism. Finally, a recent experiment on manipulation under

EDA by Cerrone et al. (2022) revealed that different variants of EDA yield higher

rates of truth-telling than DA in environments with strategic uncertainty, complete

information about the primitives and given that students are not allowed to truncate.

More generally, the theoretical literature on EDA is growing rapidly as well. Tang

and Yu (2014), Ehlers and Morrill (2020), Bando (2014) and Dur et al. (2019) have

recently developed tractable alternatives to Kesten’s initial formulation of EDA. Ehlers

and Morrill (2020) generalize EDA to a school choice model where school priorities

take the form of flexible choice functions and Kwon and Shorrer (2019) propose a

version of EDA for organ exchange. EDA also manages to satisfy some reasonable

weaker alternatives to fairness in the sense of Abdulkadiroğlu and Sönmez (2003),

including for example, guaranteed selection of essentially stable matchings (Troyan

et al., 2020), priority-neutral matchings (Reny, 2021) and legal matchings (Ehlers

and Morrill, 2020).

Further, our paper relates to the line of literature that uses the cutoff terminology in

school choice models. Most prominent in this regard is Azevedo and Leshno (2016) who

characterize stable matchings in terms of cutoffs in a continuum school choice model.

They show that cutoffs take the form of market-clearing prices that equalize supply

and demand and can be used to perform comparative statics with respect to schools’

incentives to invest in quality. When used to characterize stable matchings, cutoffs

usually take the form of a guarantee for participants to be admitted at schools. In our

framework, final assignments may not correspond to stable matchings. Therefore, the

cutoffs do not necessarily provide a student with information about whether she will

be admitted at a desired school. Moreover, in our model the cutoffs are incorporated
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into students’ strategic reasoning.

Finally, this work also adds to the literature examining the impact of behavioral

biases on decision making in school choice. Meisner and von Wangenheim (2021) and

Dreyfuss et al. (2019) show that students not playing truthfully under the student-

proposing variant of DA can be explained by students being loss averse. The influence

of students’ overconfidence is examined by Pan (2019).

The rest of this paper is organized as follows. We introduce the basic model and

EDA in Section 2. We model the informational environment and adopt regret-free

truth-telling in Section 3. In Section 4, we present our main results. Our analysis

regarding stable dominating rules without consent option is provided in Section 5. In

Section 6, we give a brief discussion of how our key assumptions influence the results.

Finally, Section 7 gives a short conclusion. The Appendix contains most of our proofs.

2 The Model

There is a finite set of students I and a finite set of schools S. Each school s ∈ S has

a fixed capacity qs and we collect the capacities in q = (qs)s∈S. We add a common

outside option s∅ for students which has infinite capacity.

Each school s ∈ S has a vector of scores gs = {gsi }i∈I , where gsi ∈ (0, 1) is i’s score

at s. We assume that gsi 6= gsj for any i, j ∈ I and any s ∈ S, and we say that for each

pair of students i, j ∈ I, i has higher priority at s than j if and only if gsi > gsj . That

is, for each school s, the school’s scores induce a strict priority ranking over I.6 For

each i ∈ I, let gi = {gsi }s∈S be the vector of scores assigned to student i. Let a score

structure g = (gi)i∈I be a collection of scores for each student and let g−i = (gj)j∈I\{i}

be a collection of scores for students in I \ {i}. Moreover, set GI as the domain of all

possible score structures and G−i as the domain of all score structures for students

6The incomplete information framework we introduce in Section 3 allows students to draw
inferences about their admission chances. Our formulation of scores will then ensure that a student
typically cannot infer her exact rank on a school’s priority list just on the basis of her own score.
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other than i.

For each student i ∈ I, let �i be a strict preference relation over S ∪ {s∅}. The

corresponding weak preference relation of �i is denoted by �i.7 Let P denote the set

of all possible strict preference relations over S ∪ {s∅}. For any �i ∈ P , a school s is

acceptable to i if s �i s∅ and unacceptable if it is not acceptable. A preference profile

�= (�i)i∈I is a realization of P for each i ∈ I and �−i= (�j)j∈I\{i} is a preference

profile for students in I \ {i}. We define PI as the domain of all preference profiles

and P−i as the domain of all preference profiles for students in I \ {i}.

A matching µ : I → S ∪ {s∅} is a function such that for each s ∈ S, |µ−1(s)| ≤ qs.

Given any µ, we set µi = µ(i) as the assignment of i and µs = µ−1(s) as the set of

students assigned to s. Denote the set of all possible matchings by M.

In the following, fix any �∈ PI . We say a matching µ weakly Pareto dominates

another matching µ′ if for all i ∈ I, µi �i µ′i. A matching µ Pareto dominates µ′ if µ

weakly Pareto dominates µ′ and for some j ∈ I, µj �j µ′j. A matching µ is Pareto

efficient if there does not exist another matching µ′ which Pareto dominates µ.

We now introduce two fairness notions, where we start with the well-known notion

by Abdulkadiroğlu and Sönmez (2003). Given a matching µ, student i has justified

envy towards student j at school µj under µ if µj �i µi and g
µj
i > g

µj
j . A matching µ

is fair if no student has justified envy at µ. A matching µ is individually rational if for

each student the assigned school is acceptable to her. A matching µ is non-wasteful if

there does not exist a student i and a school s, such that s �i µi and |µs| < qs. A

matching µ is stable if it is fair, individually rational and non-wasteful.

We also consider a weaker fairness notion that was introduced by Kesten (2010).

The notion takes students’ willingness to consent for being exposed to justified envy

into account. For each student i, the consent is parameterized by a binary variable

ci ∈ {0, 1}, where ci = 1 means that i consents and ci = 0 means that i does not

consent. We say a matching µ violates the priority of student i given ci if ci = 0

7That is, for all s, s′ ∈ S, s �i s
′ if either s �i s

′ or s = s′.
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and if there exists another student j ∈ I such that i has justified envy towards j

at µ. Let c = (ci)i∈I be a consent profile and let CI be the domain of all consent

profiles. Denote a consent profile of students other than i by c−i = (cj)j∈I\{i} and

the respective domain by C−i. Given a matching µ, a profile of preferences � and a

consent profile c, we say that a matching is fair with consent if there exists no student

whose priority is violated at µ.

We call a collection (I, S, q, g,�, c) a school choice problem with consent (or simply

a problem). Throughout the main body, we fix a problem (I, S, q, g,�, c). A report of

student i is pair (�′i, c′i) ∈ P × {0, 1} and a report profile is a pair (�′, c′) ∈ PI × CI .

Analogously, let (�′−i, c′−i) ∈ P−i × C−i be a report profile of students except i.

A (matching) rule f : GI × PI × CI → M maps any triple of a score structure,

preference profile and consent profile into a matching. Given a report profile (�, c)

and a score structure g, let the outcome of f be f(g,�, c) and, for each i ∈ I, let

fi(g,�, c) denote student i’s respective assignment. If the rule does not take consent

decisions into consideration, we write f(g,�) instead of f(g,�, c). A rule f is Pareto

efficient if each outcome of the rule is Pareto efficient. Similarly, a rule is stable if it

produces a stable matching for any problem. A rule f is stable dominating (Alva and

Manjunath, 2019a) if for any problem (I ′, S ′, q′, g′,�′, c′) the matching f(g′,�′, c′)

weakly Pareto dominates a matching µ ∈M given �′, where µ is stable with respect

to (g′,�′).

We proceed with the description of two incentive notions for students. A matching

rule f is consent-invariant if fi(g,�, (ci, c−i)) = fi(g,�, (c′i, c−i)) for all i and all ci, c
′
i.

That is, each student’s assignment is independent of her own consent decision. Note

that the rules studied in this paper are all consent-invariant. A matching rule f is

strategy-proof if fi(g, (�i,�−i), c) �i fi(g, (�̃i,�−i), c) for all i and all �̃i ∈ P . That

means, for each student, reporting her true preferences is weakly better than reporting

untruthfully regardless of other students’ reports.
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2.1 EDA

In this subsection, we present Kesten’s EDA along with our first result. EDA inputs

a report profile (�, c) and produces an outcome where no student who decided not to

consent experiences justified envy. EDA is stable dominating and essentially iteratively

runs DA presented in Appendix A. Specifically, in the DA application process, a pair

(i, s) ∈ I × S is an interrupting pair at step t′ if (1) student i is tentatively accepted

by s at some step t and is then rejected by s at the later step t′ and; (2) another

student is rejected by s at some step t∗ with t ≤ t∗ < t′. Hereinafter, we refer to

i as an interrupter for s at step t′. The formal description of the algorithm which

induces EDA as in Kesten (2010) is provided below, while the alternative Top Priority

Algorithm (Dur et al., 2019) used in most of the proofs can be found in Appendix A.

Given any input report profile, EDA yields the outcome via the following procedure:

Round 0 Run DA.

Round k, k ≥ 1 Consider the application process of DA in Round k− 1. If there are

interrupting pairs in which the interrupter consents, find the last step of this

process where a consenting interrupter is rejected by the school for which she

is an interrupter. At that step, collect all interrupting pairs with a consenting

interrupter. For each collected pair (i, s), remove s from i’s input preferences of

round k − 1 and keep the relative ranking of all other schools as before. For all

other students, keep their input preferences the same as in round k − 1. Then,

run DA with the updated preference profile and proceed to Round k + 1. If

there are no interrupting pairs with a consenting interrupter, the algorithm

terminates with the DA outcome of Round k − 1.

We now move to our discussion on EDA’s incentive properties which is known to be

consent-invariant but not strategy-proof (Kesten, 2010). Our first result, Proposition 1,

states that a certain class of deviations of a student does not affect her own assignment.
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For any preference relation �i∈ P and school s ∈ S, let the weak lower contour set of

�i with respect to s be L�i
s = {s′ ∈ S | s �i s′}.

Proposition 1. If EDA(g,�, c) = µ and �̃i ∈ P is such that for all s, s′ ∈ L�i
µi

,

s �i s′ only if s �̃i s′, then EDAi(g, (�̃i,�−i), c) = µi.

Proof. See Appendix B.

In words, Proposition 1 shows that if a student’s deviation from her baseline report

keeps the order of the schools in the lower contour set with respect to the baseline

assignment, then it yields the same outcome for the deviating student. The set of

deviations considered in Proposition 1 is a subset of monotonic transformations at

the student’s baseline assignment. Formally, �′i is a monotonic transformation of

�i at s ∈ S ∪ {s∅} if s′ �′i s implies that s′ �i s. As will be evident from Section 4,

Proposition 1 cannot be generalized to hold for all monotonic transformations at µi.

3 Regret in School Choice

In this section, we introduce the informational environment and regret-based incentives.

We first describe the students’ information and impose an observational structure.

Assume that before submitting the report, each student i knows (I, S, q, gi) and the

matching rule f . After assignments have been determined by f , each student observes

the matching and the cutoff at each school, i.e. the lowest score among all applicants

matched to the school. More formally, given a report profile (�̂, ĉ), student i observes

µ = f(g, �̂, ĉ) and for each school s ∈ S ∪ {s∅}, she observes πs(µ, g) = mini∈µs g
s
i

when |µs| = qs and πs(µ, g) = 0 otherwise. Let π(µ, g) = {πs(µ, g)}s∈S∪{s∅} and let an

observation of student i be captured by (µ, π(µ, g)).

Next, define any triple (g′−i,�′−i, c′−i) ∈ G−i×P−i×C−i as a scenario for student i.

If i submits (�̂i, ĉi) and observes (µ, π(µ, g)), then scenario (g′−i,�′−i, c′−i) is plausible

if π(µ, g) = π(µ, (gi, g
′
−i)) and f((gi, g

′
−i), (�̂i,�′−i), (ĉi, c′−i)) = µ. The set of all
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plausible scenarios for student i is her inference set I(µ, �̂i, ĉi). Moreover, for student

i ∈ I who reports (�̂i, ĉi) to f , let

M|(�̂i,ĉi) = {µ ∈M | ∃(�′−i, c′−i) ∈ P−i × C−i : f(g, (�̂i,�′−i), (ĉi, c′−i)) = µ}

be the set of matchings that could be observed by student i. Note that g is fixed in

M|(�̂i,ĉi), since it is a primitive of the market and independent of the report profile.

Having defined our observational structure, we are ready to introduce the notions

of regret and regret-free truth-telling adopted from Fernandez (2020). Recall that all

matching rules we study are consent-invariant. To simplify our notation, we therefore

define regret with a fixed consent decision for the student under consideration. Note,

however, that for rules which are not consent-invariant one may define regret with

respect to a pair of a consent decision and a preference ranking.

Definition 1. Fix consent decision ĉi. Student i regrets submitting �̂i at µ ∈M|(�̂i,ĉi)

through �∗i under f if

1. ∀(g′−i,�′−i, c′−i) ∈ I(µ, �̂i, ĉi): fi((gi, g′−i), (�∗i ,�′−i), (ĉi, c′−i)) �i µi

2. ∃(g̃−i, �̃−i, c̃−i) ∈ I(µ, �̂i, ĉi): fi((gi, g̃−i), (�∗i , �̃−i), (ĉi, c̃−i)) �i µi.

In words, a student regrets her report at an observation if there is an alternative

report which guarantees her a weakly better assignment in all plausible scenarios and

realizes a strict improvement in at least one plausible scenario.

Definition 2. Fix consent decision ĉi. A report �̂i is regret-free under f if there does

not exist a pair (µ,�∗i ) ∈M|(�̂i,ĉi) × P such that i regrets �̂i at µ through �∗i .

That is, a regret-free report ensures that regardless of the realized observation,

the student does not regret her report.

We only consider matching rules that are invariant in the unacceptable set and de-

fine reported preferences as truth-telling if they differ from a student’s true preferences

only in the order within the unacceptable set.
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Definition 3. A matching rule f is regret-free truth-telling if for each problem and

for each student, truth-telling is regret-free under f .

Strategy-proofness is stronger than regret-free truth-telling. That is, once truth-

telling is weakly dominant under a rule, it is regret-free. However, the converse is

not true. Specifically, strategy-proofness means that truth-telling is the weakly best

option under any scenario, whereas regret-freeness only needs that, given a students’

observation, no other report weakly dominates the truth in all plausible scenarios.

4 Main Results

In this section, we present our main result. We show that a student can avoid regret

under EDA if she submits her true preferences (Theorem 1) and that there is no other

reporting behavior that provides the same guarantee (Proposition 2).

Theorem 1. EDA is regret-free truth-telling.

Proof. See Appendix C.

The following exposition provides an overview of the main arguments used in the

formal proof. Fix any student i ∈ I, suppose that she reports her true preferences

�i and she observes (µ, π(µ, g)). Then, any misreport �̃i can be interpreted as a

combination of the following types of variations, where relative to �i:

(A1) for all s, s′ ∈ S, s �i s′ and s′ �̃i s only if s ∈ S \ L�i
µi

;

(A2) there exists s′ ∈ S such that µi �i s′ and s′ �̃i µi, or;

(A3) there exists s, s′ ∈ L�i
µi

such that s, s′ ∈ L�̃i
µi

, s �i s′ and s′ �̃i s.

Type (A1) involves all variations relative to �i which keep the same ranking of

all schools that are truly less preferred to µi. Type (A2) considers the misreports
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which rank some schools that are truly less preferred to µi as more preferred and (A3)

considers the misreports which alter the rankings among the schools that are truly

less preferred to µi.

First note that any variation �̃i of type (A1) relates to Proposition 1. If

(g̃−i, �̃−i, c̃−i) is plausible, then we have EDA((gi, g̃−i), (�̃i, �̃−i), (ci, c̃−i)) = µ and

we can apply Proposition 1 to obtain EDAi((gi, g̃−i), (�̃i, �̃−i), (ci, c̃−i)) = µi.

Next, let student i choose a misreport �̃i that contains variations of type (A2) and

let S̃ = {s′ ∈ S | µi �i s′ and s′ �̃i µi}. The key arguments in the proof can roughly

be divided into two categories: The submission of �̃i either would not have effectively

influenced the assignment process at all, meaning i’s assignment remains µi; or there is

at least one plausible scenario in which the student is finally assigned to some s∗ ∈ S̃.

Here, we discuss the latter and more interesting case. The starting point of our

argument is to construct a plausible scenario (g̃−i, �̃−i, c̃−i) where i is assigned to s∗

under DA((gi, g̃−i), (�̃i, �̃−i)). Then, we show that either the potential improvements

that involve i cannot be realized because the consent of a student is missing; or there

is no student who prefers s∗ to her assignment under DA((gi, g̃−i), (�̃i, �̃−i)). The

key challenge is to construct plausible scenarios for which one can isolate such a school

s∗ ∈ Lµi�i
since the selection varies with the properties of the observed cutoffs.

Intuitively, given strategy-proofness of DA, what would allow student i to benefit

from misreporting under EDA is that relative to the process under truth, (1) i’s

application at s∗ creates a lastly rejected interrupting pair and (2) the created

interrupter consents. In this case, the induced inefficiency under DA may lead student

i to improve upon s∗ to some school preferred to µi under EDA. However, there always

exists a plausible scenario for student i where (1) or (2) cannot be satisfied, under

which i is assigned to s∗ and worse off compared to µi. Section 6 discusses in more

detail in which cases the uncertainty about other students’ consent decisions is needed

for the result.

Also note that the intuition and the identified key challenges are not present
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in the analysis of Fernandez (2020) who shows that DA is regret-free truth-telling

in the marriage problem. In Fernandez (2020) agents do not have the option to

consent, do not observe cutoffs and the property is proven for the side that receives

the applications under DA. Essentially, Fernandez (2020) shows that a preference

profile for which the set of stable matchings is a singleton is always plausible. This

means that i’s observed assignment is already her best achievable stable assignment

and student i may be worse off by misreporting. Since EDA is not stable and, in

particular, the cutoffs may reveal the instability of the matching to the observing

student, the argument by Fernandez (2020) is not applicable here.

Finally, suppose that the misreport �̃i contains variations of type (A3). The

key argument for such a misreport is similar to that for (A2): By submitting �̃i,

student i faces the possibility to be assigned to a less preferred school s∗ whose order

is permuted in �̃i and for which there is no student who prefers s∗ to her assignment

under DA((gi, g̃−i), (�̃i, �̃−i)). However, different from (A2), here the target school

s∗ still ranks below µi on �̃i and its identification depends on its relative position

to i’s DA assignment on �i and �̃i. This difference brings an additional challenge

to the proof that is also absent in Fernandez (2020). While for (A2) it is enough to

consider a plausible scenario where under truth-telling, i was already assigned to µi

under DA, for (A3) we need to construct a scenario where under truth-telling, the

updating procedure of EDA improves student i from some school to µi.

Our final result in this section shows that truth-telling is the unique regret-free

choice under EDA.

Proposition 2. For any non-truthful report, there exists an observation at which the

student regrets it through truth-telling.

Proof. See Appendix D.

At first glance, it might appear that Proposition 1 and Proposition 2 are in conflict

with each other. However, Proposition 1 only implies that a certain class of misreports
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does not change the student’s assignment when we fixed an observation that follows

from her true preferences. In Proposition 2, however, the observation is not fixed.

Instead, we show that given any non-truthful report, we can find a corresponding

observation, such that truth-telling guarantees weakly better assignments in all

plausible scenarios.

As an intuition for Proposition 2 note that for every misreport there must exist

a pair, say school s and s̃, which compared to the truth, reverse their rankings.

Let student i prefer s to s̃ under truth. Now suppose that upon submission of the

misreport, she is assigned to s̃ while a seat at s is vacant. Note that the vacant seat

at s allows i to infer that the truth would have guaranteed her at worst s. As a result,

she will regret not having been truthful. The key step in the proof is to construct an

observation of the type just described for any misreport.

5 Stable Dominating Rules without Consent Deci-

sions

In this section, we focus on stable dominating rules without consent decisions. That is,

unlike under the version of EDA examined in the previous section, consent decisions

are not reported for this class of stable dominating rules. This also means that students

face no uncertainty regarding the consent decisions of other students. Accordingly,

we modify the elements of the basic framework presented in Section 3 to reflect the

removal of the consent decisions. To exemplify this point, let a scenario for student i

reduce to a pair (g̃−i, �̃−i) ∈ G−i × P−i and denote i’s inference set with I(µ,�i).

For our main negative result, we refine the set of stable dominating rules to consider

only candidates which are efficient. A matching rule is efficient stable dominating if

it is stable dominating and Pareto efficient. Since efficient stable dominating rules

are stable dominating, it follows from Alva and Manjunath (2019b) that none of the
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them is strategy-proof. As we will show below, for efficient stable dominating rules,

also regret-free truth-telling cannot be satisfied.

Theorem 2. No efficient stable dominating rule is regret-free truth-telling.

The proof below is constructive. We provide a problem with |S| = 2 and |I| = 3,

and show that a student regrets submitting her true preferences under any efficient

stable dominating rule. We only need small adjustments in the construction to apply

the basic argument to any market with |S| ≥ 2 and |I| ≥ 3.

Proof. Consider a problem (I, S, q, g,�) with two schools S = {s1, s2} with capacities

qs1 = qs2 = 1 and three students I = {i1, i2, i3}. Suppose that i1’s true preferences �i1
are s2 �i1 s∅ �i1 s1. Also, let �−i ∈ P−i satisfy s1 �i2 s2 �i2 s∅ and s2 �i3 s1 �i3 s∅.

Next, consider score structure g with gs1i1 > gs1i3 > gs1i2 and gs2i2 > gs2i1 > gs2i3 . Note that

the unique stable matching with respect to � is ν = {(i1, s∅), (i2, s2), (i3, s1)} and

that matching µ = {(i1, s∅), (i2, s1), (i3, s2)} is the unique Pareto efficient matching

that Pareto dominates ν. Thus, for an arbitrary efficient stable dominating rule,

denoted by fESD, we must have fESD(�) = µ.

In the following, we construct a misreport �̃i1 through which i1 regrets �i1
at observation (µ, π(µ, g)). Before we can make this misreport explicit, we need

to describe i1’s inference set I(µ,�i1). To start, note that gs1i1 > πs1(µ, g) and

gs2i1 > πs2(µ, g). We now show that any g̃s2 must share its ordinal ranking with gs2 for

any plausible score structure g̃−i. First, from the observation (µ, π(µ, g)) student i1

observes that her top choice s2 is assigned to a lower priority student i3, i.e. g̃s2i1 > g̃s2i3 .

Second, if i1 would have top priority at s2 this would imply that i1 is assigned to

s2 under any stable matching ν ′ whenever s2 is submitted as her top choice. Thus,

this must also hold true for any Pareto Efficient matching µ′ that improves on ν ′ and

hence i1 can infer that student i2 must have top priority at s2. In conclusion, for any

plausible (g̃−i1 , �̃−i1), the corresponding g̃s2 shares the same ordinal ranking with gs2 .
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Next, given g̃s2 , it must hold �̃i2 =�i2 . First, i2 must submit s2 as acceptable since

otherwise any stable matching would assign s2 to i1. Therefore, i1 knows s2 �̃i2 s∅.

Second, note that since i2 has top priority at s2, f
ESD would have assigned s2 to i2 if

i2 would have submitted s2 as her top choice. Thus, i1 knows s1 �̃i2 s2. Combining

the two relations i1 can infer that �̃i2 =�i2 is the unique candidate contained in any

plausible (g̃−i1 , �̃−i1).

Now, we describe the candidates for g̃s1 . First, by observing (µ, π(µ, g)), student

i1 knows that s1 is assigned to the lower priority student i2, i.e., g̃s1i1 > g̃s1i2 . Second,

we establish that given the information regarding g̃s2 and �̃i2 , we must have g̃s1i3 > g̃s1i2 .

Suppose by contradiction that g̃s1i2 > g̃s1i3 . In this case, in fESD, i1 and i2 must be

assigned to their top choices s2 and s1, respectively. However, this is incompatible with

µ. Thus, there are two remaining ordinal rankings g̃s1i1 > g̃s1i3 > g̃s1i2 and g̃s1i3 > g̃s1i1 > g̃s1i2

that are compatible with any plausible scenario (g̃−i1 , �̃−i1).

We show that only �̃i3 = �i3 is compatible with i1’s observation. First, since i3 is

assigned to s2 in µ, student i1 can conclude that s2 �̃i3 s∅. If i3 would have submitted

s∅ �̃i3 s1, then any stable matching would have assigned both i1 and i2 to their

top choices, which is incompatible with the observation. Thus, it must be true that

s1 �̃i3 s∅. Furthermore, suppose by contradiction that s1 �̃i3 s2. Given that s∅ �i1 s1
and g̃s1i3 > g̃s1i2 , student i3 is assigned to s1 under fESD, which is again incompatible

with observing µ. Hence, student i3 can only have submitted �̃i3 =�i3 . As a result,

we can classify i1’s inference set I(µ,�i1) into two cases that are distinguished by the

remaining candidates of ordinal rankings for scores at s1.

We now show that i1 regrets reporting the truth �i1 at (µ, π(µ, g)) through

�̃i1 : s2 �̃i1 s1 �̃i1 s∅. We show that among the two possible classes from the inference

set, in one class i1 is strictly better off through the misreport and she is not worse off

in the remaining class.

First, suppose that (g̃−i1 , �̃−i1) ∈ I(µ,�i1) satisfies g̃s1i1 > g̃s1i3 > g̃s1i2 . In this case,

we argue that fESD must assign i1 to s2 when i1 submits �̃i. Hence, student i1 would
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strictly improve her assignment from s∅ under truth-telling to her top choice s2.

We first show that there is a unique stable matching ν̃ = {(i1, s1), (i2, s2), (i3, s∅)}.

Note that in any stable matching i1 cannot be assigned to s∅, since i1 would have

justified envy at s1. This implies that whenever i1 is not assigned to s2, she must

be assigned to s1. Furthermore, if i1 is matched with s2, then i2 must be assigned

to s1, which would mean that i3 has justified envy at s1. Thus, the unique stable

matching corresponds to ν̃. Hence, any efficient stable dominating rule selects

µ̃ = {(i1, s2), (i2, s1), (i3, s∅)} since it is the only Pareto efficient matching that

dominates ν̃. Thus, we conclude that conditional on her observation (µ, π(µ, g)), in

this scenario, i1 would have been better off if she had reported �̃i1 to fESD.

It remains to show that given (g̃−i1 , �̃−i1) ∈ I(µ,�i1) with g̃s1i3 > g̃s1i1 > g̃s1i2 , student

i1 is not assigned to a worse option than under truth-telling (namely s1). Clearly,

in this case the unique stable matching is ν, while the unique matching that Pareto

dominates ν is µ. Therefore, i1 will be assigned to s∅ under fESD, which is the same

assignment as under true preferences.

Since the choice of fESD was arbitrary, we have shown that for any efficient stable

dominating rule, student i1 regrets reporting the truth �i1 through misreport �̃i1 at

(µ, π(µ, g)). This completes the proof.

As shown next, Theorem 2 cannot be generalized to hold for all stable dominating

rules without consent decisions and which are different from DA.

Proposition 3. There exists a non-stable and non-efficient stable dominating rule

without consent decisions which is regret-free truth-telling.

Proof. See Appendix E.

The rule we construct in the proof of Proposition 3 always selects the DA outcome

except when the input is the same as under the problem studied in the proof of

Theorem 2, where it selects an unstable but efficient matching.
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As a final remark, note that not all non-stable and non-efficient stable dominating

rules are regret-free truth-telling. An example is a modification of the efficient stable

dominating DA+TTC, which first runs DA, then gives each student her matched

school as an endowment and runs the Top Trading Cycles (TTC) algorithm by Shapley

and Scarf (1974). More precisely, consider a non-efficient variant of DA+TTC where

only cycles that contain exactly two students are executed. A brief inspection of the

proof of Theorem 2 shows that this variant of DA+TTC coincides with an efficient

stable dominating rule in the relevant case and the proof can be applied directly.

6 Discussion

As we remarked in Section 4, a necessary condition for EDA to be regret-free truth-

telling (Theorem 1) is that students face uncertainty regarding the consent decisions

of other students. Yet specifying the consent decisions of students is rarely critical to

our arguments. With one exception that is discussed below, the consent decisions of

all students could be disclosed without affecting the conclusion.

The exception occurs under generalizations of the problem that appears in the

proof of Theorem 2. If one would use EDA for this problem with ci1 = 1, then i1 would

observe (µ, π(µ, g)). In this case, the observation reveals that i1 has justified envy at

the two schools s1 and s2 and i1 can thus infer that their assigned students must have

benefited compared to DA through her own consent. The details i1 can infer from

the observations’ features in this example are then rich enough for her to conclude

that by misreporting �̃i1 , her applications either would have made i3 a lastly rejected

interrupter at school s2 or that i1 remains to be matched with her observed matching

s∅. In the former case, having ci3 = 1 would ensure that i1 improves from s1 to s2

under EDA’s updating procedure, whereas ci3 = 0 implies that i1 is matched with her

truly least preferred school s1. Consequently, the truth remains regret-free since no

inferences about the consent decisions of i3 can be drawn from i1’s observation.
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We now continue with a short discussion of how robust our main results are to

differences in the information structure and our modeling decisions. First, note that

if students obtain less detailed information through their observations or if students’

choice sets expand, also the set of plausible scenarios weakly expands. Intuitively, in

the proof of Theorem 1 we aim at constructing plausible scenarios where students

would be harmed by their misreports in a plausible scenario. Thus, with weakly

expanding sets of plausible scenarios our arguments would still be valid. For instance,

Theorem 1 continues to hold if students only observe their own assignments and the

cutoffs of the schools they applied to, or if students can choose their consent decision

as a function of the school as in Dur et al. (2019).

For similar reasons, one can extend Theorem 1 to some straightforward environ-

ments where scores initially may contain ties between students—a common feature in

many applications of school choice. Specifically, given a score structure that contains

ties, assume that students do not receive information on the indifference (equivalence)

classes of schools’ scores, i.e., no student knows at any given school whether another

student has the same score as she has. Also assume that students learn their own

scores not before the ties have been randomly resolved by a tie-breaker (e.g., by using

single tie-breaking or multiple tie-breaking) and that also the observed cutoffs are

based on the scores after tie-breaking.8 It is clear then that for each student, each

observation and each strict score structure resulting from tie-breaking that can be

part of a plausible scenario, one can separately apply our arguments in the proof of

Theorem 1 and thus reach the desired conclusion that truth-telling is regret-free.

We close the discussion with a final note on our negative result Theorem 2.

Concretely, consider the case where each student observes only her own assignment

and the cutoffs of the schools she applied to. Carefully inspecting the particular

problem in the proof of Theorem 2 again, reveals that student i1 has only one additional

8Under a multiple tie-breaking rule, a different tiebreaker can be used at each school, while with a
single tie-breaking rule, it is the same for all schools. For a formal treatment of different tie-breaking
rules see, for instance, Abdulkadiroğlu et al. (2009).
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consistent matching and one additional plausible score ranking for school s1. In this

case, switching the assignments for student i2 and i3 compared to µ and using a

symmetric argument will lead to the same conclusions as for the original setting.

7 Conclusion

Telling the truth is a safe choice under EDA if students wish to avoid regret their

submitted reports. Strengthening this first result, we have also shown that truth-

telling is the unique regret-free option under EDA. Moreover, we established that in

the class of stable dominating rules without consent decisions, there are candidates

which are regret-free truth-telling, whereas no such candidate can be efficient.

Our results open up several avenues for future research. For example, a natural

step seems to be to further explore the scope of relaxations of observational constraints

that do not affect our results. In another direction, it is also an open question whether

EDA is still regret-free if schools’ priorities take the form of more flexible choice

functions.9

Appendix A DA and TP rule

We first introduce the algorithm which induces DA. Thereafter, we present a lemma

on DA that is necessary to prove Proposition 1 and Theorem 1 and introduce the TP

algorithm. First, fix a problem (I, S, q, g,�, c) and consider the DA algorithm:

Step k Each student applies to her most-preferred school s ∈ S ∪ {s∅} that has not

rejected her. Each school s tentatively accepts the qs highest scored students

among those who have applied to it (or each of them, if fewer than qs apply),

and rejects the rest.

9Ehlers and Morrill (2020) introduce a generalized version of EDA that might serve as a starting
point for an investigation.

22



The algorithm terminates with the tentative assignments of the first step in which

no student is rejected. For our lemma presented below we define Weak Maskin

Monotonicity as in Kojima and Manea (2010). We call �′ a monotonic transformation

of � at matching µ, if for each i′ ∈ I, �′i′ is a monotonic transformation of �i′ at µi′ .

Definition 4. A matching rule f is weakly Maskin monotonic if, given any � and

for any �′ that is a monotonic transformation of � at f(g,�, c), f(g,�′, c) weakly

Pareto dominates f(g,�, c)

Kojima and Manea (2010) show that DA is weakly Maskin monotonic. Further-

more, DA is strategy-proof (Dubins and Freedman (1981) and Roth (1982)) and

produces the SOSM for a given score structure and preference profile.

Lemma 1. Suppose that �′i∈ P is a monotonic transformation of �i at DAi(g,�).

Then, DA(g, (�′i,�−i)) weakly Pareto dominates DA(g,�) and i’s outcomes are

identical, i.e., DAi(g,�) = DAi(g, (�′i,�−i)).

Proof. The first part follows from weak Maskin monotonicity of DA. The second part

is proved by means of contradiction. Suppose that DAi(g,�) 6= DAi(g, (�′i,�−i)),

then by weak Maskin monotonicity of DA, DAi(g, (�′i,�−i)) �i DAi(g,�), which

contradicts strategy-proofness of DA.

Relevant for our proofs, we now introduce how the Top-Priority (TP) algorithm

(Dur et al., 2019) calculates the outcomes of EDA and start with some basic termi-

nologies. Fix any (�, c). For any matching µ ∈M, any student i and any school s,

we say that i demands s at µ if s �i µi. Moreover, we say that student i is eligible for

s at µ if i demands s at µ and there exists no j who also demands s with cj = 0 and

gsi < gsj . Note that there could be more than one student who is eligible for a school

and if two students i, i′ are both eligible for s, then gsi > gsi′ implies ci = 1.

Given a matching µ ∈ M, consider the directed graph G(µ) = (I, E(µ)), where

E(µ) ⊆ I × I is the set of (directed) edges such that ij ∈ E(µ) if and only if i is
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eligible for µj. Hence for each student i ∈ I, her directed edges under G(µ) describe

her demands of which the realization would not imply a priority violation given that

each student j 6= i is matched with a school weakly preferred to µj. A set of edges

{i1i2, i2i3, ..., inin+1} in G(µ) is a path if i1, i2, ..., in+1 are distinct and it is a cycle if

i1, i2, ..., in are distinct while i1 = in+1.

A school s has no demand in µ if no student demands s at µ. A school s is

underdemanded at µ if it either has no demand at µ or, every path in G(µ) that is not

part of another path in G(µ) and that ends with some i ∈ µs, begins with a student

assigned to a school with no demand. We say that a student is permanently matched

at µ if she is assigned to an underdemanded school at µ. Furthermore, a student is

temporarily matched if she is not permanently matched.

Given µ ∈M, we call G∗(µ) = (I, E∗(µ)) the Top-priority graph of µ and its set

of edges E∗(µ) is defined as follows: we have ij ∈ E∗(µ) if and only if among the

students who are temporarily matched at µ and are eligible for µj, student i has the

highest score for µj . That is, for each i ∈ I, E∗(µ) ⊆ E(µ) contains at most one edge

pointing to i. Solving cycle γ = {i1i2, i2i3, ...ini1} in G∗(µ) is defined by the operation

◦ and yields matching ν = γ ◦ µ, such that νi = µj for each ij ∈ γ, and νi′ = µi′ for

each i′ /∈ {i1, i2, ...., in}. The TP algorithm iteratively solves cycles from top-priority

graphs as follows:

Step 0: Run DA and denote the matching outcome by µ0.

Step t: Given matching µt−1:

t.1 If there is no cycle in G∗(µt−1), then stop and let the outcome be µt−1.

t.2 Otherwise, select one of the cycles in G∗(µt−1), say γt, and let µt = γt◦µt−1.

Move to step t+ 1.

As has been shown in Lemma 6 of Dur et al. (2019), any cycle selection of the

algorithm leads to the outcome of EDA and thus the TP algorithm induces EDA.
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Appendix B Proof of Proposition 1

In this section, we provide an important lemma to prove Proposition 1 and which is

also used in the proof of Theorem 1. We use EDA(�) to refer to EDA(g, (�i,�−i), c);

and EDA(�̃) to refer to EDA(g, (�̃i,�−i), c). In a similar way, we use DA(�) for

DA(g, (�i,�−i)) and DA(�̃) to refer to DA(g, (�̃i,�−i)).

Let pTP� = {γt}Tt=1 be an arbitrary process of the TP algorithm with input (g,�, c)

that is captured by the series of solved top priority cycles {γt}Tt=1. Let EDAt(�) be

the outcome of the tth step in pTP�. Specifically, for each t ≤ T , γt is solved at

step t of pTP� and we set EDAt(�) = γt ◦ EDAt−1(�) with EDA0(�) = DA(�).

Collect the set of schools to which i is (temporarily) assigned during pTP� in

Si = {ŝ ∈ S | ∃t ∈ N : EDAti(�) = ŝ}.

Lemma 2. If SU �̃i
ŝ ⊆ SU�i

ŝ for all ŝ ∈ Si, then EDAi(g, (�̃i,�−i), c)) = µi.

Note that the condition in Lemma 2 is satisfied if �̃i ∈ P is such that for all

s, s′ ∈ L�i
µi

, s �i s′ only if s �̃i s′. Thus, Lemma 2 implies Proposition 1.

Proof. We first prove that EDA(�) = EDA(�̃) when ci = 1. At the end of the proof

we consider the case where ci = 0, for which we establish that EDAi(�) = EDAi(�̃).

Since the outcome of the TP algorithm is invariant in the choice of the cycle solved

in each round, it suffices to construct one TP process with input ((�̃i,�−i), c, g),

denoted by pTP �̃, that leads to the same outcome as pTP�. We make use of the

algorithm presented next.

Initialize: Let t = 1. Also, let ν0(�̃) = DA(�̃).

Round t ≤ T : Let Lt = {l ∈ I | νt−1l (�̃) 6= EDAt−1l (�)}.

• If each jk ∈ γt satisfies that j, k ∈ Lt, let νt(�̃) = νt−1(�̃). Then, move to

Round t+ 1 or terminate the algorithm if t = T .
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• If there exists jk ∈ γt such that j /∈ Lt or k /∈ Lt, let νt(�̃) = γt ◦ νt−1(�̃).

Then, move to Round t+ 1 or terminate the algorithm if t = T .

Collect in {γ̃t}T̃t=1 the series of cycles solved while running the algorithm. By con-

struction, we have {γ̃t}T̃t=1 ⊆ {γt}Tt=1. We now show that the generated cycle selection

{γ̃t}T̃t=1 allows to describe the desired pTP �̃. Our strategy will be as follows. We

establish in the first step that the algorithm is well defined. In the second step, we

will argue that νT (�̃) = EDAT (�) and that G∗(νT (�̃)) contains no cycles.

Step 1 We can generate the desired sequence of cycles {γ̃t}T̃t=1 if for each round

t ≤ T , the following four statements are satisfied:

(B1) Either all students involved in γt belong to Lt, or none of them does.

(B2) γt ∈ G∗(νt−1(�̃)) when γt contains no student from Lt.

(B3) νt(�̃) weakly Pareto dominates EDAt(�), and Lt+1 ⊆ Lt.

(B4) For each l ∈ Lt, DAl(�̃) = νt−1l (�̃).

We prove by means of induction that (B1) - (B4) hold for each round of the

process. Since the arguments for the intial step and the inductive step are similar and

to avoid lengthy repetition of arguments, we establish (B1) - (B4) to be applicable

for both the initial step and the inductive step. That is, to apply the arguments for

round 1, set t = 1 and for t > 1, use the inductive hypothesis that (B1)-(B4) hold for

all rounds t′ < t.

More specifically, given the induction hypothesis, for each t, statement (B1) is

needed to ensure that statement (B2) is true. We then use (B1) and (B2) to establish

(B3) and then establish (B4).

For the initial case we build on the following observations. We have DAi(�) ∈ Si.

Hence �̃i is a monotonic transformation of �i at DAi(�). It is then immediate from
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Lemma 1 that DA(�̃) weakly Pareto dominates DA(�) and DAi(�) = DAi(�̃). Thus,

L1 = {l ∈ I | DAl(�̃) �l DAl(�)} and i /∈ L1. Furthermore, by definition it is true

that DAl(�̃) = ν0l (�̃) for any l ∈ I. Moreover, let S ′ = {s ∈ S | s �i µi and µi �̃i s}.

Statement (B1): Since γt is a cycle, it suffices to show that for each jk ∈ γt,

k ∈ Lt implies j ∈ Lt. We first establish that for any jk ∈ γt, if k ∈ Lt, then either

(1) j ∈ Lt or (2) j = i and EDAt−1k (�) ∈ S ′. By contradiction, let k ∈ Lt, j /∈ Lt and

if j = i, then EDAt−1k (�) /∈ S ′. We aim at a contradiction towards the stability of

DA(�̃). First, if k ∈ Lt, then there exists l ∈ Lt such that νt−1l (�̃) = EDAt−1k (�).

Now, since l ∈ Lt, it must be true that DAl(�̃) = νt−1l (�̃) �l EDAt−1l (�). For the

initial case this argument is immediate since DAl(�̃) = ν0l (�̃) �l DAl(�). For t > 1,

the relation is consequence of the inductive hypothesis. Specifically, (B4) holding

in all previous rounds establishes the left side of the relation, and (B3) holding for

all previous rounds implies the right side of the relation. Next, together with jk ∈

G∗(EDAt−1(�)) this implies that g
DAl(�̃)
j > g

DAl(�̃)
l and EDAt−1k (�) �j EDAt−1j (�).

Furthermore, j /∈ Lt implies EDAt−1j (�) = νt−1j (�̃) �j DAj(�̃). In the following, let

�j= �̃j if j 6= i. Now note that �j= �̃j implies that EDAt−1k (�) �̃j EDAt−1j (�).

Similarly, for i = j, if EDAt−1k (�) /∈ S ′, then since for all ŝ ∈ Si, SU �̃i
ŝ ⊆ SU�i

ŝ the

variations on �̃i relative to �i cannot change the position of EDAt−1i (�) relative

to EDAt−1k (�) and thus EDAt−1k (�) �̃i EDAt−1i (�). Thus, combining the relations

derived so far means for each j /∈ Lt that

DAl(�̃) = νt−1l (�̃) = EDAt−1k (�) �̃j EDAt−1j (�) = νt−1j (�̃) �̃j DAj(�̃)

However, this implies that j has justified envy towards l at DA(�̃). Hence we arrive

at a contradiction to the stability of DA(�̃) with respect to �̃.

Note that the statement we established above implies that for any jk ∈ γt, if

k ∈ Lt and j 6= i, we have j ∈ Lt. Moreover, the arguments we used ensure that the
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implication would hold more generally, i.e., for any jk ∈ G∗(EDAt−1(�)), if k ∈ Lt

and j 6= i, we have j ∈ Lt. This generalization will turn out to be useful in the

upcoming arguments in Step 2.

We next show that jk ∈ γt and k ∈ Lt imply j 6= i. Based on the statement

already established, it suffices to show that j = i and EDAt−1k (�) ∈ S ′ is impossible.

If ik ∈ γt and EDAt−1k (�) ∈ S ′, then it implies that EDAt−1k (�) = EDAti(�) �i µi.

However, this is a contradiction to µ being the final matching of pTP�. Thus, we

must have j 6= i.

We conclude that once there is an edge jk ∈ γt with k ∈ Lt, then j ∈ Lt. Therefore,

either all students involved in γt belong to Lt, or no such student does.

Statement (B2): Given that (B1) is true at round t, we proceed to prove (B2).

Suppose that for each jk ∈ γt, j, k /∈ Lt. Thus, we get EDAt−1j (�) = νt−1j (�̃)

and EDAt−1k (�) = νt−1k (�̃). This implies that νt−1k (�̃) �̃j νt−1j (�̃). Note that

this also holds if j = i, since EDAt−1k (�) /∈ S ′ implies that variations on �̃j rel-

ative �j cannot change the position of EDAt−1j (�) relative to EDAt−1k (�) and thus

EDAt−1k (�) �̃j EDAt−1j (�). Hence, we obtain that student j must still desire νt−1k (�̃)

at νt−1(�̃). Clearly, the last argument is true for all j such that jk ∈ γt. Thus, we

have that all students involved in γt are temporarily matched at νt−1(�̃). Next, since

νt−1(�̃) weakly Pareto dominates EDAt−1(�), there are weakly fewer temporarily

matched students who desire νt−1k (�̃) at νt−1(�̃) compared to EDAt−1(�). As a

result, j still has the highest score among all temporarily matched students pointing

to k. Hence jk ∈ G∗(νt−1(�̃)). Since this holds for all edges in γt, it follows that

γt ∈ G∗(νt−1(�̃)).

Statement (B3): We first show that νt(�̃) weakly Pareto dominates EDAt(�).

Note that νt−1(�̃) weakly Pareto dominates EDAt−1(�). At t = 1 this follows from

Lemma 1 and in any round t > 1 it follows from the induction hypothesis. Moreover,

only students in γt change their assignments in round t of our algorithm (and also in

round t of pTP�). Thus, to conclude that νt(�̃) weakly Pareto dominates EDAt(�),
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it is sufficient to show that for each jk ∈ γt it holds νtj(�̃) �j EDAtj(�).

Of the two cases we have to consider, we start with the simpler one, in which

for any jk ∈ γt, we have j, k /∈ Lt. In this case, γt is solved in both νt−1(�̃) and

EDAt−1(�). Therefore, νtj(�̃) = EDAtj(�) and we obtain the desired result.

In the remaining case, any jk ∈ γt satisfies that j, k ∈ Lt. Clearly, we can solve a

cycle of this form only if Lt 6= ∅. Moreover, note that EDAt(�) = γt ◦ EDAt−1(�) and

νt(�̃) = νt−1(�̃). We proceed by contradiction and assume that EDAtj(�) �j νtj(�̃).

Similar as in the arguments of (B1), we will contradict the stability of DA(�̃). We

make the following observations: First, since we have k ∈ Lt, there must exist

l ∈ Lt such that we have νt−1l (�̃) = EDAt−1k (�). Second, note that l ∈ Lt implies

the relation DAl(�̃) = νt−1l (�̃) �l EDAt−1l (�). Therefore, jk ∈ γt also means that

g
DAl(�̃)
j > g

DAl(�̃)
l and EDAt−1k (�) = EDAtj(�). Third, the algorithm guarantees

that νtj(�̃) �j DAj(�̃). If we combine all relations above with �j= �̃j, we obtain:

DAl(�̃) = νt−1l (�̃) = EDAt−1k (�) = EDAtj(�) �̃j νtj(�̃) �̃j DAj(�̃)

and reach a contradiction, since j has justified envy towards l at DA(�̃). Thus, νt(�̃)

weakly Pareto dominates EDAt(�). Moreover, based on the weak Pareto dominance

we just established, we can write Lt+1 as Lt+1 = {l ∈ I | νtl (�̃) �l EDAtl(�)}.

To finish the proof for statement (B3) we need to show that Lt+1 ⊆ Lt. If any

jk ∈ γt satisfies j, k /∈ Lt, then it is immediate that Lt+1 = Lt. On the contrary,

if any jk ∈ γt satisfies j, k ∈ Lt, then, first, for each such j, as j ∈ Lt, we have

νt−1j (�̃) �j EDAt−1j (�) and νtj(�̃) �j EDAtj(�). This implies that while j is

contained in Lt, she might not be in Lt+1. Second, for each j′ ∈ I not involved in γt,

we have νtj′(�̃) = νt−1j′ (�̃) and EDAtj′(�) = EDAt−1j′ (�), which implies that j′ ∈ Lt

if and only if j′ ∈ Lt+1. In conclusion, we can infer that Lt+1 ⊆ Lt. Hence (B3) is

satisfied.

Statement (B4): For t = 1, the statement is immediate. Let t > 1. By the
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inductive hypothesis (in particular (B3)), it holds Lt
′+1 ⊆ Lt

′
for any t′ < t. This

implies that Lt ⊆ Lt
′
. Second, solving the cycles in the algorithm under the inductive

hypothesis implies that, given any t′ < t, the assignments at νt
′
(�̃) and νt

′−1(�̃) are

identical for each student in Lt
′
. Thus, since Lt ⊆ Lt

′
, we can infer that for each

l ∈ Lt, DAl(�̃) = νt−1l (�̃).

Step 2: We show that EDAT (�) = νT (�̃). Let ti ≤ T be the first step in

pTP� where i is permanently matched and consider round ti of our algorithm.

If EDAti−1(�) = νti−1(�̃), we have that Lt = ∅ and that γt is solved in each

round t > ti of the algorithm. Consequently, it is true that EDAT (�) = νT (�̃). If

EDAti−1(�) 6= νti−1(�̃), then Lti is non-empty. In this case, we show that there exists

t̂ > ti such that EDAt̂(�) = ν t̂(�̃). As shown above, this leads to EDAT (�) = νT (�̃).

We show that there must be a cycle in G∗(EDAti−1(�)) that solely consists of

elements in Lti . We begin with showing that for any k ∈ Lti , there exists an edge

jk ∈ G∗(EDAti−1(�)) for some j ∈ I. Since k ∈ Lti , there exists l ∈ Lti such that

EDAti−1k (�) = νti−1l (�̃) �l EDAti−1l (�). That is, at EDAti−1(�), for each student in

Lti , her assignment is desired by at least one student in Lti whose assignment is further

desired by some other student in Lti . Now, recall that we assume c1 = 1. Since i is

permanently matched at step ti and i consents, then even if i prefers EDAti−1k (�) to

µi, she cannot prevent any student from being eligible for EDAti−1k (�). In other words,

at least one edge that is pointing to k, namely lk, is contained in G(EDAti−1(�)).

Therefore, we can infer that k is temporarily matched in EDAti−1(�) and thus there

must be jk ∈ G∗(EDAti−1(�)) for some j ∈ I.

Next, for any such jk, our arguments from (B1) will be sufficient to conclude that

j ∈ Lti . First, we have already shown j ∈ Lti ∪{i}. Second, we know that j 6= i, since

i is permanently matched. Thus, we can infer that each student in Lti is pointed by

another student in Lti in G∗(EDAti−1(�)). Since Lti is finite, the existence of the

desired cycle is guaranteed. Notably, according to (B3) and by iteratively applying
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the same argument, we can eventually reach a round t̂ > ti where EDAt̂(�) = ν t̂(�̃).

We next claim that no cycles can be found in G∗(νT (�̃)). Notably, if G∗(νT (�̃))

has a cycle, then using the arguments in (B2) implies that G∗(EDAT (�)) must also

have a cycle. However, this contradicts the fact that exactly T cycles are solved in

pTP�. Based on the statements provided so far, we can construct the desired pTP �̃

as pTP �̃ = {γ̃t}T̃t=1. Thus, EDA(�) = EDA(�̃) which completes the proof for ci = 1.

Finally, we extend the arguments to the case where ci = 0. Note that EDA

is consent-invariant and thus EDAi(�) = EDAi(g, (�i,�−i), (c̃i, c−i)) and also

EDAi(�̃) = EDAi(g, (�̃i,�−i), (c̃i, c−i)) for c̃i = 1. Moreover, we have just shown

that when i consents, submitting �̃i will not alter the EDA outcome, that is,

EDA(g, (�i,�−i), (c̃i, c−i)) = EDA(g, (�̃i,�−i), (c̃i, c−i)). This allows us to conclude

EDAi(�) = EDAi(�̃), which completes the proof.

Appendix C Proof of Theorem 1

Fix an arbitrary problem (I, S, q, g,�, c) and consider an arbitrary student i ∈ I.

Since EDA only takes acceptable schools into account, for any tuple (g,�−i, c) and

any �′i which is truth-telling, we have EDA(g, (�′i,�−i), c) = EDA(g, (�i,�−i), c).

Hence, if student i does not regret reporting her true preferences �i, she does not

regret to report any truth-telling report �′i. Thus, we show that i does not regret to

report �i.

Lemmas 3, 5 and 9 will each consider a distinct class of misreports of student i and

jointly imply that i cannot regret submitting her true preferences. In the following

exposition, take an arbitrary observation (µ, π(µ, g)) where µ ∈M|(�i,ci). We fix i’s

scores gi and i’s consent decision ci throughout the proof. From now on, we use g̃ to

refer to (gi, g̃−i) and c̃ to refer to (ci, c̃−i).

We first show that a misreport is not profitable for i, if it shares the same relative

ranking of schools weakly below her own assignment under truth-telling.
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Lemma 3. Consider �̃i ∈ P such that for all s, s′ ∈ L�i
µi

, s �̃i s′ if and only if s �i s′.

For any (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci), it is true that EDAi(g̃, (�̃i, �̃−i), c̃) = µi.

Proof. Select any (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci). By definition, EDA(g̃, (�i, �̃−i), c̃) = µ

and using Proposition 1, we know EDAi(g̃, (�̃i, �̃−i), c̃) = µi.

Before formally presenting our arguments for other misreports, we provide the

following auxiliary result.

Lemma 4. Fix any �̂ ∈ PI , any ĝ ∈ GI and any ĉ ∈ CI . If DAj(ĝ, �̂) �̂j DAi(ĝ, �̂)

for all j ∈ I, then EDAi(ĝ, �̂, ĉ) = DAi(ĝ, �̂).

Proof. Note thatDAj(ĝ, �̂) �̂j DAi(ĝ, �̂) for all j ∈ I, impliesDAj(ĝ, �̂) �̂j DAi(ĝ, �̂)

for any j ∈ I such that DAj(ĝ, �̂) 6= DAi(ĝ, �̂). That means, DAi(ĝ, �̂) has no

demand at DA(ĝ, �̂). Therefore, DAi(ĝ, �̂) is underdemanded at DA(ĝ, �̂) and i will

not be involved in any cycle solution during any process calculating EDA(ĝ, �̂, ĉ). As

a result, we have EDAi(ĝ, �̂, ĉ) = DAi(ĝ, �̂).

In the remainder of the proof, the following argument is applied repeatedly for

the remaining categories of misreports: When i submits misreport �̃i, then there is a

plausible scenario (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci) such that we can apply Lemma 4 under

(g̃, (�̃i, �̃−i), c̃). Moreover, in this case, we will show that µi �i DAi(g̃, (�̃i, �̃−i)).

We proceed with misreports in which some schools ranked below µi under truth

permute their order with µi. Our next Lemma shows that the student can either infer

that she would have possibly been worse off, or that the misreport would not have

affected her assignment in any plausible scenario.

Lemma 5. Consider �̃i ∈ P such that µi �i s and s �̃i µi for some s ∈ S. Then, ei-

ther (1) there exists (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci) such that µi �i EDAi(g̃, (�̃i, �̃−i), c̃)

or (2) for any (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci): EDAi(g̃, (�̃i, �̃−i), c̃) = µi.
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Proof. Let S̃ = {s′ ∈ S | µi �i s′ and s′ �̃i µi}. We start with a singelton S̃ = {s∗}

and generalize the arguments later on. We now distinguish the following exhaustive

cases based on i’s observation (µ, π(µ, g)):

Case 1: πs∗(µ, g) = 0. Note that s∗ has vacant seat at EDA(g̃, (�i, �̃−i), c̃) = µ,

for any (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci). Thus, at DA(g̃(�i, �̃−i)), s∗ must also have a

vacant seat and for any i′ ∈ I, i′ weakly prefers DAi′(g̃, (�i, �̃−i)) to s∗ given �̃i′ .

Hence s∗ has no demand.

Next, if i submits �̃i, then we obtain DAi(g̃, (�̃i, �̃−i)) = s∗. Now notice that

before being matched to the final assignment, the set of applications i sends to

reach DAi(g̃, (�̃i, �̃−i)) is a subset of those sent to reach DAi(g̃, (�i, �̃−i)). There-

fore, each student i′ 6= i must weakly prefer DAi′(g̃, (�̃i, �̃−i)) to DAi′(g̃, (�i, �̃−i))

given her preferences are �̃i′ . Accordingly, each student i′ ∈ I still weakly prefers

DAi′(g̃, (�̃i, �̃−i)) to s∗ given her preferences are �̃i′ . By Lemma 4, we thus have

EDAi(g̃, (�̃i, �̃−i), c̃) = DAi(g̃, (�̃i, �̃−i)) = s∗: Statement (1) holds.

Case 2: πs∗(µ, g) 6= 0, πµi(µ, g) = 0 and gs
∗
i < πs∗(µ, g). We show that state-

ment (2) is satisfied. Take an arbitrary (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci). To start, note

that whenever a student j improves her assignment from one school to another

at one step of the TP algorithm, another student with lower score is assigned to

the school that j left at that step. Since gs
∗
i < πs∗(µ, g), this implies that student

i must have a lower score than any student assigned to s∗ at DAi(g̃, (�i, �̃−i)).

Thus, compared to the DA procedure of i submitting �i, i’s additional appli-

cation to s∗ by submitting �̃i has no influence on the outcome and we reach

DA(g̃, (�i, �̃−i)) = DA(g̃, (�̃i, �̃−i)). Moreover, since πµi(µ, g) = 0, non-wastefulness

of DA implies that all students weakly prefer their assignments to µi atDA(g̃, (�̃i.�̃−i)).

We then apply Lemma 4 and conclude EDAi(g̃, (�̃i, �̃−i), c̃) = DAi(g̃, (�̃i.�̃−i)) = µi:

Statement (2) holds.

33



Case 3: πs∗(µ, g) 6= 0 and either (C1) gs
∗
i > πs∗(µ, g); or (C2) πµi(µ, g) 6= 0 and

gs
∗
i < πs∗(µ, g).10 Except for Case 3.2.2.2, statement (1) will apply and our approach

is standardized as follows:

Step 1: We construct a candidate scenario (g̃−i, �̃−i, c̃−i).

Step 2: We show that (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci).

Step 3: We argue that EDAi(g̃, (�̃i, �̃−i), c̃) = s∗.

Let j ∈ I be such that µj = s∗ and gs
∗
j = πs∗(µ, g). Let Ŝ = {s1, . . . , sT} be the set

of schools for which i has justified envy at µ and assume without loss of generality

that s1 �i s2 �i . . . �i sT . For any �′i∈ P and s ∈ S, denote the strict lower contour

set of �′i at s by SL
�′i
s = {s′ ∈ S | s �′i s′} and the strict upper contour set of �′i at s

by SU
�′i
s = {s′ ∈ S | s′ �′i s}. The following observations on Ŝ will be helpful:

• Ŝ = ∅, if ci = 0, since EDA does not allow for any priority violations for i.

• Non-wastefulness of EDA implies that for each s′ ∈ Ŝ, πs′(µ, g) 6= 0.

• Since Ŝ ⊆ SU�i
µi

and s∗ ∈ SL�i
µi

, s∗ /∈ Ŝ.

Now, for each t ∈ {1, . . . , T}, let it ∈ µst be such that gstit = πst(µ, g). Collect all

such students in Î = {i1, . . . , iT}. Note that for each it ∈ Î, in any TP process

corresponding to a plausible scenario, there must exist a solved cycle γ such that

itk ∈ γ for some k ∈ I and it is assigned to st when γ is solved. Moreover, solving

γ must be the last step in that TP process in which it is improved. We distinguish

cases by different cardinalities of Ŝ.

Case 3.1: |Ŝ| 6= 1. For now, assume that (C2) is satisfied.

Step 1: We start with the candidate score structure g̃−i:

10Since we assume that gsi 6= gsj for any i, j ∈ I and any s ∈ S, note that it cannot be true that

πs∗(µ, g) = gs
∗

i , when i /∈ µs∗ .

34



• let gµii ≥ πµi(µ, g) > g̃µij and let g̃µik = gµik for all k ∈ I \ {i, j} and;

• for any s′ ∈ S \ {Ŝ ∪ µi}, let g̃s
′
= gs

′
.

Let i0 = iT and sT+1 = s1. In case that Ŝ 6= ∅, let for each st ∈ Ŝ, be g̃st such that

g̃stit−1
> gsti > g̃stit with g̃stit = πst(µ, g) and for all l ∈ µst with l 6= it, let g̃stl > g̃stit−1

.

Next, select an arbitrary c̃−i and consider the following preferences �̃−i:

µi �̃j s∗ �̃j s∅ �̃j . . . ,

st �̃it st+1 �̃it s∅ �̃it . . . ∀t ∈ {1, . . . , T},

µk �̃k s∅ �̃k . . . ∀k ∈ I\(Î ∪ {i, j}),

Step 2: The construction of g̃−i ensures that for each s ∈ S \ Ŝ and each k ∈ µs,

we have g̃sk = gsk. Also, the construction of g̃st for each st ∈ Ŝ guarantees that

πst(µ, (gi, g̃−i)) = g̃sit = πst(µ, g). Thus, we can infer π(µ, (gi, g̃−i)) = π(µ, g).

We next show that the constructed scenario (g̃−i, �̃−i, c̃−i) yields µ under the

TP algorithm. First, if Ŝ = ∅, we get DA(g̃, (�i, �̃−i)) = µ and the TP process

terminates with µ since there are no cycles G∗(µ). Second, suppose that Ŝ 6= ∅. We

describe how we arrive at the corresponding DA outcome: DAk(g̃, (�i, �̃−i)) = µk

for all k ∈ I \ Î and DAit(g̃, (�i, �̃−i)) = st+1 for all it ∈ Î. Each k ∈ I \ {i, j} is

accepted by her top choice µk at step 1. Moreover, at some step, student i applies

to s1 and gets tentatively accepted. For each t ∈ {1, . . . , T}, this leads to it getting

rejected by st and applying to st+1 in the next step, causing it+1 being rejected by

st+1 and so forth. Eventually i is rejected by s1, applies to all schools in SU�i
µi
\ SU�i

s1

being finally accepted by µi. Thus, j is rejected by µi and is accepted by s∗.

Next, there is a unique cycle γ = {iT iT−1, . . . , i2i1, i1iT} in G∗(DA(g̃, (�i, �̃−i)))

which, once solved, produces µ. According to (�i, �̃−i), i and j are the only students

who do not receive their top choice in µ and therefore the TP algorithm terminates

with µ.
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Step 3: Be aware that the outcome DA(g̃, (�̃i, �̃−i)) may vary in the position

of s∗ on �̃i: If s∗ �̃i s1, then DAi(g̃, (�̃i, �̃−i)) = s∗, DAj(g̃, (�̃i, �̃−i)) = µi

and DAk(g̃, (�̃i, �̃−i)) = µk for any k ∈ I\{i, j}. If s1 �̃i s∗, then we have

DAi(g̃, (�̃i, �̃−i)) = s∗, DAj(g̃, (�̃i, �̃−i)) = µi, and DAit(g̃, (�̃i, �̃−i)) = st+1 for

it ∈ Î and DAk(g̃, (�̃i, �̃−i)) = µk for any k ∈ I \ ({i, j} ∪ Ŝ).

In both instances above, we can apply Lemma 4 to have EDAi(g̃, (�̃i, �̃−i), c̃) = s∗

and the argument for (C2) is complete.

Now suppose that (C1) holds.

Step 1: Modify the preferences of j to be s∗ �̃j s∅ �̃j . . . and keep all other details

of our construction the same as in instance (C2) above.

Step 2 and Step 3: The arguments resemble those in instance (C2) above.

Case 3.2: |Ŝ| = 1.

Case 3.2.1: There exists s′ ∈ S \ {s1, µi, s∗} such that πs′(µ, g) 6= 0. Pick

an arbitrary such s′ and denote with j′ the student who has the lowest score among

all students being assigned to s′ under µ.

Step 1: Let g̃−i be such that

• g̃s1j′ > gs1i > g̃s1i1 and g̃s1k = gs1k for all k ∈ I \ {i, j′} and;

• g̃s′i1 > g̃s
′

j′ and g̃s
′

k = gs
′

k for all k ∈ I \ {i1} and;

• gµii > g̃µij and g̃µik = gµik for all k ∈ I \ {i, j′} and;

• g̃s′′ = gs
′′

for any s′′ ∈ S \ {s1, µi, s′}.

Next, fix an arbitrary c̃−i and consider the following profile �̃−i:

µi �̃j s∗ �̃j s∅ �̃j . . . ,

s1 �̃i1 s′ �̃i1 s∅ �̃i1 . . . ,

36



s′ �̃j′ s1 �̃j′ s∅ �̃j′ . . . ,

µk �̃k s∅ �̃k . . . ∀k ∈ I\{i, i1, j, j′}.

Step 2 and Step 3: We omit the arguments for Step 2 and Step 3. They are almost

identical to those in Case 3.1 and we can eventually apply Lemma 4.

Case 3.2.2: There does not exist s′ ∈ S \ {s1, µi, s∗} such that πs′(µ, g) 6= 0.

Note that this subcase is very specific, as there are only three schools that exhaust

their capacity. Here, we have two more subdivisions to make.

Case 3.2.2.1: gs
∗
i > πs∗(µ, g). That is, (C1) holds and we have gs

∗
i > gs

∗
j .

Step 1: Let g̃−i be such that

• g̃s1j > gs1i > g̃s1i1 and g̃s1k = gs1k for all k ∈ I \ {i, j} and;

• gs∗i > g̃s
∗
i1
> g̃s

∗
j and g̃s

∗

k = gs
∗

k for all k ∈ I \ {i, i1} and;

• g̃s′ = gs
′

for any s′ ∈ S \ {s∗, s1}.

Now, let c̃−i be such that c̃i1 = 011 and consider the following profile �̃−i:

s∗ �̃j s1 �̃j s∅ . . . ,

s1 �̃i1 s∗ �̃i1 s∅ . . . ,

µk �̃k s∅ �̃k . . . ∀k ∈ I\{i, j, i1}.

Step 2: Fix any s ∈ S and any k ∈ µs. The construction of g̃−i guarantees g̃sk = gsk.

Thus, π(µ, (gi, g̃−i)) = π(µ, g). Next, following a similar application procedure as

in Case 3.1 (Step 2), we reach DAj(g̃, (�i, �̃−i)) = s1, DAi1(g̃, (�i, �̃−i)) = s∗ and

DAk(g̃, (�i, �̃−i)) = µk for all k ∈ I \ {j, i1}. There is a unique cycle γ = {i1j, ji1}

in G∗(DA(g̃, (�i, �̃−i))) and once this cycle is solved we obtain µ. In this instance,

11This is the only place, where we need a plausible scenario where a student does not consent. For
a discussion see also Section 6).
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all students except i receive their top choice in µ. The TP algorithm thus terminates

and EDA(g̃, (�i, �̃−i), c̃) = µ.

Step 3: The DA algorithm arrives atDAi(g̃, (�̃i, �̃−i)) = s∗, DAj(g̃, (�̃i, �̃−i)) = s1,

DAi1(g̃, (�̃i, �̃−i)) = s∅ and DAk(g̃, (�̃i, �̃−i)) = µk for all k ∈ I\{i, j, i1}. Notably, j

is not eligible for s∗, since c̃i1 = 0. Therefore, we cannot add ji to the graph and thus

there is no cycle in G∗(DA(g̃, (�̃i, �̃−i))). In conclusion, EDAi(g̃, (�̃i, �̃−i), c̃) = s∗.

Case 3.2.2.2: πµi(µ, g) 6= 0 and gs
∗
i < πs∗(µ, g). That is, (C2) holds and we thus

have gs
∗
i < gs

∗
j . Since πs∗(µ, g) 6= 0 and πµi(µ, g) 6= 0, there are only three schools,

namely s1, µi, s
∗, which exhaust their capacity under µ. In this last subcase, we show

that statement (2) is satisfied.

First note that since i has justified envy for s1 at µ, there exists a cycle containing

i1 that is solved in the TP process. Second, by non-wastefulness of EDA, if a school

is contained in one solved cycle, it exhausts its capacity under the final matching.

Recall that only s1, µi, s
∗ exhaust their capacity at µ. Thus, the candidate student

for forming a cycle can only be assigned to s∗. Therefore, we can construct exactly

one cycle with i1 and some l ∈ µs∗ .

Now select any (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci). Since gs
∗
i < πs∗(µ, g) and by our

arguments made above, we have g̃s
∗
i1
> g̃s

∗

l > gs
∗
i and DAi1(g̃, (�i, �̃−i)) = s∗. However,

this implies that i will be rejected by s∗ under DA when she reports �̃i. As a result,

DAi(g̃, (�̃i, �̃−i)) = EDAi(g̃, (�̃i, �̃−i), c̃) = µi and statement (2) holds.

This completes the proof for the case in which S̃ is a singleton. To finish the proof,

suppose now that S̃ contains multiple elements. We denote the top ranked school

on �̃i among all schools in S̃ by s1. Specifically, let �1
i be such that s1 �1

i µi and

s �1
i s
′ if s �i s′ for all s, s′ ∈ S \ {s1}. Since s1 is the only permuted school on �1

i

compared to �i, we can apply the arguments above (for singleton S̃) to �1
i . Here,

we distinguish two cases. In the first case, suppose that the observation (µ, π(µ, g))

is such that statement (1) holds for �1
i . That is, we find (g1−i,�1

−i, c
1
−i) ∈ I(µ,�1

i , ci)
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such that EDAi(g
1, (�1

i ,�1
−i), c

1) = s1. Note that all our constructions above satisfy

that DAi(g
1, (�1

i ,�1
−i)) = EDAi(g

1, (�1
i ,�1

−i), c
1) = s1. Since SU �̃i

s1
= SU

�1
i

s1 , we

obtain DAi(g
1, (�̃i,�1

−i)) = EDAi(g
1, (�̃i,�1

−i), c
1) = s1. Thus, we can conclude

that statement (1) also holds for misreport �̃i for the first case. In the second case,

suppose that the observation (µ, π(µ, g)) falls into the case where statement (2) holds

for �1
i . Then, we need further consider the second ranked school among S̃ on �̃,

denoted by s2. Specifically, we construct �2
i such that s1 �2

i s2 �2
i µi and s �2

i s
′ if

s �i s′ for all s, s′ ∈ S \ {s1, s2}. Since we assume that �1
i has no influence on the

result at all, we can again apply the arguments for the singleton case to �2
i . That is,

we consider whether statement (1) or statement (2) applies to �2
i . If statement (1)

holds for �2
i , then as explained above we can conclude that statement (1) holds for

�̃i. Otherwise, we further consider the third ranked school among S̃ on �̃. In the

following, we iteratively apply the above arguments by adding a new school from S̃

through each iteration. Once we arrive at a step where statement (1) holds, we stop

and conclude that statement (1) holds for �̃i. On the contrary, if for all schools in S̃

the observation (2) holds, then we conclude that statement (2) holds for the misreport

�̃i.

We move to the final class of misreports in which all schools that are truly less

preferred to µi still rank lower than µi. That is, in the rest of the proof, we consider

�̃i ∈ P such that SU �̃i
µi
⊆ SU�i

µi
and for which there exists s, s′ ∈ SL�i

µi
such that

s �i s′ and s′ �̃i s. Our strategy is to show that if a student could have been improved

upon truth through such a misreport �̃i in a plausible scenario, then the misreport

could also have made the misreporting student worse off in another plausible scenario.

Before we formally show the above argument, we provide three auxiliary results.

Throughout the remaining discussion, we fix some (g′−i,�′−i, c′−i) ∈ I(µ,�i, ci). Hence-

forth, we use g′ to refer to (gi, g
′
−i) and c′ to refer to (ci, c

′
−i). Also, let for any �′i∈ P

and any s ∈ S, the weak upper contour set of �′i at s be U
�′i
s = {s′ ∈ S | s′ �′i s}.
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Next, let S ′ = {s′ ∈ SL�i
µi
| ∃ s̃ ∈ SL�i

µi
: s′ �i s̃ and s̃ �̃i s′}. Note that we now

consider a misreport �̃i of the class where SU �̃i
µi
⊆ SU�i

µi
and hence according to

Proposition 1, EDAi(g
′, (�̃i,�′−i), c′) 6= EDAi(g

′, (�i,�′−i), c′) implies that S ′ must

be non-empty. In the following, select any TP process with input (g′, (�i,�′−i), c′)

and denote it by pTP�. Let EDAt(�) be the outcome of the tth step in pTP�. Then,

we collect the set of schools to which i is (temporarily) assigned during pTP� in

Si = {ŝ ∈ S | ∃t ∈ N : EDAti(�) = ŝ}.

Lemma 6. If EDAi(g
′, (�̃i,�′−i), c′) �i µi, then there exists s′ ∈ S ′ such that

gs
′
i > πs′(µ, g) > 0.

Proof. We prove the contrapositive statement. Note that in the process of TP

algorithm, scores of assigned students are weakly decreasing at each school from step

to step. Thus, for any ŝ ∈ Si, we have gŝi ≥ πŝ(µ, g). Also, schools in Si must have

positive cutoffs. Therefore, by assumption of S ′, we have S ′ ∩ Si = ∅. Hence, for

any ŝ ∈ Si, SU �̃i
ŝ ⊆ SU�i

ŝ . By Lemma 2, we reach EDAi(g
′, (�̃i,�′−i), c′) = µi. This

completes the proof.

Lemma 7. If EDAi(g
′, (�̃i,�′−i), c′) �i µi, then µi �i DAi(g′, (�i,�′−i)).

Proof. Since EDA guarantees µi �i DAi(g′, (�i,�′−i)), we assume by contradic-

tion that DAi(g
′, (�i,�′−i)) = µi. Recall that �̃i satisfies SU �̃i

µi
⊆ SU�i

µi
. This

assumption implies that for any ŝ ∈ Si, SU �̃i
ŝ ⊆ SU�i

ŝ . By Lemma 2, we can infer

EDAi(g
′, (�̃i,�′−i), c′) = µi, which contradicts to EDAi(g

′, (�̃i,�′−i), c′) �i µi.

Based on Lemma 7, we assume that µi �i DAi(g′−i, (�i,�′−i)) from now on. This

implies that we have πµi(µ, g) 6= 0. Moreover, by Lemma 6 there exists a maximal

and non-empty set S1 ⊆ S ′ such that s1 ∈ S1 if and only if gs1i > πs1(µ, g) > 0. For

the rest of the proof, let r∗ ∈ S1 be such that r∗ �i s1 for any s1 ∈ S1. Furthermore,

we collect in S2 = {s2 ∈ L�i
µi
| r∗ �i s2, s2 �̃i r∗} and denote with s∗ ∈ S2 the school

such that s∗ �̃i s2 for any s2 ∈ S2.
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Lemma 8. If EDAi(g
′, (�̃i,�′−i), c′) �i µi, then πs∗(µ, g) 6= 0.

Proof. We show the contrapositive statement. That is, given πs∗(µ, g) = 0, we prove

that µi �i EDAi(g′, (�̃i, ,�′−i), c′). Let DAi(g
′, (�i,�′−i)) = νi. Since we assume

πµi(µ, g) 6= 0, it follows πνi(µ, g) 6= 0. That is, νi 6= s∗. In the following, we consider

two cases that are distinguished by the relative ranking of s∗ and νi on �̃i.

In the first case, suppose νi �̃i s∗. Note that by the selection of s∗ and the

assumption νi �̃i s∗ we can infer that for any ŝ ∈ Si, SU
�̃i
ŝ ⊆ SU�i

ŝ and thus

µi = EDAi(g
′, (�̃i, ,�′−i), c′) by Lemma 2.

In the second case, suppose s∗ �̃i νi. We show µi �i EDAi(g′, (�̃i,�′−i), c′) here.

We first argue SU �̃i
s∗ ⊆ SU�i

νi
. By contradiction, suppose that there exists r′ ∈ S such

that r′ ∈ SU �̃i
s∗ and r′ /∈ SU�i

νi
. Then, we know (1) νi �i r′, (2) r′ �̃i s∗ and thus (3)

r′ �̃i νi. Since gνii > πνi(µ, g) > 0, by (1) and (3) we can infer νi ∈ S1. Thus, the

selection of r∗ ensures that r∗ �i νi, which combined with (1) shows r∗ �i r′. Moreover,

from (2) and the construction of S2 we have r′ �̃i s∗ �̃i r∗. Note that r∗ �i νi and

r′ �̃i s∗ �̃i r∗ and we reach a contradiction to how s∗ is selected. Thus, we have

SU �̃i
s∗ ⊆ SU�i

νi
. Next, since by assumption s∗ has vacant seat at EDA(g′, (�i,�′−i), c′),

it also has vacant seat at DA(g′, (�i,�′−i)). With the two findings above, we can

use the arguments from Case 1 of Lemma 5 and conclude that no student strictly

prefers DAi(g
′, (�̃i,�′−i)) = s∗ to her own assignments at DA(g′, (�̃i,�′−i)). We then

apply Lemma 4 and reach EDAi(g
′, (�̃i,�′−i), c′) = s∗. Since µi �i s∗, the proof is

complete.

We finally show that when i would have reported �̃i, then she could have been

worse off by being assigned to s∗ in some plausible scenario.

Lemma 9. If EDAi(g
′, (�̃i,�′−i), c′) �i µi, then there exists (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci)

such that µi �i EDAi(g̃, (�̃i, �̃−i), c̃) = s∗.

Proof. Note that by Lemma 8, we only need to construct such a scenario for cases
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where πs∗(µ, g) > 0. Similar as in the proof of Lemma 5, we go through a series of

standardized steps

Step 1: We construct a candidate scenario (g̃−i, �̃−i, c̃−i).

Step 2: We show that (g̃−i, �̃−i, c̃−i) ∈ I(µ,�i, ci).

Step 3: We argue that EDAi(g̃, (�̃i, �̃−i), c̃) = s∗.

Recall that r∗ ∈ S1 is the school that ranks highest on�i among all schools in S1. Let

j ∈ I be an arbitrary student such that µj = s∗, and let l ∈ I be such that µl = r∗ and

gr
∗

l = πr∗(µ, g). Moreover, consider the set S̄ = {s′ ∈ SU�i
r∗ | gs

′
i > πs′(µ, g)} and

denote S̄ = {s1, s2, . . . , sT}. Without loss of generality, let s1 �i s2 �i . . . �i sT . Since

s∗ ∈ SL�i
r∗ , we know that s∗ /∈ S̄. For each t ∈ {1, ..., T}, denote the student with the

lowest score assigned to st in µ by it and collect all such students in Ī = {i1, . . . , iT}.

Since we already know that πµi(µ, g) 6= 0 and πs∗(µ, g) 6= 0, it suffices to consider

different cardinalities of S̄ for distinguishing characteristic observations of student i.

Case 1: |S̄| 6= 1. Step 1: We start with the candidate score structure. Let g̃−i be

such that

• g̃µil > g̃µij > gµii ; and g̃µik = gµik for all k ∈ I \ {i, j, l} and;

• gr∗i > g̃r
∗

l ; and g̃r
∗

k = gr
∗

k for all k ∈ I \ {i, j} and;

• g̃s′ = gs
′

for any s′ ∈ S \ {s1, . . . , sT , µi, r∗}.

Let i0 = iT and sT+1 = s1. In case that S̄ 6= ∅, for any st ∈ S̄:

• g̃stit−1
> g̃sti > g̃stit ; and g̃stk = gstk for all k ∈ I \ {i, it−1}.

Next, we specify c̃−i such that for all i′ ∈ I \ {i} it holds that c̃i′ = 1 and consider

preference profile �̃−i ∈ P−i:
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st �̃it st+1 �̃it s∅ �̃it . . . ∀t ∈ {1, . . . , T},

r∗ �̃l µi �̃l s∅ �̃l . . . ,

µi �̃j s∗ �̃j s∅ �̃j . . . ,

µk �̃k s∅ �̃k . . . ∀k ∈ I\(Ī ∪ {i, j, l}).

Step 2: The construction of g̃−i ensures that π(µ, (gi, g̃−i)) = π(µ, g). For the

constructed scenario DA leads to DAi(g̃, (�i, �̃−i)) = r∗, DAj(g̃, (�i, �̃−i)) = s∗,

DAl(g̃, (�i, �̃−i)) = µi, DAit(g̃, (�i, �̃−i)) = st+1 for each t ∈ {1, . . . , T} and

DAk(g̃, (�i, �̃−i)) = µk for k ∈ I\(Ī ∪ {i, j, l}). Consider the corresponding ap-

plication process. At the first step, for all k ∈ I \ (Ī ∪ {i, j, l}), k is accepted at µk,

j is accepted at µi, l is accepted at r∗, and for all t ∈ {1, . . . , T}, it is accepted at

st. If i’s top choice is not s1, let t1 ∈ N be the step, in which i applies to s1 and is

tentatively accepted. In all the previous steps t < t1, student i is rejected. For each

t ∈ {1, . . . , T}, this leads to it getting rejected by st and applying to st+1 in the next

step, causing it+1 being rejected by st+1 and so forth. Eventually i is rejected by s1 at

step t1 + T . Then, student i is rejected at the remaining schools in SU�i
r∗ until being

accepted at r∗, in favor of l. Student l then applies to µi such that j gets rejected.

Next, j applies to s∗ and gets accepted. Here, the algorithm terminates.

We now show that the cycle selection under a TP process ends in the observed

matching µ. Since j is permanently matched in DA(g̃, (�i, �̃−i)) and c̃j = 1, we

know that G∗(DA(g̃, (�i, �̃−i))) contains cycle γ1 = {il, li} and solving it yields

EDA1(g̃, (�i, �̃−i), c̃) = γ1 ◦DA(g̃, (�i, �̃−i)), where compared to DA(g̃, (�i, �̃−i)),

only i and l switch their assignments.

Next, since ci = 1 and i is permanently matched to µi in EDA1(g̃, (�i, �̃−i), c̃),
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whenever S̄ is non-empty, G∗(EDA1(g̃, (�i, �̃−i), c̃)) contains a unique cycle

γ2 = {iT iT−1, iT−1iT−2, ..., it+1it, ...i2i1, i1iT}

which once solved yields matching µ. Since all students except i and j get their top-

choice, and both i, j are permanently matched, there is no cycle in G∗(µ). Therefore,

EDA(g̃, (�i, �̃−i), c̃) = µ.

Step 3: Reviewing the application process above, we get DAi(g̃, (�̃i, �̃−i)) = s∗.

Moreover, note that apart from the students who are matched with school s∗ at

DA(g̃, (�̃i, �̃−i)), student j is the only one who ranks s∗ above s∅ in �̃−i. How-

ever, notice that DAj(g̃, (�̃i, �̃−i)) = µi �̃j s∗ and school s∗ is underdemanded

in DA(g̃, (�̃i, �̃−i)). By Lemma 4, we can infer EDAi(g̃, (�̃i, �̃−i), c̃) = s∗. This

completes the proof for Case 1.

Case 2: |S̄| = 1. Step 1: Let g̃−i be such that

• g̃s1l > gs1i > g̃s1i1 ; and g̃s1k = gs1k for all k ∈ I \ {i, l} and;

• g̃µii1 > g̃µij > gµii ; and g̃µik = gµik for all k ∈ I \ {i, j, i1} and;

• gr∗i > g̃r
∗
i1
> g̃r

∗

l ; and g̃r
∗

k = gr
∗

k for all k ∈ I \ {i, i1} and;

• g̃s′ = gs
′

for any s′ ∈ S \ {s1, µi, r∗}.

Under c̃−i, let for all i′ ∈ I \ {i} be c̃i′ = 1 and let �̃−i ∈ P−i be:

s1 �̃i1 r∗ �̃i1 µi �̃i1 s∅ �̃i1 . . . ,

r∗ �̃l s1 �̃l s∅ �̃l . . . ,

µi �̃j s∗ �̃j s∅ �̃j . . . ,

µk �̃k s∅ �̃k . . . ∀k ∈ I\{i, j, l, i1}.
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Step 2 and Step 3: Here, we can almost resemble the arguments in Step 2 and

Step 3 for Case 1. That is, i is worse off by being finally assigned to s∗, which is

underdemanded under the DA outcome.

Since the conclusion holds for any observation, any student and any problem, we

conclude that EDA is regret-free truth-telling.

Appendix D Proof of Proposition 2

With a similar technique as in the proof of Proposition 1 in Fernandez (2020). Fix

an arbitrary problem (I, S, q, g,�, c) and fix an arbitrary i ∈ I. We divide the set of

possible misreports into three exhaustive cases.

Case 1 Let under �′i exists s ∈ S such that s∅ �i s and s �′i s∅. Let i submit �′i
and consider the pair (µ, π(µ, g)) such that µi = s and gs

′
i < πs′(µ, g) for all s′ ∈ SU�

′
i

s .

At first, we show that µ ∈ M|(�′i,ci) by constructing (g̃−i, �̃−i, c̃−i) that leads to

(µ, π(µ, g)): That is, we show that (µ, π(µ, g)) is an observation under EDA. Let g̃−i

be such that, for each s′ ∈ SU�
′
i

µi , each student in µs′ is among the top qs′ ’s scored

students at school s′. Let i rank highest on g̃s and let the remaining scores be arbitrary.

Let �̃−i be such that for each j ∈ I \ {i}, �̃j only ranks µj as acceptable and assume

c̃ = c. Apparently, we have π(µ, (gi, g̃−i)) = π(µ, g) and EDA(g̃, (�′i, �̃−i), c̃) = µ.

Thus, µ ∈M|(�′i,ci). Now note that for any (ĝ−i, �̂−i, ĉ−i) ∈ I(µ,�i, ci) it holds that

EDAi(ĝ, (�i, �̂−i), ĉ) �i s∅, since EDA is individually rational. Since s∅ �i s, student

i regrets �′i through �i at (µ, π(µ, g)).

Case 2 Let for �′i exist s ∈ S such that s∅ �′i s and s �i s∅. Suppose i submits

�′i and consider (µ, π(µ, g)) such that µi = s∅, πs(µ, g) = 0 and gs
′
i < πs′(µ, g) for all

s′ ∈ SU�
′
i

s∅ . Notably, by doing the same construction (g̃−i, �̃−i, c̃−i) as in Case 1, we

can infer µ ∈ M|(�′i,ci). Next, note that EDA is non-wasteful and as such for any
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(ĝ−i, �̂−i, ĉ−i) ∈ I(µ,�i, ci), it holds that EDAi(ĝ, (�i, �̂−i), ĉ) = s. Since s �i s∅,

student i regrets �′i through �i at (µ, π(µ, g)).

Case 3 Consider �′i which only contains variations in the acceptable and unaccept-

able set. For any �′′i∈ P, collect in Ai(�′′i ) all acceptable schools. The following

labeling for any �′′i∈ P in the acceptable set Ai(�′′i ) ensures that a school’s index cor-

responds to its position in �′′i . Precisely, we denote s′′1 as the �′′i -maximal element on

Ai,1(�′′i ) = Ai(�′′i ) and s′′2 as the �′′i -maximal element on Ai,2(�′′i ) = Ai,1(�′′i ) \ {s′′1},

and so forth. Let |Ai(�i)| = N ∈ N be the number of acceptable schools un-

der �i and consider �′i as described above. Since �′i is a variation, there exists

n∗ = arg min
n
{n ≤ N | s′n 6= sn}. Next, let student i observe (µ, π(µ, g)) such that

µi = s′n∗ , πsn∗ (µ, g) = 0 and gs
′
i < πs′(µ, g) for all s′ ∈ SU�

′
i

s′
n∗

. Again, by doing the

same construction (g̃−i, �̃−i, c̃−i) as in Case 1, we can infer µ ∈M|(�′i,ci).

Next, since sn∗ has capacity left, if i had reported �i then, for any (ĝ−i, �̂−i, ĉ−i) ∈

I(µ,�i, ci), i would had been matched to sn∗ . Since sn∗ �i s′n∗ , we conclude that i

regrets �′i through �i at (µ, π(µ, g)). This completes the proof. �

Appendix E Proposition 3

We aim at constructing a regret-free truth-telling stable dominating rule f that is

neither stable nor efficient. Concretely, let f select the DA outcome except for a

problem (I, S, q, ĝ, �̂) as it is described in the proof of Theorem 2. In this problem, we

have S = {s1, s2}, where both schools have unit capacity and I = {i1, i2, i3}. Student

i1’s preferences are s2 �̂i1 s∅ �̂i1 s1, student i2’s preferences are s1 �̂i2 s2 �̂i2 s∅
and student i3’s preferences are s2 �̂i3 s1 �̂i3 s∅ and the score structure ĝ satisfies

ĝs1i1 > ĝs1i3 > ĝs1i2 and ĝs2i2 > ĝs2i1 > ĝs2i3 . Let f select the efficient and non-stable matching

µ̂ = {(i1, s∅), (i2, s1), (i3, s2)} in this problem.12 Since f always selects the DA outcome

12Notably, our argument extends directly to any rule f ′ that selects the DA outcome except for
problems (I, S, q, g′, �̂) where g′ share the same rankings as ĝ (with different scores). For ease of
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in problems with primitives other than (I, S, q) and since DA is regret-free truth-

telling, it suffices to show that f is regret-free truth-telling in problems with (I, S, q).

In what follows, we thus consider only problems with primitives (I, S, q).

We first consider i1. Under f , for any pair of scores and preferences (g,�) ∈ GI×PI ,

i1 receives her most preferred school among schools she can be matched to in a stable

matching. Note that this includes input (ĝ, �̂), where i1 receives s∅ = DAi1(ĝ, �̂).

Thus, i1 cannot improve by misreporting and hence does not regret telling the truth.

We next consider i2 and i3. Since i2 and i3 receive their top choices under f(ĝ, �̂),

both of them do not regret telling the truth for input (ĝ, �̂). In the following,

consider an arbitrary input (g = {gi}i∈I ,�= {�i}i∈I) and let (µ, π(µ, g)) be the

observation under f(g,�). We first show that i2 will not regret reporting her true

preference �i2 under (µ, π(µ, g)). Concretely, suppose that i2 improves upon µi2

under f by misreporting. By strategy-proofness of DA and the fact that f selects an

outcome different from DA only if the input is (ĝ, �̂), it follows that (1) i2 misreports

�̃i2 = �̂i2 6=�i2 , (2) gi2 = ĝi2 , (3) (ĝ−i2 , �̂−i2) ∈ I(µ,�i2). Observe that (2) and (3)

imply that �i2 cannot have s2 as the top choice, since i2 would have been assigned to

s2 under µ. However, then, i2 could never improve upon µi2 from misreporting. The

same argument holds for s∅. Hence together with (1) we reach s1 �i2 s∅ �i2 s2 and

since i2 cannot be matched to her top choice under µ, we have µi2 6= s1. With �i2 and

given (2) and (3), we know that µi1 = s2, µi2 = s∅ and µi3 = s1. Accordingly, we have

πs1(µ, g) = ĝs1i3 = gs1i3 and πs2(µ, g) = ĝs2i1 = gs2i1 . Now, consider �∗i3 : s1 �
∗
i3
s∅ �∗i3 s2.

Note that (ĝ−i2 , (�̂i1 ,�∗i3)) ∈ I(µ,�i2) and that fi2((gi2 , ĝ−i2), (�̂i1 , �̃i2 ,�∗i3)) = s2

and since s∅ �i2 s2, student i2 does not regret truthful-telling under (µ, π(µ, g)).

Next, suppose that i3 improves by misreporting. We use a similar argument as

for i2 to reach that i3’s improvement upon µi3 would require s2 �i3 s∅ �i3 s1: By

strategy-proofness of DA and since f selects an outcome different from DA only if

presentation, we consider in the proof f that only selects a non-stable outcome for this specific
problem (I, S, q, ĝ, �̂).
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the input is (ĝ, �̂), i3’s improvement needs that (1′) i3 misreports �̃i3 = �̂i3 6=�i3 ,

(2′) gi3 = ĝi3 , (3′) (ĝ−i3 , �̂−i3) ∈ I(µ,�i2). Conditions (2′) and (3′) imply that s1

and s∅ cannot be top choices on �i3 and since i3 must be able to improve, we also

have µi3 6= s2. Next, given �i3 under (2′) and (3′), we reach µi1 = s2, µi2 = s1

and µi3 = s∅ while πs1(µ, g) = ĝs1i2 = gs1i2 and πs2(µ, g) = ĝs2i1 = gs2i1 . However,

consider �∗i2 , where s1 �∗i2 s∅ �∗i2 s2. Note that (ĝ−i3 , (�̂i1 ,�∗i2)) ∈ I(µ,�i3) and

fi3((gi3 , ĝ−i3), (�̂i1 ,�∗i2 , �̃i3)) = s1. Since s∅ �i3 s1, we reach that i3 does not regret

truth-telling under (µ, π(µ, g)).

Since there is no student who regrets being truthful, this completes the proof.
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