Keeping up with "The Joneses": reference dependent choice with social comparisons

Alastair Langtry

August 2022

University of Cambridge

Motivation

- People often make social comparisons
- Social media may have made this worse
- They push people into a race to "Keep up with the Joneses"

Summary of Results

- 1. Stronger social comparisons increase consumption, but reduce welfare
- 2. A higher marginal cost reduces consumption but increases welfare for agents who are highly central in the network
- 3. When agents form the network endogenously they only connect to others with the same level of consumption
- 4. In a simple labour market model, stronger social comparisons with co-workers reduces labour market sorting

Related Literature

- Closest to this paper are Ghiglino & Goyal (2010, JEEA), and Immorlica, Kranton, Manea & Stoddard (2017, AEJ Micro)
- Ghiglino & Goyal consider a two-good general equilibrium exchange economy, where social comparisons apply to one good.
 - Find that Bonacich centrality is a key determinant of consumption and prices
- Immorlica et al. suppose that agents only make social comparisons with to those richer than themselves. This generates multiple equilibria.
 - In the equilibrium with the highest consumption, Immorlica et al. find that agents stratify into a "class structure".

Related Literature II

Other related areas:

- 1. Reference Dependence: Kahneman & Tversky (1979, Econometrica), Kőszegi & Rabin (2006, QJE)
- 2. Social comparisons: Frank (1985, AER), Frank (1985, OUP)
- 3. Easterlin Paradox: Easterlin (1974, 2020), Decancq, Fleurbaey & Schokkaert (2015, *Economica*)
- 4. Labour markets: Frank (1986), Goerke & Pannenberg (2013, WP)
- 5. Endogenous network formation: Hiller (2017, GEB), Ushchev & Zenou (2020, JET)

Model: network & reference point

- + $N = \{1, ..., n\}$ agents.
- Weighted and directed social network $G. G_{ij} \ge 0$ for all i, j. Assume $G_{ii} = 0$.
- It will be helpful to decompose G in the following way: $\alpha_i = \sum_j G_{ij}$ and $g_{ij} = \frac{G_{ij}}{\alpha_i}$.
- Call α the reference strength and g the reference structure.
- An agent i has a reference point $R_i = \alpha_i \sum_j g_{ij} x_j$

Model: preferences & choices

• Each agent *i* has preferences

$$u_i = f\left(x_i - \alpha_i \sum_j g_{ij} x_j\right) - c x_i + b_i \alpha_i \sum_j g_{ij}.$$
 (1)

- Assume c > 0, $f(\cdot)$ is twice continuously differentiable, strictly increasing and concave, and that $f'(0) > c > f'(+\infty)$.
- All agent choose $x_i \ge 0$ simultaneously. I look for Nash Equilibrium

Bonacich Centrality

Bonacich Centrality of agent *i* is

$$C_i^b = \sum_j \left[\sum_{k=0}^\infty G^k\right]_{ij}$$

Equilibrium

The game has linear best replies. i's best reply is

$$BR(x_{-i}) = f'^{-1}(c) + \alpha_i \sum_j g_{ij} x_j.$$
 (2)

So we can now say something about the equilibria.

Remark

If $\lambda_1 < 1$, then there is a unique Nash equilibrium with

 $x_i^* = C_i^* f'^{-1}(c)$ for all i

where λ_1 is the largest eigenvalue modulus of the matrix G.

Strength of comparisons & cost

Stronger social comparisons increase consumption, but reduce welfare

Proposition If $\lambda_1 < 1$: (i) x_i^* is weakly increasing, and (ii) u_i^* is weakly decreasing, in α_j for all i, j, and strictly so if i = j.

A higher marginal cost reduces consumption but increases welfare for agents who are highly central in the network

Proposition

If $\lambda_1 < 1$: (i) x_i^* is strictly decreasing and convex in c for all i, (ii) supposing $f(a) = a^{\gamma}$, then u_i^* is strictly increasing in c if and only if $C_i^b > \frac{1}{\gamma}$.

Network structure

Definition: Comparison shift

A comparison shift is an $n \times n$ matrix D, where $D_{ru} = \phi$, $D_{rd} = -\phi$ for $r, u, d \in N$, and all other elements are equal to zero.

Proposition

Consider a comparison shift, D, of magnitude ϕ . Then: (i) x_i^* is strictly increasing, and (ii) u_i^* is strictly decreasing, in ϕ for all i if and only if $C_u^b > C_d^b$.

Endogenous network

- Additional assumption the network is symmetric, so $G_{ij} = G_{ji}$ for all i, j, links need mutual consent to form, but can be broken unilaterally.
- We now need a notion of equilibrium for an endogenous network.

Definition: Pairwise stability (Jackson & Wolinsky (1996))

A network G is pairwise stable if: (i) for all $G_{ij} > 0$: $u_i(G) \ge u_i(G - G_{ij})$ and $u_j(G) \ge u_j(G - G_{ij})$, (ii) for all $G_{ij} = 0$: if $u_i(G + G_{ij}) > u_i(G)$ then $u_j(G + G_{ij}) < u_j(G)$

When agents form the network endogenously they only connect to others with the same level of consumption

Proposition

In all pairwise stable networks, if $b_i \ge cf'^{-1}(c)$, then $G_{ij} > 0$ only if $b_i = b_j$, and if $b_i < cf'^{-1}(c)$ then $G_{ij} = 0$ for all j.

Labour market sorting

Intuition

- Agents can change their income (and hence consumption) by changing firms some firms are more productive than others.
- But this also changes their co-workers.
- This change in co-workers can be costly to agents in my model. At a more productive firm, the new co-workers will earn (and hence consume) more.
- So high-skilled agents, who can take their pick of firms, might choose to work at less productive firms. This is because these agents want to be a *big fish in a small pond*.

Formal Set-up I

- Two types of worker: skilled (S) and unskilled (U).
- Two types of firm: high productivity (*H*) and low productivity (*L*).
- Consumption depends only on the worker and firm type.
- Conditional on firm type, skilled workers earn more than unskilled ones.
- Conditional on worker type, workers at high productivity firms earn more than those at low productivity ones.
- Each firm has a fixed number of job openings, and all firms prefer to hire skilled workers over unskilled ones.
- Also assume the total number of job openings is equal to the number of workers
- We can divide an agent's neighbours into *friends* and *co-workers*.

Formal Set-up II

• As a benchmark case, I assume agents form equally strong links with all of their co-workers. So preferences are now

$$u_i = f(x_i - \alpha_{1i} \sum_{j \in \text{friends}} g_{ij} x_j - \alpha_{2i} \overline{x}_m) + b \sum_j \alpha_{1i} g_{ij}$$
(3)

- where \overline{x}_m is the average consumption of co-workers at *i*'s firm, and $\alpha_{1i} + \alpha_{2i} \equiv \alpha_i < 1$, is fixed for each agent.
- Assume firms are large, so each individual worker has a negligible impact on \overline{x}_m .

Labour market sorting

Sorting is equal to the fraction of skilled workers that work for high productivity firms.

Results

stronger social comparisons with co-workers reduces labour market sorting

Proposition

If the strength of social comparisons with co-workers weakly increases for all workers, then labour market sorting weakly decreases.

Proposition

There exists a threshold value α_1^{crit} such that a skilled worker works at a high productivity firm if and only if $\alpha_{1i} \ge \alpha_1^{crit}$.