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Abstract

A choice exhibits reactance if it is not directly welfare maximizing but

represents a way to restore a threatened freedom. We provide a first ax-

iomatic revealed preference characterization of this phenomenon, which

yields necessary and sufficient conditions for deviations from rational choice

to be ascribed to reactance. These conditions are shown to characterize

a (unique) representation of choices consistent with reactance. We next

derive the resulting preference ordering over opportunity sets for agents

whose final choices are consistent with reactance. Three applications are

analyzed. We first look at two social phenomena that have been (infor-

mally) associated with reactance in the psychology literature and demon-

strate that reactance provides plausible explanations of the emergence of

conspiracy theories and the backlash of integration policy targeted towards

immigrants. We finally study a principal’s problem who delegates deci-

sion to a better-informed agent that is biased and subject to reactance. We

find that the effect of reactance on the agent’s welfare is ambiguous.
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“Prohibitions create the desire they were intended to cure”
Lawrence Durell

Freedom is arguably an important reason for action that potentially conflicts
with material welfare maximization. For instance, people that were reluctant
to accept Covid 19 vaccination policy also suffered significant welfare costs, in-
cluding the renunciation of previous occupations or leisure activities. Psychol-
ogists have long observed this propensity of freedom to counterbalance well-
being motives—by means of natural and lab experiments—and developed the
theory of psychological reactance to explain their findings. Despite the wide
range of its applications, reactance has received little attention in economics.
A possible reason is that the existing theory neither yields a formal criterion
to distinguish reactance from other motivations to deviate from welfare maxi-
mization, nor clarifies whether reactance lends itself to rigorous modeling. The
main contribution of this article is an axiomatic foundation of a choice pro-
cedure that captures reactance and highlights trade-offs between welfare and
freedom motives.

Reactance occurs when the decision makers (DM) reverse their choice when
they are deprived of what they perceive as part of their freedom. In a field
experiment, Mazis, Settle and Leslie (1973) consider how consumers reacted
when Miami-Dade county decided to forbid phosphate use for laundry. De-
spite its strong environmental rationales, this decision raised significant protests
as well as unexpected reactions. For the sake of the “American freedom”,
some consumers that were not using phosphate-based detergent prior to the
law started buying it in neighbouring counties, smuggling it at extra cost and
stockpiling the (now) precious product for the 20 years to come.1

Such a scenario violates the standard requirement of rationality, namely, the
Weak Axiom of Revealed Preferences (WARP), and is incompatible with a straight-
forward utility representation. Indeed, denoting by x the phosphate detergent
in a neighbouring county, y the same product in Miami, and z a phosphate-
free detergent in Miami, the following choice is observed: z is chosen when the

1As Mazis, Settle and Leslie (1973) showed, this astonishing effect on behavior was con-
sistent with consumers’ beliefs reversal: Miami consumers were, on average, more prone to
praise phosphate detergent for its efficiency than their Tampa county neighbors.
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three options are available, i.e. in the menu {x, y, z}, while x is chosen over z
once y is removed, i.e. in the menu {x, z}. When this occurs, we say that x
reacts to the absence of y. We interpret this as revealing that the DM perceives
the absence of y as a threat to her freedom and considers the choice of x as a
mean to “restore” this lost freedom (Section 1.2).2 This kind of WARP violation,
however, is not exclusive to reactance and need not be interpreted this way. For
instance, the analysis of the attraction effect by Ok, Ortoleva and Riella (2015)
is also based on similar choice patterns. The key challenge, then, is to provide
choice-based axioms ensuring that an ascription of a choice reversal to reac-
tance is valid and that distinguishes reactance from alternative psychological
phenomena (Section 1.3).

Psychologists emphasize that reactance reflects an attempt to restore the
loss of concrete freedoms, that is freedoms to choose diverse types of option.3

Reactance is therefore observed between options embodying similar freedoms:
if x reacts to the absence of y, then x and y are relevant to the same type of
freedom. Importantly, types are not objectively observed but subjectively per-
ceived by the DM. Hence they cannot be postulated a priori by an observer and
must be revealed through the analysis. For instance, some DMs may perceive
that buying environmentally harmful vehicles is relevant to protest against
car environmental regulations,4 but not against the phosphate ban studied by
Mazis, Settle and Leslie (1973), because cars and detergents are different types
of product—their consumption relates to different freedoms. In contrast, some
DMs may perceive it as relevant because they take the right to pollute as a
relevant type of freedom. Hence, we do not presume which type of options

2As emphasised by psychologists, reactance is about freedom as subjectively perceived by the
DM: ”For the theory [of reactance], freedoms are the creatures of subjective reality. If a person
thinks he or she has the freedom to doX , and the ability to exercise this freedom, and perceives
the conditions of the freedom’s existence to be met, then this freedom exists for this person. It is
theoretically irrelevant whether this freedom exists according to some more objective criteria.”
(Brehm and Brehm, 2013, p. 22 )

3“Contrary to some interpretations (e.g. Dowd, 1975), the freedoms addressed by the theory
are not ”abstract considerations,” but concrete behavioral realities. If a person knows that he
or she can do X (or think X , or believe X , or feel X), then X is a specific, behavioral freedom
for that person.” (Brehm and Brehm, 2013, p.12)

4Here we are referring to the “rolling coal”: in reaction to President Obama’s environmen-
tal laws, some drivers modified their engine at significant costs in order to pollute more. See
for instance https://www.nytimes.com/2016/09/05/business/energy-environment/rolling-
coal-in-diesel-trucks-to-rebel-and-provoke.html
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are relevant freedom-wise for the DM. A contribution of the paper is to reveal
which of them are, under the requirement that they partition the set of options.

We show that any DM making choices consistent with our reactance axioms
can be represented by the following choice procedure that we call a reactance
choice rule (Section 2.1). First, the DM sorts the options into types (forming a
partition), where objects of each type share features that the DM subjectively
perceives as relevant for her freedom. Implicitly, x reacts to the absence of y
only if x and y belong to the same type. Second, each type forms a set that is
well ordered (i.e. WARP is satisfied) by a welfare criterion represented by a
utility function u. Third, the DM determines a set that we interpret as a her free-
dom requirement. She considers these options to be vital to satisfy her freedom
demands, as revealed by the observation that their absence sometimes triggers
choice reversals. These options share an intuitive threshold property for each
type (according to u); the threshold represents the DM’s minimum welfare level
to satisfy her freedom request. Choice is then made sequentially. First, the DM
determines the best available options from each type according to u. Second,
from these best options, she chooses the one with the highest valuation accord-
ing to a criterion v that we interpret as reactance function. For v(.) equates with
u(.) for all options in the freedom requirement set, but v(.) > u(.) otherwise.
We interpret this as v combining welfare and freedom motives, that is, the DM
assigns a strictly positive freedom value only for options not in the freedom re-
quirement set, which captures her propensity to restore a threatened freedom
by choosing these options. We further study the uniqueness of our represen-
tation (Section 2.2). We show that the type partition is unique and that there
exists a maximal freedom requirement set that includes all the others. We also
find necessary and sufficient conditions for increasing transformations of u and
v to preserve the reactance choice rule.

We then ask the following question: how does a DM whose choices can be
explained by a reactance choice rule would evaluate the freedom of choice of-
fered by the opportunity sets she is facing? Building on the series of papers by
Pattanaik and Xu (1990, 1998, 2000), we axiomatize a criterion to rank menus,
which simply counts the number of types from which sufficiently good options
(i.e. in the freedom requirement set) are feasible (Section 3). We argue that this
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ordering integrates considerations about similarities between options (see Pat-
tanaik and Xu, 2000; Nehring and Puppe, 2002) and the role of the preferences
of the agent (see Pattanaik and Xu, 1998). Hence, it helps reconcile these two as-
pects, which have been studied separately, and it formally connects our choice
rule to the existing literature on freedom of choice.

We finally study three applications of our choice model (Section 4). Two
social phenomena have often been related to reactance and documented by
the psychology literature, but they are not readily explained using existing
(economic) models of choice. First, reactance is introduced as a possible de-
terminant of the formation of conspiracy theories. To accommodate this phe-
nomenon, we study how reactance impacts the DM’s belief when she has to
choose a biased source of information. By removing an unchosen moderately
biased source, the DM might reverse his choice and choose a more biased
source in the opposite direction. This can represent why, if a DM feels that some
information is not accessible or hidden, he might end-up holding extreme belief
or adhere to conspiracy theories. Second, reactance provides an explanation of
why repressive policies towards immigrant minorities may generate backlash,
as suggested by empirical evidence. Additionally, it provides an argument for
the evolutionary efficiency of reactance and its persistence in the long run. Fi-
nally, we introduce reactance in a principal-agent’s setting. We study a typical
delegation problem: a principal can constrain the decision set of an informed
but biased agent, but cannot commit to contingent monetary transfers. In ad-
dition to the standard model (e.g. Alonso and Matouschek, 2008), the agent
behaves according to a reactance choice rule. We find that the presence of reac-
tance modifies the optimal delegation strategy. Either it forces the principal to
restrict even more the set of allowed actions to prevent the agent from taking
worse actions because of reactance; or it forces the principal to allow the agent’s
preferred options. Hence the effect of reactance on the agent’s material welfare
is ambiguous. This depends on the principal’s payoff and prior distribution
over the states of the world.

Related literature. The theory of reactance originated in Brehm (1966). Since
then, a huge and vivid literature has spurred in psychology (see Brehm and
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Brehm, 2013; Reynolds-Tylus, 2019). In economics, few papers mention reac-
tance, among which it is worth citing Arad and Rubinstein (2018), who use this
concept to explain results of their experiment about people’s perspective on
libertarian-paternalistic policies (the so-called nudges). Once aware of the im-
plementation of the policy, some subjects backfire by willingly choosing the re-
verse of what they are nudged to, although they would have chosen it without
the policy. Nonetheless, to our knowledge, no theoretical model of reactance
has been proposed so far.

Our work contributes to investigating mechanisms that can cause menu-
dependence. The first to argue that menu-independence can be theoretically
counterintuitive is Sen in many works (see Sen (1994, 1997) among others).
Since then, many contributions have been proposed in the literature about
conflicting motivations, among which Kalai, Rubinstein and Spiegler (2002),
Manzini and Mariotti (2007), Cherepanov, Feddersen and Sandroni (2013), Bern-
heim and Rangel (2008), Borie and Jullien (2020), Dietrich and List (2016), and
Ridout (2021) consider choices that can be explained (or justified) by differ-
ent rationales that may depend on menus. Masatlioglu, Nakajima and Ozbay
(2012) and Lleras et al. (2017) focus on the role of attention which can differ
across menus. The contribution of Ok, Ortoleva and Riella (2015)—henceforth
OOR—is worth emphasizing, for they propose a theory of revealed reference-
dependent preferences that relies on similar choice irregularities as ours. The
latter are however interpreted in the opposite direction: while they stress that
choice reversals result from the addition of options (which then play the role
of a reference point), we push forward the opposite interpretation that choice
reversals result from the removal of some options. We interpret this as the ef-
fect of a feeling of freedom threat induced by the deprivation of some options.
Consequently, the axioms and the obtained representation are very different
(see Section 1 for a more detailed comparison).

Finally, our model offers a choice theoretic counterpart to the normative lit-
erature on freedom of choice—see, among others, Sen (1988), Pattanaik and Xu
(1990, 1998, 2000), and Baujard (2007) for a survey. These works mainly studied
the objective value of freedom, focusing on the opportunity aspect of freedom.
While we similarly endorse this latter view, we rather study how the subjective
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perception of freedom may have an impact on agents’ decisions. Following Sen
(2002), we think that a theory of rational choice should encompass freedom of
choice, “not merely because without [it], the idea of rational choice would be
quite vacuous, but also because the concept of rationality must accommodate
the diversity of reasons that may sensibly motivate choice” (p. 5).

1 REACTANCE-INDUCED CHOICES

1.1 Preliminaries

We work with a finite set of options X and denote by X = 2X \ ∅ the collec-
tion of non-empty subsets of X . Elements of X stand for the menus of options
available to the DM and will typically be denoted A,B,C, . . . A choice func-
tion5 c : X −→ X associates to each menu the option chosen by the DM in this
menu. Namely, for any menu A, c(A) ∈ A.6

Let us stress that options are defined by objective features that can incor-
porate contextual properties—for instance, in our introductory example, we
differentiated the phosphate laundry in a supermarket in Miami from the same
product in a supermarket in a neighbouring county. Yet, we need not formalize
these objective features, we only require the observer to be able to distinguish
the different options. Some of these features may matter for the DM’s subjective
perception of freedom and thus will be revealed through the representation.

1.2 Revealed Reactance

Following Brehm (1966), reactance is meaningful only when freedom conflicts
with another motive (e.g. welfare maximization).7 We argue that reactance

5We focus on choice functions for the sake of simplicity: dealing with choice correspon-
dences would add another layer of complexity that, we think, is not necessarily relevant in
the present context. Nonetheless, we are confident that, with an additional axiom, our results
would extend to choice correspondences. This axiom is a weakening of Sen’s α property : If
A ⊂ B and x, y ∈ C(B) ∩A, then x ∈ C(A) ⇐⇒ y ∈ C(A).

6For simplicity, if we enumerate a set {x1, . . . , xk}, we write c{x1, . . . , xk} instead of
c({x1, . . . , xk}).

7“Reactance is conceived to be a counterforce motivating the person to reassert or restore
the threatened or eliminated freedom. It exists only in the context of other forces motivating
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is to be revealed through choice reversals that are inconsistent with the maxi-
mization of a single ordering, i.e. that violate WARP. As was illustrated by our
introductory phosphate example, such choice reversals are induced by the re-
moval of an option that was not chosen when it was feasible. Namely, consider
a triplet of options x, y, z and suppose that z is chosen from {x, y, z} but a re-
versal happens once y is no more available, i.e. x = c{x, z}. When reactance is
at work, this choice reversal results from the DM being concerned by the free-
dom loss he suffers when being denied the access to y. The choice of x over z
is an effective way for the DM to restore this threatened freedom. We say that
x reacts to the absence of y, as capture by the following definition.

Definition 1. Let c be a choice function on X and x, y ∈ X . We say that x reacts
to the absence of y, relative to c, if there exists z such that, z = c{x, y, z}, and
x = c{x, z}. We denote it xRcy.

Such behaviors could well be explained by different motives. In particular,
OOR base their definition of revealed reference on similar choice patterns. Their
interpretation is however significantly different: they argue that z beats x only
with the “help” of y. Hence, while they interpret these reversals as revealing
a relationship between y and z, we interpret it as revealing a relationship be-
tween x and y.8

In addition, a definition of potential reactance is required. Assume we ob-
serve that (i) y is preferred to x, and (ii) for each t such that yRct, we also ob-
serve that xRct. In such a situation we might suspect x to be an effective way to
restore the lost freedom incurred by the absence of y. Indeed, (i) states that y is
preferred to x, while (ii) suggests that the choice of x is as efficient as the choice
of y to restore the DM’s threatened freedom. Yet, it need not be the case that
xRcy, for there might be no third option z that allows for revealing a reversal as
stated by definition 1—i.e. no z is chosen in {x, y, z}while x is chosen in {x, z}.
When this happens, we posit that x potentially reacts to the absence of y.

the person to give up the freedom and comply with the threat or elimination.” (Brehm and
Brehm, 2013, p.37).

8More precisely, the application of OOR’s definition to these choices would identify y as a
revealed reference of z.
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Definition 2. Let c be a choice function on X and x, y ∈ X . We say that x poten-
tially reacts to the absence of y, relative to c, if y = c{x, y}, there exists t such that
yRct, and for any such option t, xRct. We denote it xPcy.

The next section is dedicated to providing conditions based on these rela-
tions in order to make our interpretation meaningful and to restrict violations
of WARP to reactance.

1.3 Reactance Choice Properties

Our first axiom relaxes WARP by observing that the DM should feel threatened
in her freedom only when some options are made unavailable. Conversely,
when her menu expands, the threats should disappear. The axiom states that
if an option x is chosen in two menus A and B, then no freedom concern could
justify a choice reversal when these menus are gathered, i.e. in A ∪ B. Other-
wise, the reversal from A ∪ B to A would be triggered by the loss of an option
from B \ A, which would prevent x from being chosen in B. This leads to our
first axiom.9

EXPANSION (Exp). For any x ∈ X , A,B ∈ X , if x = c(A) = c(B), then
x = c(A ∪B).

Note that if x reacts to the absence of y, then Exp implies that y = c{x, y}.
That is, for reactance to be meaningful, it must trigger a choice of an even
“‘worse” option than the one that is no more available, or equivalently, a sac-
rifice of welfare, as otherwise, reactance would hardly express a discontent.
Furthermore, if z plays the same role as in definition 1, then Exp also implies
that z = c{y, z}. Therefore, a typical pattern of reactance is revealed through a
binary choice cycle—this is forbidden by OOR’s axiom No Cycle.

We now posit axioms on the binary relations Rc,Pc. Consider our intro-
ductory example. Assume that, when only an expensive phosphate-free de-
tergent is available in her county, the DM reacts to the prohibition by going

9It was already present in Sen (1971), named property γ, and was later used by Manzini and
Mariotti (2007) under the name Expansion.
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to the neighbouring county to get some phosphate detergent, while she stays
in her own county when a cheap phosphate-free detergent is available. This
reveals that “buying phosphate detergent in the neighbouring county” reacts
to the absence of “buying phosphate detergent in Miami supermaket”, though
it is revealed only when the price of the phosphate-free detergent is high. As-
sume also that, while she prefers not to transgress the law when she can buy
phosphate in the neighbouring county, the DM finally decides to go on the
black market when the latter is forbidden, and that she does so whatever the
price of the available phosphate-free detergent may be. This reveals that “buy-
ing phosphate detergent on the black market” reacts to the absence of “buying
phosphate detergent in the neighbouring county”. We would like to conclude
from these two assumptions that the DM goes to the black market because she
feels even more threatened in her freedom now that the detergent is prohibited
in both counties. This necessarily implies that “buying phosphate detergent on
the black market” also reacts to the absence of “buying phosphate detergent in
Miami supermakets”. Hence our first axiom requires Rc to be transitive—note
that Pc is transitive by definition. Because Rc and Pc are typically incomplete,
we also require their negative transitivity.

REACTANCE TRANSITIVITY (R-Tran). For any x, y, z ∈ X ,

(i) if xRcy and yRcz, then xRcz,

(ii) let y = c{x, y}, z = c{y, z} = c{x, z}: if ¬[xRcy] and ¬[yRcz], then ¬[xRcz];
if ¬[xPcy] and ¬[yPcz], then ¬[xPcz].

Remark: let us stress that R-Tran imposes also transitivity in the similarity be-
tween options, that is, it prevents the following situation: x is sufficiently close
to y and xRcy, y is sufficiently close to z and yRcz, but x and z are too different
to consider the possibility of x reacting to the absence of z.

Consider an option y that never reacts to the absence of any other option,
but whose absence triggers reactance from the DM by choosing x—i.e. xRcy.
This means that as long as the DM has access to y, she never reacts to some
limitation of her freedom of choice by choosing y. At the same time, when y is
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no more available, she is ready to restore her threatened freedom by choosing
x. Our interpretation of such an option is that it satisfies the DM’s freedom
requirement, or alternatively, the choice of y is never motivated by freedom
concerns. Consider a third option z that is chosen over y—i.e. z = c{y, z}—
and such that also xRcz, then z should satisfy the DM’s freedom requirement
at least as well as y does. Our third axiom imposes two conditions in that
direction. First, any option that reacts to the absence of z must also react to the
absence of y. Conversely, any option that reacts to the absence of y might not
be good enough to react to the absence of z, but at least z must be chosen over
this option.

REACTANCE CONSISTENCY (R-Con). For any x, y, z ∈ X , if xRcy, xRcz, z =

c{y, z}, and there exists no t such that yRct, then for any u ∈ X :

(i) uRcz =⇒ uRcy;

(ii) uRcy =⇒ z = c{u, z}.

Remark: point (ii) can alternatively be seen as requiring that uRcy cannot be
revealed through the choice with z, hence z = c{u, z}, which is consistent with
the interpretation that y and z satisfy the same freedom requirements.

To motivate our last axiom, we extend the phosphate example. Suppose that
both “buying phosphate on the black market” (x) and “buying phosphate in a
neighbouring county” (z) react to the absence of “buying phosphate in Miami
supermakets” (t). Add the third option “buying phosphate in a further county”
(y): quite naturally, z is chosen over y, and assume further that y is chosen over
x. Suppose that the DM considers going on the black market as a means to
restore her freedom threatened by the prohibition in a further county, that is,
xRcy. Said differently, the DM’s concern for freedom is greater when x is the
only phosphate detergent available than when y is. Because both x and z reacts
to the absence of a common option t, then one would expect that similarly the
DM’s concerns for freedom be reinforced when only y is available as compared
to the same situation with z available. Hence our third axiom requires that y
potentially reacts to the absence of z. The second point says that if in addition

11



xPcz, that is, whenever the DM considers going in a neighbouring county as
a way to restore a threatened freedom, she would also consider going on the
black market if necessary, the same conclusion, that is, yPcz, should follow
even if we only observe xPcy and not necessarily xRcy.

REACTANCE MONOTONICITY (R-Mon). For any x, y, z ∈ X , such that z =

c{y, z}, y = c{x, y}:

(i) if xRct and zRct for some t ∈ X , then [xRcy =⇒ yPcz];

(ii) if xPcz, then [xPcy =⇒ yPcz].

2 REPRESENTATION

2.1 Reactance Choice Rule

We now state and discuss our main result: a representation for choice functions
that satisfy the four axioms presented above. To state it formally, let us denote
T c0 = {x ∈ X | @ t, xRct ∨ tRcx} the set of options for which reactance never
arises. Omitted proofs can be found in the appendices.

Theorem 1. A choice function c satisfies Exp, R-Tran, R-Con and R-Mon if and
only if there exist a freedom requirement set F ⊆ X , a partition T of the options
into types such that T c0 ∈ T , a utility function u : X −→ R, and a reactance
function v : X −→ R such that:

(i) for any T ∈ T and any x, y ∈ T , if x ∈ F and u(x) < u(y), then y ∈ F ;

(ii) • v(x) > u(x) for all x /∈ F ;

• v(x) = u(x) for all x ∈ F ;

(iii) for any T ∈ T , v ◦ u−1 is single-peaked on u(T \ F );

(iv) for any menu A,10

c(A) = arg max
x∈d(A)

v(x),(1)

10With a slight abuse of notation, if x is the unique maximizer of a function f on the set E,
we simply write x = argmaxy∈E f(y), instead of {x} = argmaxy∈E f(y).
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where:
d(A) =

⋃
T∈T

arg max
x∈T∩A

u(x).

We name a choice function that satisfy our four axioms a reactance choice
rule (RCR). When the conditions (i)–(iv) of Theorem 1 are satisfied, we say that
the ordered tuple < T , F, u, v > is a reactance structure that represents c.

Our interpretation of Theorem 1 is the following. The DM evaluates op-
tions either through an instrumental (or ‘welfarist’) preference, represented by
the utility function u, or through the lens of a reactance function v, that combines
welfare and freedom motives and thus exceeds (weakly) the former. Options
are partitioned into classes of similar types. Each type comprises options that
provide comparable consumption experience but with different levels of wel-
fare, or satisfaction—i.e. they are ranked by u. Hence, it reveals a specific
freedom. One clear example of this is when these are actually the same good
but obtained or consumed through different channels. For instance, buying
phosphate laundry in a supermarket is less costly than getting it from the black
market, but both goods are of similar type. Within each type, welfare maxi-
mization is the only motive for choice. Therefore, the binary comparisons are
transitive—and thus represented by u—and freedom concerns cannot yield re-
actance cycles.

The freedom requirement set consists of options that meet the DM’s freedom
requirements; that is, for any T , F ∩ T captures her demand regarding this
specific freedom. Point (i) and (ii) express how these requirements depend on
welfare. Point (i) says that if an option x meets a freedom requirement of the
DM (i.e. x ∈ T ∩ F ), so do options of the same type that increase the DM’s
welfare (i.e. any y ∈ T such that u(y) > u(x)). Hence, when all options in
F ∩ T are unavailable, the DM deems that she does not have access to a suffi-
ciently good option regarding the freedom associated to T . Since, in this case,
the DM feels threatened in her freedom, point (ii) says that she must be even
more willing to choose options of this type; that is, v(x) > u(x) for x /∈ F .
Conversely, when an option in F ∩ T is available, the DM does not feel threat-
ened regarding the freedom embodied by T . Hence, freedom is not a reason
for choosing these options, which is captured by the fact that u(.) = v(.). In this
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sense, xT,F ≡ arg minx∈T∩F u(x) provides the minimal welfare requirement of
the type of freedom associated to T .

Choices represented by (1) happen sequentially: within a menu, only the
best options (according to u) from each type are retained—this is the set d(A)—
and then compared according to v.11 The reasoning process can actually be
decomposed into two maximization stages separated by an interim stage in
which the DM evaluates for each type the threat to her freedom. More precisely,
at the interim stage, if the best available option from a type T is worse than xT,F ,
then freedom becomes an additional reason to choose this option. Hence, while
welfare alone is relevant to describe the first maximization stage, the second
one is also driven by the freedom concerns introduced at the interim stage.

Finally, point (iii) imposes a specific shape of the reactance function v with
respect to the utility function u. Specifically, if x, y, z are in type T but not in F
and u(x) > u(y) > u(z), it prevents that v(y) = mint∈{x,y,z} v(t). It reflects the
DM’s increasing willingness to react—up to a certain point—as the limitations
on their freedom is tightened. In our representation, this indicates that the less
welfare the DM can obtain from a type of options, the more she is willing to
restore her freedom and thus the more reactance is at work. Of course, this
is true up to a certain point where welfare motives might weigh more in the
trade-off between welfare and freedom—i.e. you reach a point where you are
no more willing to sacrifice welfare in the name of your liberty.

Figure 1 illustrates our model for a given type, say T . The six options are
in the same type, but only e and f are in F , which is shown by the equality
between the functions u and v, and e = xT,F . Conversely, a, b, c, d are not in
F . The fact that v(b) > v(c) > v(d) whereas u(b) < u(c) < u(d) illustrates that
freedom reasons are playing an increasingly important role the more welfare
the DM is denied the access to. The welfare motives however outweigh the
freedom ones for option a.

11Note that an RCR is a specific case of a rational shorlist method (RSM) à la Manzini and
Mariotti (2007). Indeed, one can define the two orders �1 and �2 in the following way: x �1

y ⇐⇒ ∃T, x, y ∈ T ∧x = c{x, y}; x �2 y ⇐⇒ x = c{x, y}. In that case, if c is an RCR, then for
any menu A, c(A) = max(max(A,�1),�2). That is, the DM chooses as if she first keeps only
options that are the best in each available type, and second, she chooses the best remaining
one according to the binary comparisons. As a consequence, although we do not use it in our
characterization, an RCR also satisfies the second property of RSMs, namely Weak WARP.
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Figure 1: Reactance structure in one type.

In the light of the representation, it is worth noting that the absence of pref-
erence reversal (or binary cycles) is to be interpreted as a lack of traceable reac-
tance. This does not necessarily mean that the DM has no concern for freedom
related to her opportunity set. Rather, this means that her freedom concerns (if
any) are either too weak, or too aligned with her welfare to be identified as a
force counterbalancing welfare.

2.2 Uniqueness of Reactance Choice Rules

This section elaborates on the extent to which the ingredients of a reactance
structure may be uniquely identified. We first provide a uniqueness result re-
garding the types and the freedom requirement set. It states that the collection
of types is unique and that the union of two freedom requirement sets can also
rationalize the DM’s choices.

Proposition 1. If c is an RCR represented both by < T , F, u, v > and < T̃ , F̃ , ũ, ṽ >,
then T = T̃ and there exist û, v̂ such that < T , F ∪ F̃ , û, v̂ > also represents c.12

We say that a reactance structure < T , F, u, v > is maximal if the freedom
requirement set F is maximal according to the inclusion relation ⊆, that is, if
for any other reactance structure < T , F̃ , ũ, ṽ > that represents the same choice

12Note that the uniqueness of the collection of types relies on the requirement in our theorem
1 that T c

0 is one type. Hence, proposition 1 alternatively says that the collection of types is
unique on the set of options on which reactance phenomena are observed.
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function, F̃ ⊆ F . Proposition 1 ensures that for any RCR c, there exists an
unique maximal reactance structure that represents it.

The next proposition shows that the main characteristic of this maximal
structure is that the relation Rc depends, for options in type T , on whether
they provide more welfare than xT,F . Indeed, suppose that the option just be-
low xT,F in T according to u—denote it x—does not react to the absence of xT,F .
Then, x does not react to the absence of any option in T better than xT,F , and
hence any option at all.13 This means that the presence of x in T comes from
the fact that there exists y such that yRcx. Namely, while x is never an effective
way to restore a lost freedom, the DM feels threatened when he is denied the
feasibility of x. Hence it would seem natural that x be included in the freedom
requirement set. This turns out to be necessarily true for the maximal freedom
requirement set.

Proposition 2. Let < T , F, u, v > be a reactance structure that represents an RCR c

and define for any T 6= T c0 , xT,F ≡ arg minx∈T∩F u(x). < T , F, u, v > is maximal if
and only if T c0 ⊂ F , and for any T 6= T c0 , x ∈ T :

(i) if u(x) < u(xT,F ), then xRcxT,F ;

(ii) if u(x) > u(xT,F ), then there exists y such that yRcx and yRcxT,F .

The maximal freedom requirement set is therefore the relevant one to evalu-
ate the DM’s freedom demands and the thresholds xT,F s can then appropriately
be interpreted as the minimal welfare requirements to satisfy these demands.

We now turn to a discussion about the uniqueness of the functions u and
v. Let c be an RCR represented by the reactance structure < T , F, u, v >. What
are the joint conditions on functions ũ, ṽ that ensures that < T , F, ũ, ṽ > also
represents c? One obvious sufficient condition is if there exists an increasing
function f : R −→ R such that ũ = f ◦ u and ṽ = f ◦ v. Now let suppose
that there exist two functions f, g : R −→ R such that ũ = f ◦ u and ṽ = g ◦ v.
One clear necessary condition is that f|u(F ) = g|u(F ) and that both functions be
increasing on u(F ). Because u is not directly used as a choice rule on options
that are not in F , it is not necessary that f be increasing on u(X). Yet, it repre-
sents choices within types, which implies that f is increasing on u(T ) for every

13See proposition 4 below (page 17) for a more precise statement of why this is true.
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T . Because v is ultimately the function through which choices are made, one
might be tempted to say that g must be increasing on v(X). This is however
not exact because within types, the function v is never used to make choices.
This problem does not arise as long as we impose one additional condition re-
garding the reactance function on certain pairs of options of similar types. This
is captured by the following definition.

Definition 3. A reactance structure < T , F, u, v > is a reactance structure? if for
any T ∈ T and any x, y ∈ T , such that {x, y} 6⊆ F , c{x, y} = x and for all z 6∈ T ,
c{x, z} = z ⇐⇒ c{y, z} = y, we have v(y) > v(x).

The next proposition states first that reactance structure? exists and second
that if we restrict ourselves to reactance structure?, the conditions regarding the
utility and the reactance functions stated above are not only sufficient, but also
necessary.

Proposition 3. Let c be an RCR.

(i) There exists a reactance structure? < T , F, u, v > that represents it.

(ii) Furthermore, let f, g : R −→ R be two real-mappings, < T , F, f ◦ u, g ◦ v >
also represents c if and only if f is increasing on u(T ) for every T ∈ T , g is
increasing on v(X) and f|u(F ) = g|u(F ).

2.3 Behavioral Properties of Reactance Choice Rules

The relation between our behavioral definition of reactance and our represen-
tation is a legitimate concern. According to the sequential reasoning of an RCR,
options are first compared according to u within types, and then according to
v across types. Because u and v do not rank options in X similarly, choice re-
versals may happen when removing options in a type that are better ranked
according to u but worse according to v. Point (i) of the next proposition shows
that these are are necessary conditions. Conversely, they might not be suffi-
cient. Hence point (ii) states conditions under which these are sufficient condi-
tions for x to potentially react to the absence of y.

Proposition 4. Let c be an RCR represented by the reactance structure S =< T , F, u, v >.
For any x, y ∈ X :
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(i) if xRcy, then there exists T ∈ T such that x, y ∈ T , x /∈ F , u(x) < u(y) and
v(x) > v(y);

(ii) if S is maximal and there exists T ∈ T such that x, y ∈ T \ F , u(x) < u(y) and
v(x) > v(y), then xPcy.

Proof. (i) Let c be an RCR. Consider x, y, z such that z = c{x, y, z} and x =

c{x, z}, so xRcy. One can easily check that it is not possible that x, y, z are
either all in the same type, or all in different types. Hence exactly two among
them must be of the same type: denote it T . To allow such a choice behavior,
this means that either the valuation of z changes from {x, y, z} to {x, z}, or
the valuation of x changes. But given that z is chosen in the bigger menu,
this means that it was the best, according to u, among the options of the same
type in this menu, which is necessarily true also in a smaller menu. Hence it
is the valuation of x that increases from {x, y, z} to {x, z}, meaning that it is
evaluated according to u in the former and according to v in the latter. This is
only possible x, y ∈ T and u(x) < u(y). Furthermore, the choices imply that
v(x) > v(z) > v(y) ≥ u(y) > u(x), from which we conclude that x /∈ F and
v(x) > v(y).

(ii) Because S is maximal, x, y ∈ T\F implies that both xRcxT,F and yRcxT,F .
Because u(x) < u(y), y = c{x, y}, and at the same time for any z ∈ T such that
yRcz, u(z) > u(y) > u(x) and there exists t such that v(y) > v(t) > v(z), hence
v(x) > v(t) and xRcz. Therefore, xPcy.

3 RANKING OF OPPORTUNITY SETS

The freedom of choice literature has mainly tackled the issue of valuing free-
dom through the ranking of opportunity sets. Starting with Jones and Sugden
(1982) and Pattanaik and Xu (1990), a wide diversity of measures have been
characterized (see Baujard (2007) for a survey of this literature). Two dimen-
sions have been pointed out as relevant to the agents’ valuation of their free-
dom: their (potential) preferences over options (see Pattanaik and Xu (1998)—
henceforth PX98—and Sen (1993)) and the similarity between different options
(see Pattanaik and Xu (2000)—henceforth PX00—and Nehring and Puppe (2002)).
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We propose a ranking of opportunity sets based on reactance structures that ar-
guably offers novel insights and helps reconcile these two aspects.

According to a (maximal) reactance structure, this is through the interaction
between the types and the freedom requirement set that freedom concerns im-
pact choices. Hence it suggests that these two channels should impact the DM’s
assessment of freedom offered by a given menu. The types represent classes of
similar options,14 suggesting that adding options of a similar type should not
increase the DM’s freedom of choice. At the same time, the maximal freedom
requirement set represents the DM’s freedom demands. Hence, it seems natu-
ral that adding options increases the DM’s valuation of freedom only if it gives
access to items of a type from which no option in the freedom requirement set
were available.

We characterize with two axioms a rule that reflects these arguments. As
before, we denote X a finite set of options and X := 2X \ ∅ the collection of
menus of options in X . Let < T , F, u, v > be a maximal reactance structure
defined on X and % is a complete and transitive binary relation defined on X .

To state our two axioms, we need to introduce the following definition. A
menu A is richer than a menu B if for any T ∈ T , if T ∩ F ∩ A = ∅, then
T ∩ F ∩ B = ∅. So A is richer than B means that any type from which no
element in F is available in A must also have no feasible options in F ∩ B.
Furthermore we say that A is strictly richer than B if A is richer than B but the
reverse is not true.

Our first axiom, R-DOMINANCE says that (strictly) richer sets are always
(strictly) preferred and imposes that it is an equivalence for singletons.

R-DOMINANCE.

(i) For any A,B ∈ X : A richer than B =⇒ A % B, with a strict preference if A
strictly richer;

(ii) For any x, y ∈ X : {x} � {y} =⇒ {x} strictly richer than {y}.

Note that part (i) of the axiom implies monotonicity in the sense of Kreps

14It is actually a specific case of PX00’s analysis where the equivalence classes induced by
the similarity relation form a partition.
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(1979): for any A,B ∈ X , A ⊇ B =⇒ A % B. Indeed, in this case, A is
trivially richer than B. Part (ii) is an adaptation of Pattanaik and Xu (1990)’s
Indifference Between no Choice Situations, which simply imposes an indifference
between every singleton. They argue that singletons do not offer any freedom
of choice, hence they cannot be strictly ranked. This is still true in our case,
except if only one the two options is in F , which is exactly what is implied by
(ii).

Our second axiom, R-COMPOSITION, is an adaptation of the composition
axioms used in Pattanaik and Xu’s series of papers.

R-COMPOSITION. For anyA,B,C,D ∈ X , such thatA∩C = B∩D = ∅, C ⊆ T

and D ⊆ T ′ for some T, T ′ ∈ T , and A is not richer than C: if A % B and C % D,
then A ∪ C % B ∪D.

Combining menus that do not overlap should preserve the ranking. This is
however true only if combining really provides additional freedom, which is
captured by the requirement thatA is not richer that C (see PX00 for a complete
discussion of their axiom).

For any menu A, we define Φ(A) = {T (x) ∩ F ∩ A|x ∈ A}, the collection of
subsets of A containing every option of one type from F that is available in A.

Theorem 2. % satisfies R-DOMINANCE and R-COMPOSITION iff for any menu A
and B:

A % B ⇐⇒ #Φ(A) ≥ #Φ(B).(2)

The interpretation is the following: what matters for the DM is to have ac-
cess to more options, but only dissimilar objects—as captured by the distinct
types—are valued. On top of that, within a certain class of similar options, the
DM demands a minimal level of satisfaction to meet her freedom requirements,
which is captured by the freedom requirement set F .

This measure is close to PX00’s one. In addition to their representation,
there is a role for preferences in this evaluation that is captured through the set
F . Although PX98 also incorporate preferences, let us stress the key difference.
Their starting point is a collection of possible preferences (i.e. complete and
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transitive orderings over the options) that a reasonable person may have. The
resulting measure simply counts in a menu the number of options that are a
maximiser of at least one of these preferences over the given menu. This ap-
proach integrates preferences relatively to a menu, simply attributing values to
options that could be chosen in this menu. In contrast, in our approach, pref-
erences are integrated in a more absolute way, in the following sense: below a
certain level of satisfaction, even though the DM will have to choose an option,
he does not attribute any freedom value to these potentially chosen items.15

Even more, keeping the reactance choice rule in mind, some options that might
be chosen later on, simply because of reactance, will not matter in the assess-
ment of freedom, while some unchosen ones will matter.

4 APPLICATIONS

4.1 Conspiracy Theories

As Sensenig and Brehm (1968) suggest, reactance has its counterpart in the
realm of beliefs, namely the boomerang effect for psychologists (Hovland, Ja-
nis and Kelley, 1953) or the backfire effect for political scientists (Nyhan and
Reifler, 2010; Wood and Porter, 2019).16 In the wake of Covid 19 pandemics,
scholars argued such effects to be closely related to the formation of conspir-
acy theories and extreme beliefs (Adiwena, Satyajati and Hapsari, 2020).17 We
propose to accommodate this mechanism by adapting Che and Mierendorff
(2019)’s single period model of attention allocation with reactance.

A DM must choose from two actions, l or r, whose payoffs depend on an
unknown state i ∈ {L,R}. His prior belief that the state is R is denoted p

and we assume that p ∈ (0, 1/2]. Before choosing his action, the DM acquires
information. To that purpose, he can allocate his attention across four sources

15To illustrate this, our measure can be equal to 0 on some non-empty menus, which is im-
possible either in PX98 or in PX00.

16The boomerang effect is “a situation in which a persuasive message produces attitude
change in the direction opposite to that intended”. The backfire effect is a concept from po-
litical science that refers to a situation in which evidence contradicting the subjects’ prior belief
may reinforce their belief in the opposite direction.

17The fact that mass media did not give any credit to conspiracy theories has been pointed
out as playing a role in reinforcing such theories through reactance.
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of information (e.g. newspapers). Two of them are L-biased and the two others
are R-biased.

The sources are represented by statistical experiments, or signals. The L-
biased ones, denoted σLL and σL, can only reveal the state R. Symmetrically,
the R-biased ones, denoted σRR and σR, can only reveal the stateL. For i = L,R,
σii is an extreme source, whereas σi is a moderate one, i.e. the former is more
biased than the latter. Formally, σi sends signal si with probability 1 in state i
and with probability 1− λ in state −i, and σii sends signal si with probability 1

in state i and with probability 1− δ in state −i. We assume that 3/4 > λ > δ =

1/2. The experiments induced by the moderate sources σL and σR are described
in table 1. The signals σLL and σRR are obtained by replacing λ with δ.

σL

State/signal sL sR

L 1 0
R 1− λ λ

σR

State/signal sL sR

L λ 1− λ
R 0 1

Table 1: Experiments induced by the moderate sources.

Initially the DM faces the complete menu M = {σLL, σL, σR, σRR}. In terms
of our representation, the set ofL-biased sources and the one ofR-biased sources
each represent a type of options. For i = L,R, σi is strictly more Blackwell infor-
mative than σii, therefore the DM will never choose any of the extreme sources
when his opportunity set is M , that is: d(M) = {σL, σR}. The DM’s demands
from freedom are satisfied when the moderate sources are available, that is, his
freedom requirement set is F = {σL, σR}. When facing the menu M , the DM
foresees that his payoff from choosing action a ∈ {l, r} in state i ∈ {L,R} is uia
where : uRr = uLl = 1, uRl = uLr = −1. Hence the DM will prefer action r if and
only if his posterior belief is greater than 1/2. One can show that the DM’s opti-
mal allocation of attention is to choose the “own-biased news source”, namely
the signal biased toward one’s prior: in our case σL given that p ≤ 1/2. The
rationale for this is the following. The prior indicates action l as the optimal
one. Hence, a breakthrough signal sR from σL is more valuable than a break-
through signal sL from σR. And the biased signal sL from σL is more aligned
with the DM’s prior belief than sR from σR. Hence, he is better off allocating his
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attention to σL (see Che and Mierendorff, 2019, pp. 2999-3000, for the complete
argument).

In the next period, the moderate R-biased source σR is no more available,
either because the government actually banned this newspaper or simply be-
cause the DM perceives that this source is no more existing: only L-biased
or extremely R-biased ones are present. The DM now faces the menu N =

{σLL, σL, σRR}. He interprets this removal as revealing that the disutility from
making a mistake in state L—i.e. choosing action r—is lower than expected: he
now foresees it to be vLr = 0. σRR is no more removed from consideration by σR,
hence d(N) = {σL, σRR}. His anticipated utility from choosing σL is unchanged
while the one attached to σRR is v(σRR) = p+ (1− p)δ (for p sufficiently close to
1/2 such that after signal sR from σRR, the DM chooses action r).

As a consequence, some DMs with prior beliefs sufficiently close to 1/2,
who would have chosen news source σL in menu M , will choose the extreme
source σRR in menu N and their default option becomes r.

Proposition 5. There exists p? < 1/2 such that if p ∈ [p?, 1/2]:

(i) The DM prefers σRR to σL in menu N ;

(ii) After a realisation of signal sR from σRR, the DM chooses action r.

This is in strong opposition as what would be obtained without reactance.
Indeed, if the DM does not modify his anticipated utility when the menu shrinks,
by removing σR, some DMs with prior belief strictly higher than 1/2 would
now choose the source σL instead and action l after a signal sL.

4.2 Integration Policy Backlash

Can forced assimilation policy foster the integration of immigrants communi-
ties? While Alesina and Reich (2015)’s theory of nation building assumes that
repressing the cultural practices of minorities spurs homogeneity, Bisin and
Verdier (2001) suggest that the success of such policy may be mitigated by an
increasing effort of parents to influence their children’s cultural trait. In this
application we show that, with reactance, one can even predict this policy to
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yield a backlash effect: the repressed immigrants react to repression by becom-
ing more prompt to self-isolation. This additionally provides a rational to the
persistence of reactance as an evolutionary efficient behavior.

Such a backslash effect has been recently documented by several papers.
Some evidence suggests that the “burkha ban” in France in 2004 has strength-
ened the religious identity of French-Muslims (Abdelgadir and Fouka, 2020).
Fouka (2020) shows that, in states which prohibited German Schools in the af-
termath of World War I, German-Americans “were less likely to volunteer in
World War II and more likely to marry within their ethnic group and to choose
decidedly German names for their offspring”.

To show how this backlash operates, we complement Bisin and Verdier
(2001)’s account of cultural transmission with a reactance mechanism: as the re-
pression increases, parents’ educational freedom decreases and, reacting to this
repression, they may endeavour to influence their children even more.18 There
are two cultural traits {m,M}—for minority and Majority. The proportion of
the minority q is assumed to be positive but lower than 1/2. Each generation is
composed of parents who have only one child. Intergenerational transmission
results from two socialization mechanisms. First, by vertical socialization the
parents may directly transmit their cultural trait i with probability di. If, with
probability 1 − di, vertical socialization fails, then horizontal transmission oc-
curs and the child adopts the traits of a random individual in society. Hence,
the probability that a child from the minority be socialized by her parent’s trait
is:

P (di) ≡ di + (1− di)q.(3)

As Bisin and Verdier (2001), we argue that parents endeavour to influence
their child. They have a unit of time to allocate between their effort to fix di—
which costs (di)β unit of time, with β > 1—and a leisure activity ti ∈ [0, 1],
whose cost and utility are ti. In addition, the government can implement a
repressive policy gi ≥ 1 that may increase the parents’ cost of influencing their
child: a pair (ti, di) costs ti + (di)βgi units of time for the parents. We posit that

18For simplicity, we adopt a continuous setting, while our own framework is discrete. The
ideas would be exactly the same with a discrete setting.
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parents get a utility of 0 when their child is socialized to the other trait, while
they get a utility V (gi) when she is socialized to their own trait. Hence, their
expected utility of their child’s socialization is P (di)V (gi). This means that,
given a repressive policy, parents choose options (ti, di) ∈ [0, 1]2 from the menu

Kgi ≡ {(ti, di) : ti + (di)βgi ≤ 1},

to maximize

ti + P (di)V (gi),(4)

In what follows, we also assume that V has the following shape:

V (g) =

{
V̂ if ĝ ≥ g

V̂ gλ

ĝ
ĝ < g

For some ĝ > 1 with λ > 1 and V̂ > 1. Hence, after a threshold ĝ, the more
repressive is the policy g, the greater is V (g). The interpretation is that parents
react to the repressive policy when they feel that their freedom to educate their
child is threatened. In other words, more repression may create incentives to
dedicate more resources to transmit their traits to their children. Note that λ
represents some kind of reactance rate since as it increases, parents’ willingness
to influence their child also increases.

From the first order condition, we obtain that the unique equilibrium edu-
cational effort—the program (4) being concave—must satisfy:

di?(gi, q) =

(
1− q
β

V (gi)

gi

) 1
β−1

(5)

Given the shape of V , d? strictly decreases with g on (1, ĝ) and strictly increases
with g on (ĝ,+∞). In other words, when the repressive policy exceeds ĝ, the
more repression, the more parents invest in having their child socialized to
their own trait. This suggests that reactance is at work in this model. In the
following lemma, we establish the precise connection between this model and
our reactance framework.
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Lemma 1. The function C defined on {Kg}g≥1, such that for all g

C(Kg) = {(t, d) ∈ Kg : (t, d) solves (4)}.

is a well-defined choice function and there exists an RCR C ′ defined on all compact
subsets of [0, 1]2 such that C(Kg) = C ′(Kg) for all g ≥ 1.19

Assuming the repressive policy to solely concern the minority (i.e. gM = 1),
what does reactance imply for the population dynamics in this model? Let
time τ ∈ [0,+∞) be continuous and qτ be the share of the population with the
minority cultural trait at time τ . Then, we have20

q̇ = q(1− q)
(
dm?
(
gm, q

)
− dM?

(
1, 1− q

))
.

Given (5), d satisfies the cultural substitution property.21 This implies that q
converges to some q? ∈ (0, 1), which satisfies dm?

(
gm, q

)
= dM?

(
1, 1 − q

)
(see

Bisin and Verdier, 2001, Proposition 1). Hence,

q?(gm) =
V (gm)/gm

V (1) + V (gm)/gm
(6)

Given that V (g)/g increases with g when g ∈ (ĝ,+∞) this means that repressive
policy increases the size of the minority. This prediction contrasts with Alesina
and Reich (2015)’s suggestions.

Noting that reactance is presumably a characteristic cultural trait (Jonas
et al., 2009), this model also provides a rational for why reactance can be evo-
lutionary efficient. Minorities which are more prompt to exhibit reactance are
more likely survive to repressive attempts to hinder their cultural practices.

To make precise this comparative statics statement, consider two minorities:
one with a high reactance rate λH and one with a low reactance rate λL < λH .
Denoting by q?L(.) and q?H(.) the equilibrium population share for these two

19For convenience, we construct a reactance structure on this infinite collection of compact
sets. Obviously, analogous results could be obtained by making the set of possible policies g
and the menus Kg finite.

20See Bisin and Verdier (2001, equation (3), footnote 9) for discussions about this differential
equation.

21In Bisin and Verdier (2001, Definition 1), this property states that d is continuous, decreas-
ing with q, and d = 0 when q = 1.
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minorities, the following proposition establishes that q? is always higher for
the high-reactance minority.

Proposition 6. For all g > ĝ, q?H(g) > q?L(g).

4.3 Optimal Delegation and Reactance

We consider a typical delegation problem (see Holmstrom, 1980; Alonso and
Matouschek, 2008, for a detailed review of the literature): a principal can con-
strain the decision set of an informed but biased agent, but cannot commit to
contingent monetary transfers. In any organization (administrations, compa-
nies, etc.), many rules govern what agents can or cannot do, with the purpose
of reducing agency costs incurred by principals while benefiting as much as
possible from better-informed agents. One can think for instance of a head of a
company who delegates stock management to plant managers, a regulator who
delegates pricing decisions to a monopolist with unknown costs, or a manager
who delegates pricing decision to sales persons.

Formally, a principal (she) has the legal right to take an action among a finite
set A = {aLL, aL, aR, aRR}. The payoffs delivered by each action depends on
the realization of a binary state of the world θ ∈ {L,R}. While the principal
only knows the probability p ∈ [0, 1] that the state isR, an agent (he) is privately
informed of the realization θ. The principal cannot use contingent transfers and
must decide the set of actions among which the agent will choose.

Preferences. The principal’s payoff for action a in state θ is the real number
πθ(a). Her preferred action is aθ in state θ and her second favorite action aθθ.
Her payoffs are written in table 2. The agent behaves according to a reactance
structure with state-dependent utility and reactance functions. In both states,
the types are TL = {aLL, aL} and TR = {aR, aRR} and the freedom requirement
set is F = {aLL, aRR}. The utility functions uL, uR and the reactance functions
vL, vR are such that the agent reacts to the absence of aθθ by choosing aθ. In
both states, he is more prone to restore the absence of aRR. The functions are
specified in table 3.
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Principal R πR(aR) > πR(aRR) > πR(aL) > πR(aLL)
L πL(aL) > πL(aLL) > πL(aR) > πL(aRR)

Table 2: Principal’s Payoffs.

Agent R vR(aR) > vR(aL) > uR(aRR) > uR(aLL) > uR(aR) > uR(aL)
L vL(aL) > vL(aR) > uL(aLL) > uL(aRR) > uL(aL) > uL(aR)

Table 3: Agent’s Utility and Reactance Functions.

Optimal Delegation. DenoteA = P(A) \ ∅ the set of menus of action. For any
M ∈ A, aθ(M) is the (unique) action chosen by the agent in state θ when facing
menu M . For any prior belief p ∈ [0, 1], the objective of the principal is to solve
the following maximization program, whose value is denoted V (p):

V (p) ≡ max
M∈A

(1− p)πL
(
aL(M)

)
+ pπR

(
aR(M)

)
.(7)

A delegation strategy is a mapping from the set of beliefs to the set of menus:
σ : [0, 1] −→ A. If for any p, (1 − p)πL

(
aL(σ(p))

)
+ pπR

(
aR(σ(p))

)
= V (p), we

say that the delegation strategy σ is optimal.
We are interested in the effect of reactance on optimal delegation strategies

by the principal, and consequently on the agent’s material welfare (as mea-
sured by his utility function). Without reactance, given that the agent’s inter-
est is sufficiently aligned with the principal’s (uR(aR) > uR(aL) and uL(aL) >

uL(aR)), for any prior p ∈ [0, 1], the optimal delegation is to let the agent choose
among the set of actions {aL, aR}. This strategy cannot be optimal with re-
actance because the agent would always choose aR and therefore, for p suffi-
ciently close to 0, offering aL as the only possible action is better for the princi-
pal. For moderate p, it might be better to let the agent choose among the whole
set of actions (or equivalently among his preferred actions {aLL, aRR}) given
that in state θ = L,R, aθθ is the second best action for the principal. It happens
that it depends on the magnitude of the principal’s payoffs, as summarized

28



Proposition 7. Define the following beliefs:

p̄ =
πL(aLL)− πL(aR)

πL(aLL)− πL(aR) + πR(aR)− πr(aRR)
,

p =
πL(aL)− πL(aLL)

πL(aL)− πL(aLL) + πR(aRR)− πR(aL)
,

p̂ =
πL(aL)− πL(aR)

πL(aL)− πL(aR) + πR(aR)− πR(aL)
.

Proposition 7. An optimal delegation strategy σ? must induce the following actions.

1. If p < p̄:

(i) aL(σ?(p)) = aR(σ?(p)) = aL for p < p;

(ii) aL(σ?(p)) = aLL and aR(σ?(p)) = aRR for p < p < p̄;

(iii) aL(σ?(p)) = aR(σ?(p)) = aR for p > p̄;

and it can induce either of the two possibilities respectively at boundary beliefs p
and p̄.

2. If p ≥ p̄:

(i) aL(σ?(p)) = aR(σ?(p)) = aL for p < p̂;

(ii) aL(σ?(p)) = aR(σ?(p)) = aR for p > p̂;

and it can induce either of the two possibilities at boundary belief p̂.

Two possible optimal strategies are depicted in figure 2, implementing the
actions described in proposition 7. In each strategy, the principal is indifferent
between the two possible menus at boundary beliefs p, p̄ and p̂. These strategies
are the most direct ones, in the sense that each menu does not contain irrelevant
actions that are never chosen by the agent.

Agent’s Welfare. If we measure the agent’s material welfare through the util-
ity functions uL and uR, one can see from proposition 7 that the effect of reac-
tance is ambiguous. In the case where p ≥ p̄, the effect is only negative, as the
agent only has access to a unique action that is not among her best actions. But
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Figure 2: Optimal Delegation Strategies.

if p < p̄, then while there is still this negative effect when p ≤ p or p ≥ p̄, on
the contrary, for middle beliefs, reactance forces the principal to let the agent
choose among her best options {aLL, aRR}. The logic behind this result is that
reactance makes the agent’s threat to choose bad actions (for himself) credi-
ble. Hence, the principal reacts either by constraining even more the agent’s
opportunity set; or on the contrary by offering him a greater satisfaction.

APPENDICES

A Proof of Theorem 1

Proof of the necessity. Let < T , F, u, v > be a reactance structure that represents
the RCR c. We denote T (x) for the type of option x. First, we need to state the
following lemma, that simply says that WARP is satisfied for each collection of
menus that contains options of the same type.

Lemma 2. For any T ∈ T , A ⊂ B ⊆ T , x ∈ X , if x = c(B) and x ∈ A, then
x = c(A).

Proof. Given that B ⊆ T , x = c(B) implies that c(B) = d(B), that is, u(x) > u(y)

for any y 6= x, y ∈ B. Because A ⊂ B, it means that x = d(A), and therefore
x = c(A).

To show Exp., let x ∈ X and A,B ∈ X such that x = c(A) = c(B). This
means that x ∈ d(A) ∩ d(B). Hence, u(x) > u(y) for all y 6= x such that y ∈
(A ∪ B) ∩ T (x), which implies that x ∈ d(A ∪ B). Moreover, x = c(A) = c(B)

implies that v(x) > v(z) for all z 6= x such that z ∈ d(A) ∪ d(B). Besides,
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d(A ∪ B) ⊆ d(A) ∪ d(B), hence v(x) > v(z) for all z 6= x, z ∈ d(A ∪ B). Hence,
x = c(A ∪B).

To show R-Tran. Let x, y, z ∈ X such that xRcy and yRcz. By definition,

xRcy =⇒ ∃t ∈ X, t = c{x, y, t} and x = c{x, t},

yRcz =⇒ ∃t′ ∈ X, t′ = c{y, z, t′} and y = c{y, t′}.

Proposition 4 implies that T (x) = T (y) = T (z). Coupled with lemma 2, this
shows that T (t′) 6= T (x) = T (y) = T (z) 6= T (t). Given that Exp is satisfied,
we also know that z = c{z, y} and y = c{y, x}. Hence, u(z) > u(y) > u(z) and
v(x) > v(t) > v(y) > v(t′) > v(z). Therefore, t = c{x, z, t} and x = c{x, t},
which means that xRcz.

Now let x, y, z ∈ X such that y = c{x, y}, z = c{y, z} = c{x, z}, ¬[xRcy]

and ¬[yRcz]. Assume by contradiction that xRcz. Then there exists t such that
t = c{x, z, t} and x = c{x, t} and, by proposition 4 and lemma 2, T (x) = T (z) 6=
T (t). Moreover, we have that v(x) > v(t) > v(z) so that v(x) > v(z). Hence, if
T (y) 6= T (x), then z = c{y, z} = c{x, z} imply that

v(y) >︸︷︷︸
y=c{x,y}

v(x) > v(z) >︸︷︷︸
z=c{y,z}

v(y)(8)

A contradiction. Now if T (y) = T (x), then u(z) > u(y) > u(x). But then either
v(y) > v(t), and then yRcz, or v(t) > v(y) and then xRcy. In both cases we have
a contradiction.

Finally, let x, y, z ∈ X such that y = c{x, y}, z = c{y, z} = c{x, z}, ¬[xPcy]

and ¬[yPcz]. Assume by contradiction that xPcz. Hence, there exists t such
that zRct and for any such t, xRct. By proposition 4, T (z) = T (t) = T (x) ≡
T , u(t) > u(z) > u(x), v(z) > v(t), and v(x) > v(t), which implies that
x, z /∈ F . Suppose that y /∈ T , then by proposition 4, ¬[xRcy] and ¬[yRcz].
We have already proved that this implies ¬[xRcz]. Therefore, for any t /∈ T ,
z = c{z, t} =⇒ x = c{x, t}. But then, given that z = cz, t and y = cx, y,
it must be that y ∈ T . A contradiction. Hence, y ∈ T , which means that
u(z) > u(y) > u(x). Because z /∈ F , then y /∈ F . Given that v ◦ u−1 is single
peaked on u(T\F ) we have that v(y) > min{v(x), v(z)}. If v(y) > v(z), then
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proposition 4 implies that yPcz, a contradiction. Hence v(z) > v(y) > v(x). Let
t be such that, zRct, then xRct, which means that v(x) > v(t), and therefore
v(y) > v(t), and hence yRct. This proves that yPcz, again a contradiction.

To show R-Con., let x, y, z ∈ X such that xRcy, xRcz, z = c{y, z}, and such
that there exists no t with yRct. Proposition 4 implies that T (z) = T (x) =

T (y) ≡ T and u(z) > u(y). Furthermore, by proposition 1, it is without loss
of generality to assume that F is maximal, and by proposition 2, yRct for no
t implies that y ∈ F , and hence z ∈ F . Let u ∈ X such that uRcz, so there
exists t /∈ T such that v(u) > v(t) > v(z) = u(z) > u(u). Hence, u /∈ F which,
together with y ∈ F and u ∈ T (since uRcz ∈ T ) , implies that u(y) > u(u). This
means that v(u) > v(t) > v(y) = u(y) > u(u). Hence, uRcy. This completes
the proof of (i) in R-Con. Now assume that uRcy. This means that u ∈ T and
u(z) > u(y) > u(u), which proves (ii) in R-Con.

To show R-Mon., let x, y, z ∈ X such that z = c{y, z}, y = c{x, y}, xRct,
and zRct for some t. Assume that xRcy. By proposition 4, this means that
T (x) = T (y) = T (t) = T (z) ≡ T , u(z) > u(y) > u(x), v(y) < v(x) and x, y, z /∈ F .
The single peakedness of v ◦ u−1 on u(T\F ) implies that v(y) > v(z), from
which we can conclude that yPcz. This proves (i). Assume now that xPcz

and xPcy. By proposition 4, T (x) = T (y) = T (z) ≡ T , u(z) > u(y) > u(x)

and x, y, z /∈ F . The fact that v ◦ u−1 is single-peaked on u(T\F ) implies that
v(y) > min{v(x), v(z)}. If v(y) > v(x), then for any t such that zRct, given that
xRct, also yRct and hence yPcz. Similarly, if v(y) > v(z), yPcz, which ends the
proof of (ii).

Proof of the sufficiency. Let define the binary relation �⊂ X2 by x � y if and
only if x = c{x, y} or x = y. It is clear that � is complete and antisymmetric.
For any transitive and complete binary relation > defined on a set A, we write
max(A,>) ≡ {x ∈ A | x > y,∀ y ∈ A}. When > is a linear order, with a
slight abuse of notation, when no confusion can be made, we indifferently write
max(A,>) for the singleton or for the element of the singleton.

Lemma 3. Let K a subset of X such that,

(
(x, y) ∈ K2 ⇐⇒ ¬[xRcy] and ¬[yRcx]

)
,(9)
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then � restricted to K2 is linear order and for all K ′ ⊆ K, c(K) � y for all y ∈ K ′.

Proof. Let K satisfying (9), x, y, z ∈ K and x � y � z. Suppose by contradiction
that z � x. If x = c{x, y, z}, then zRcy, which contradicts the fact that (y, z) ∈
K2 and K satisfies (9). The same reasoning applies if either y = c{x, y, z} or
z = c{x, y, z}. Hence, we conclude that x � z.

Moreover, let K ′ ⊆ K, the transitivity of � on K, implies that there exists
x ∈ K ′ such that x � y for any y ∈ K ′. By Exp, x = c(K ′).

Define now

X↓ =
⋃
y∈X

{x ∈ X : xRcy}

X↑ =
⋃
y∈X

⋂
t∈X

{x ∈ X : yRcx,¬[xRct]}

Let X̃ = X↑ ∪X↓ and for all x ∈ X↓, R↑(x) = {y ∈ X↑ : xRcy}.

Lemma 4. If x ∈ X↓, then R↑(x) 6= ∅.

Proof. Let x ∈ X↓, i.e. xRcy for some y ∈ X . If y ∈ X↑, this terminates the
proof. Suppose that y /∈ X↑, then there exists z1 such that yRcz1, which by R-
Tran implies that xRcz1. Either z1 ∈ X↑, which ends the proofs, or there exists
z2 such that z1Rcz2, which again by R-Tran implies that xRcz2. At each step k,
we replicate the same reasoning. Because X is finite, there must exist n such
that for all t ∈ X , ¬[znR

ct], i.e., zn ∈ X↑. Yet, R-Tran also implies that xRczn.

Hence, R↑(x) 6= ∅.

Note that lemma 3 implies that � is transitive on X↑. Hence, lemma 4 im-
plies the existence, for all x ∈ X↓, of m(x), defined by:

{m(x)} ≡ min(R↑(x),�) = {y ∈ R↑(x) | z � y,∀ z ∈ R↑(x)}.(10)

Lemma 5. For all x, y ∈ X↓, if R↑(x) ∩R↑(y) 6= ∅, then m(x) = m(y);

Proof. Let x, y ∈ X↓. Assume there exists t ∈ R↑(x) ∩ R↑(y) and let t′ = m(x).
We show that t′ ∈ R↑(y). If t = t′ there is nothing to prove. If t 6= t′, then by
definition of t′ and since t ∈ R↑(x), we have t � t′. Given that t′ ∈ X↑ we have

33



that ¬[t′Rcz] for any z ∈ X . Since xRct, xRct′ and t � t′, by R-Con(i) yRct,
implies that yRct′, i.e. t′ ∈ R↑(y).

We prove symmetrically that m(y) belongs to R↑(x). Hence, if m(x) 6= m(y)

it would be, by definition, thatm(x) � m(y) andm(y) � m(x). A contradiction.
Hence, m(x) = m(y).

Since X is finite there exists n∗ such that we can index the set {m(x) : x ∈
X↓} of every minimal option by a sequence (m(i))1≤i≤n∗ such that i 6= j ⇐⇒
m(i) 6= m(j). Define now for all 1 ≤ i ≤ n∗:

T ↓(i) = {x ∈ X↓ : xRcm(i)},

T ↑(i) = {x ∈ X↑ : ∃y ∈ X↓, yRcm(i), yRcx}, and

T (i) = T ↑(i) ∪ T ↓(i).

Define finally:

T (0) ≡ T c0 = X\X̃ =
⋂
y∈X

⋂
t∈X

{x ∈ X : ¬[xRcy],¬[tRcx]}

These will define the types. We denote T = {T (i) : 0 ≤ i ≤ n∗} the collection
of types.

Lemma 6. T forms a partition of X .

Proof. Given the definition of T (0), it is sufficient to show that the collection
{T (i) : 1 ≤ i ≤ n∗} partitions X̃ .

We first show that X̃ =
⋃

1≤i≤n∗ T (i). Note that for all 1 ≤ i ≤ n∗, if x ∈ T (i),
then there exists y such that xRcy or yRcx, so that x ∈ X̃ . Hence,

⋃
i≤n T (i) ⊆ X̃ .

Similarly, if x ∈ X̃ , then either x ∈ X↓ or x ∈ X↑. If x ∈ X↓, then xRcy for some
y ∈ X and by (10), xRcm(x), i.e. x ∈ T ↓(i) for some 1 ≤ i ≤ n∗. If x ∈ X↑, then
yRcx for some y ∈ X and ¬[xRcz] for all z ∈ X . But then x ∈ R↑(y) and (10)
implies that yRcm(y) = m(i) for some 1 ≤ i ≤ n∗. Therefore x ∈ T ↑(i). Hence,
in either cases, x ∈

⋃
1≤i≤n∗ T (i).

We now assume that for some 1 ≤ i, j ≤ n∗, x ∈ T (i) ∩ T (j), and show that
this implies i = j.
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Case 1: Assume x ∈ T ↓(i). Then, because X↑ and X↓ are disjoint, x necessar-
ily belongs to T ↓(j). x ∈ T ↓(i) means that xRcm(i). By definition of the m(i)’s,
there exists y such that m(y) = m(i). Applying lemma 5, we conclude that
m(x) = m(y) = m(i). Similarly, we prove thatm(x) = m(j). Hencem(i) = m(j)

and therefore i = j.
Case 2: Assume x ∈ T ↑(i). Then, because X↑ and X↓ are disjoint, x ∈ T ↑(j).

Hence, there exists yi, yj ∈ X↓ such that yiRcm(i), yjRcm(j), yiRcx, and yjR
cx.

Hence, x ∈ R↑(yi) ∩ R↑(yj), which by lemma 5, implies that m(yi) = m(yj).
Using the same argument as in case 1, we conclude thatm(i) = m(yi) = m(yj) =

m(j) which means that i = j.

Note that, given lemma 6, T (x) is well defined as the type of the option
x ∈ X , i.e. T (x) = T (i) ⇐⇒ x ∈ T (i). We now prove that � is transitive on
every type T (i).

Lemma 7. For all 0 ≤ i ≤ n∗, the relation � is transitive on T (i).

Proof. That � is transitive on T (0) is a direct consequence of lemma 3. We now
focus on 1 ≤ i ≤ n∗.

First, we show that for all x ∈ T ↓(i) and y ∈ T ↑(i), x ≺C y. If y = m(i) this
follows directly. If y 6= m(i), there exists z ∈ X such that zRcy and zRcm(i).
Hence, y,m(i) ∈ R↑(z) and y � m(i). Moreover, y ∈ X↑ so that ¬[m(i)Rcy].
Since xRcm(i), R-Con(ii) implies that y � x.

Second, we show that � is transitive on T ↓(i). Let x, y, z ∈ T ↓(i) such that
x � y � z. Assume by contradiction that z � x. Suppose (w.l.o.g) that x =

c{x, y, z}. In this case, zRcy. Given that xRcm(i), zRcm(i), and x � y � z,
R-Mon (i) entails yPcx. But since y, z ∈ X↓, zRcy implies zPcy. Hence, R-Tran
(ii) yields zPcx which contradicts z � x.

Finally, we prove that � is transitive on each type. Let i and x, y, z ∈ T (i)

such that x � y � z. If x ∈ T ↓(i) then, according to the first part of the proof,
y ∈ T ↓(i) and therefore similarly z ∈ T ↓(i). Similarly, if z ∈ T ↑(i), the first part
of the proof implies that y ∈ T ↑(i), which in turn also triggers that x ∈ T ↑(i). In
both cases, we already proved that � is transitive on T ↓(i) (second part of the
proof) and on T ↑(i) (a consequence of lemma 3). The last case are if x ∈ T ↑(i)
and z ∈ T ↓(i), but then from the first part of the proof we obtain x � z.
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For any menu A we define:

d(A) ≡ {x | x = max(T (x) ∩ A,�)}.

A direct implication of lemma 3 is that � is transitive on d(A). Hence we can
state the following lemma:

Lemma 8. For any A ∈ X ,

c(A) = max(d(A),�)(11)

Proof. For any menu A, denote i(A) = #{i | T (i) ∩ A 6= ∅}. We prove that for
any 1 ≤ n ≤ n∗ + 1, for any A such that i(A) = n, (11) holds.

If i(A) = 1, the conclusion follows from lemma 7. Assume now that i(A) =

2. Let x, y ∈ A be such that T (x) ∩ T (y) = ∅, x = max(T (x) ∩ A,�), y =

max(T (y) ∩ A,�), and y � x. Assume by contradiction that y 6= c(A). First
note that by definition of y, Exp, and lemma 7, y � z for any z ∈ T (y) ∩ A.
Hence, there must exist z ∈ T (x) such that z � y and y 6= c{x, y, z}; otherwise
Exp would imply that y = c(A). This implies that x � z � y � x. Since
y 6= c{x, y, z}, this is only possible if either yRcz or xRcy, which in any case
contradicts that x, z /∈ T (y) (given that, according to lemma 6, types partition
X). Hence we conclude that y = c(A).

Then fix 3 ≤ n ≤ n∗+ 1 and let A a menu such that i(A) = n. We denote y =

max(d(A),�). Given the preceding proof for any menu A′ such that i(A′) = 2,

for any z ∈ A, y = c

((
T (y)∪T (z)

)
∩A
)

. This implies by Exp that y = C(A).

Let Qc = Rc ∪Pc.

Lemma 9. Qc is asymmetric and transitive.

Proof. By definition for no x, y ∈ X , xRcy and yPcx; otherwise x � y and y � x.
Hence, given that both Rc and Pc are asymmetric, so is Qc.

To show that Qc is transitive, let x, y, z ∈ X such that xQcy and yQcz.

36



If yRcz, then, when xRcy, the conclusion directly follows from R-Tran.
When xPcy, for any t such that yRct, we have xRct. Hence, yRcz implies xRcz,
i.e. xQcz.

If yPcz, then there exists t such that zRct and for any of such t, yRct. If xPcy,
then the conclusion follows from the transitivity of Pc. If xRcy, R-Tran implies
that xRct for any t such that yRct, and therefore for any t such that zRct, i.e.
xPcz and xQcz.

For each 0 ≤ i ≤ n∗ define the relation .i on T (i) such that for all x, y ∈ T (i),
x .i y if and only if either xQcy or (x � y and ¬[yQcx]).

Lemma 10. For all 0 ≤ i ≤ n∗, x .i y is a linear order.

Proof. Note that .0 =� ∩T (0)2; hence, when i = 0 the conclusion follows from
lemma 3.

Let 1 ≤ i ≤ n∗. Showing that .i is antisymmetric and reflexive is straight-
forward and thus left to the reader. Regarding the connectedness, for any
x, y ∈ T (i), x 6= y, if x � y, then it is not possible that xQcy, so either yQcx,
and therefore y .i x, or not, and therefore x.i y. The proof is symmetric if y � x.
Given that � is connected, this terminates the proof of the connectedness of .i.

We finally show the transitivity. Let x, y, z ∈ T (i) such that x .i y .i z. We
have to deal with several cases separately.

(1) If z � y � x, then xQcy and zQcx. Thus, by lemma 9, xQcz and x .i z.
(2) If x � y � z, then ¬[yQcx] and ¬[zQcy]. Given that lemma 7 implies

x � z, we need to show that ¬[zQcy]. This directly follows from R-tran(ii).
(3) If x � z � y, then x � y (lemma 7) and thus ¬[yQcx] and yQcz. Assume

by contradiction that zQcx. Then lemma 9 implies that yQcx, a contradiction.
So ¬[zQcx] and x .i z.

(4) If y � x � z, then y � z and thus xQcy and ¬[zQcy]. The similar reason-
ing as in (3) gives the expected conclusion.

(5) If z � x � y, then z � y and thus ¬[yQcx] and yQcz. Suppose that
¬[xQcz], then R-Tran(ii) implies that ¬[yQcz], a contradiction. Hence, xQcz

and x .i z.
(6) If y � z � x, then y � x and thus xQcy and ¬[zQcy]. The similar

reasoning as in (5) gives the expected conclusion.
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This completes that proof that .i is transitive.

Denote .̃ =
⋃
i

.i. Let . be the relation on X defined by:

∀x, y ∈ X, x . y ⇐⇒

{
x .̃ y if x ∈ T (y)

x � y if x /∈ T (y)

Lemma 11. The relation . is a linear order.

Proof. Given that� and .̃ are both antisymmetric and complete, so is .. We now
prove the transitivity. Let us consider x, y, z such that x . y . z. If there exists
i such that x, y, z ∈ T (i), then this follows from lemma 10. If T (x) ∩ T (y) =

T (x) ∩ T (z) = T (y) ∩ T (z) = ∅, then this follows from lemma 3.
Suppose we are in the case T (x) = T (y) 6= T (z). Note that this implies

that y � z. Assume first that xQcy and suppose by contradiction that z � x.
Given that T (x) = T (y) 6= T (z), we have ¬[zQcy] and ¬[xQcz]. Moreover, by
assumption, y � z � x, so that R-Tran(ii) implies ¬[xQcy]. A contradiction.
Assume now that x � y and ¬[yQcx]. Suppose by contradiction that z � x,
then, since ¬[yQcx], we have either xRcz or zRcy. In any case a contradiction
arises since T (x) = T (y) 6= T (z). We deal with the case T (y) = T (z) 6= T (x)

similarly.
Suppose finally that we are in the case T (x) = T (z) 6= T (y). Note that this

implies that x � y and y � z. Assume by contradiction that z . x. If x � z, then
zQcx. But given that ¬[zQcy], ¬[yQcx], x � y, and y � z, R-Tran(ii) implies that
¬[zQcx], a contradiction. Hence, z . x is possible only if z � x and ¬[xQcy].
But, given that ¬[xQcz], this would imply either yRcx or zRcy. Given that
T (x) = T (z) 6= T (y), both cases lead to a contradiction.

Now let F =
⋃

1≤i≤n∗ T
↑(i) ∪ T (0). Given that � is transitive on F (lemma

3), there exists a function w : F −→ R that represents � on F . Furthermore, for
every i = 0, . . . , n∗, � is transitive on every T (i) (lemma 7), hence there exists
a function ui : T (i) −→ R representing � on T (i), and such that uT (x) = w(x)

for every x ∈ F . We now define the function u : X −→ R such that for every i,
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x ∈ T (i), u(x) = ui(x). We clearly have, for any menu A,

d(A) =
⋃
T∈T

arg max
x∈T∩A

u(x)

Lemma 12. There exists a function v representing . such that for any x ∈ F , v(x) =

u(x) and for any x /∈ F , v(x) > u(x).

Proof. Note first that, restricted to F 2,�= .. Indeed let x, y ∈ F such that x � y.
If x /∈ T (y), this directly follows from definition of .. If x ∈ T (y), then if, by
contradiction, y . x, then we would have xQcy, in contradiction with x ∈ F .

Now given that . is transitive and complete on X , there exists (up to a
monotone transformation) a function v representing .. Given that �= . on
F , we can set this function such that u(x) = v(x) for all x ∈ F .

Next, if x /∈ F , then xRcm(x), which implies v(x) > v(m(x)) and m(x) � x,
which means that u(m(x)) > u(x). Given that m(x) ∈ F , this means that v(x) >

v(m(x)) = u(m(x)) > u(x)

Lemma 13. For any menu A,

c(A) =︸︷︷︸
lemma 8

max
(
d(A),�

)
= arg max

x∈d(A)
v(x).

Proof. Let x, y ∈ d(A), T (x) 6= T (y) and suppose (w.l.o.g) that x � y. Given that
v represents . and T (x) 6= T (y), this means that x � y =⇒ x . y =⇒ v(x) >

v(y). Hence, we just established that max
(
d(A),�

)
⊆ arg maxx∈d(A) v(x). Given

that max
(
d(A),�

)
6= ∅ and arg maxx∈d(A) v(x) is a singleton (since . is antisy-

metric), this proves that max
(
d(A),�

)
= arg maxx∈d(A) v(x).

To complete the proof of theorem 1, we show that we can construct a func-
tion v̂ such that v̂ ◦ u−1 is single-peaked on u(T (i) \ F ) for any 1 ≤ i ≤ n?. For
any 1 ≤ i ≤ n?, let define M(i) ≡ max(T (i), .i). Note that for any z ∈ T ↑(i),
there exists t such that tRcz, i.e. t .i z, hence necessarily M(i) ∈ T ↓(i).

The following lemma shows that v as constructed above satisfies single-
peakedness on the “right” of M(i), that is:

Lemma 14. For all 1 ≤ i ≤ n?, x, y ∈ T ↓(i), if u(y) > u(x) > u
(
M(i)

)
, then

v(x) > v(y).
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Proof. u(y) > u(x) > u
(
M(i)

)
means that y � x � M(i) and y � M(i). We

know that yRcm(i), M(i)Rcm(i). Given that Rc ∩ T ↓(i)2 ⊆ Pc ∩ T ↓(i)2 and the
definition of M(i), it must be that M(i)Pcy, M(i)Pcx. Therefore, R-Mon (ii)
implies that xPcy, which implies v(x) > v(y).

For any 1 ≤ i ≤ n?, we define the set T ↓(i) ≡ {x ∈ T ↓(i) | u(x) < u(M(i))}.
We order this set T ↓(i) = {xi1, . . . , xiKi} such that for any 1 ≤ k ≤ Ki − 1,
u(xik) > u(xik+1).

Lemma 15. For all 1 ≤ i ≤ n?, if x, y ∈ T ↓(i), u(x) > u(y), and v(x) < v(y), then
for any z /∈ T (i), either v(z) < v(x) or v(y) < v(z).

Proof. Let 1 ≤ i ≤ n? such that there exists x, y ∈ T ↓(i) with u(x) > u(y),
and v(x) < v(y). Assume by contradiction that there exists z /∈ T such that
v(x) < v(z) < v(y). Hence, yRcx. But then, by R-Mon (i), because yRcm(i) and
M(i)Rcm(i), xPcM(i), which contradicts the definition of M(i).

Now let us define for all i ≤ n? and all x ∈ T ↓(i),

ai+(x) = min
y:/∈T (x):v(y)>v(x)

v(y)

ai−(x) = max
y:/∈T (x):v(y)<v(x)

v(y)

Lemma 16. for all i ≤ n? x, y, z ∈ T ↓(i),

1. ai+(x) = ai+(y) if and only if ai−(x) = a−(y);

2. if u(x) > u(y) > u(z) and v(z) ∈]ai−(x), ai+(x)[, then v(y) ∈]ai−(x), ai+(x)[=

]ai−(y), ai+(y)[.

Proof. The first claim stems from the fact that a+(x) > a+(y) implies that v(x) >

a+(y) so that a−(x) ≥ a+(y) > a−(y). Hence, a−(x) = a−(y) implies a+(x) =

a+(y). The reverse implication is similar. The second claim is a direct conse-
quence of lemma 15.

We now define a function v̂ which satisfies the conclusion of lemma 13 and
is single- peaked as required by our representation. First, v̂(x) = v(x) for any
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x ∈
⋃

1≤i≤n? [T (i)\T ↓(i)]∪T (0). Second, for each 1 ≤ i ≤ n?, set v̂i on T ↓(i) such
that:

v̂i(x) ∈]ai−(x), ai+(x)[(12)

v̂i(x) ∈ [ min
y∈T ↓(i):v(y)∈]ai−(x),ai+(x)[

v(y), max
y∈T ↓(i):v(y)∈]ai−(x),ai+(x)[

v(y)](13)

v̂i(x) > v̂i(y) ⇐⇒ u(x) > u(y)(14)

Finally, let v̂|T ↓(i) = v̂i for each i.
By construction v̂ is single-peaked. It remains to check that for all A, c(A) =

arg maxx∈d(A) v̂(x). To see why this is the case assume that arg maxx∈d(A) v̂(x) 6=
arg maxx∈d(A) v(x) for someA. This means that there exist x, y ∈ Awith x /∈ T (y)

such that v(x) > v(y) and v̂(x) < v̂(y). Given lemma 13, this is possible only
if x ∈ T ↓(i) or y ∈ T ↓(i) for some i. Assume that x ∈ T ↓(i). Then, this would
imply that v(x) > ai−(x) ≥ v(y). If y /∈ T ↓(i) for all i ≤ n?, then v(x) > ai−(x) ≥
v(y) = v̂(y), while v̂(x) < v̂(y) ≤ ai−(x), in contradiction with (12). If y ∈ T ↓(j)
for some j ≤ n?, then v(x) ≥ aj+(y) > v(y) and v(y) ≤ a−(x) < v(x). Note
that ai−(x) ≥ aj+(y) would be in contradiction with (12), hence ai−(x) < aj+(y).
This is possible only if aj+(y) = v(x′) and ai−(x) = v(y′) for some x′ ∈ T ↓(i) and
some y′ ∈ T ↓(j). Note also that v(x′) ∈]ai−(x), ai+(x)[ and v(y′) ∈]aj−(y), aj+(y)[.
Moreover, it must be that

v(x′) = min
z∈T ↓(i):v(z)∈]ai−(x),ai+(x)[

v(z),

as otherwise this would contradict the definition of a+(y). Similarly, it must be
that

v(y′) = max
y∈T ↓(i):v(z)∈]ai−(y),ai+(y)[

v(z).

Hence, by (13) we have v̂(x) ≥ v(x′) > v(y′) ≥ v̂(y). A contradiction.

B Proof of Proposition 1

We first prove the following corollary of Proposition 4.
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Corollary 1. Let c be an RCR represented by a reactance structure < T , F, u, v >.
For any T ∈ T : T ⊂ F =⇒ T = T c0 .

Proof. T ⊂ F implies that ∀x ∈ T , u(x) = v(x). Given proposition 4 (i), this
implies that for any y ∈ X ¬[xRcy]. If, by contradiction, there exists z such
that zRcx, then proposition 4 (i) implies again that there exists T ′ such that
x, z ∈ T ′, z /∈ F . Given that T forms a partition, this means that T ′ = T , and
thus T\F = T ′\F 6= ∅. A contradiction. Hence, T = T0.

Proof of Proposition 1. Assume that c is represented both by< T , F, u, v > and<
T̃ , F̃ , ũ, ṽ >. We first prove that T = T̃ . For that purpose, we define the binary
relation Ec ⊂ X2 as the reflexive extension of Rc, that is: for any x, y ∈ X ,
xEcy ⇐⇒ [xRcy∨yRcx]. We simply show that for any x, y ∈ X , y ∈ T (x) 6= T c0

if and only if there exists a sequence (xk)
n+1
k=0 such that x0 = x, xn+1 = y, and

for any i ∈ {0, . . . , n}, xiEcxi+1. Or equivalently, we show that the collection
of types on X \ T c0 is defined by the collection of the components of the graph
generated by the binary relation Ec on the set X \ T c0 .

Only if. Consider x, y ∈ T ∈ T with T 6= T c0 . We show there exists a
sequence (xk)

n+1
k=0 such that x0 = x, xn+1 = y, and for any i ∈ {0, . . . , n}, xiEcxi+1.

By corollary 1, T \ F 6= ∅. First, define x? ≡ arg max v(T \ F ). Given that
v ◦ u−1 is single-peaked on u(T \ F ), for any s, t ∈ T \ F , if u(s) < u(t) ≤ u(x?),
then v(s) < v(t) ≤ v(x?). Hence there exists no z such that zRcs (or equivalently
zRct). Hence, T 6= T c0 implies that sRcz for some z ∈ T with u(z) > u(x?).

Second, define x? = arg min v
(
{x ∈ T | u(x) ≥ u(x?)}

)
. Given the definition

of the freedom requirement set F and the fact that v ◦ u−1 is single-peaked on
u(T \F ), for any s, t ∈ T , if u(s) > u(t) ≥ u(x?), then v(s) > v(t) ≥ v(x?). Hence
there exists no z such that sRcz (or equivalently tRcz). Hence, T 6= T c0 implies
that zRcs for some z ∈ T with u(z) < u(x?).

Hence, for any s ∈ T , if sRcz for some z ∈ T , then u(s) < u(x?). Therefore,
given the definition of x?, and the single-peakedness of v ◦ u−1 on u(T \ F ), for
any such s, this is also the case that sRcx?. Indeed, this means that u(s) < u(z),
u(z) > u(x?) (from our first point made above) and there exists t /∈ T such that
v(s) > v(t) > v(z). But note then that u(x?) > u(s) and v(s) > v(t) > v(z) >

v(x?), hence sRcx?.
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Finally, there are three cases to consider for x, y. (1) If both u(x) ≥ u(x?)

and u(y) ≥ u(x?), then there exist s, t such that sRcx and tRcy. Both sRcx? and
tRcx?. Hence xEcsEcx?E

ctEcy. (2) If u(x) ≥ u(x?) > u(y), then there exists s
such that sRcx and sRcx?. Furthermore, either yRcz, in which case yRcx?, or
zRcy, in which case zRcx?, for some z. In both cases, we can conclude similarly
as in (1). (3) If both u(x) < u(x?) and u(y) < u(x?), then either αRcz, in which
case αRcx?, or zRcα, in which case zRcx?, for α = x, y, for some z. In any of the
four possible combinations, we can similarly conclude.

If. Consider x, y ∈ X such that there exists a sequence (xk)
n+1
k=0 such that

x0 = x, xn+1 = y, and for any i ∈ {0, . . . , n}, xiEcxi+1. By proposition 4, for any
i ∈ {0, . . . , n}, xiEcxi+1 implies that there exists T such that xi, xi+1 ∈ T , from
which we conclude that there exists T such that x, y ∈ T .

We now prove that there exists û, v̂ such that < T , F ∪ F̃ , û, v̂ > also rep-
resents c. First note that given the definition of a freedom requirement set, for
any type T ∈ T , either F ∩ T ⊆ F̃ ∩ T or F̃ ∩ T ⊆ F ∩ T . Let us suppose w.l.o.g
that F̃ ∩ T c0 ⊆ F ∩ T c0 . Then, for any T such that F̃ ∩ T ⊆ F ∩ T , we simply
define û|T = u|T and v̂|T = v|T .

Now, let T be such that F ∩ T ( F̃ ∩ T and define when they exist x?(T ) =

arg minu(F ∩ T ) and x?(T ) = arg maxu(T \ F̃ ). Suppose first that x?(T ) does
not exist, this means that T ⊂ F̃ , in which case, by corollary 1, T = T c0 . But we
assumed that F̃ ∩ T c0 ⊆ F ∩ T c0 . Hence, x?(T ) necessarily exists.

Suppose now that x?(T ) exists. There exists a sequence of options (xk)
n(T )
k=1

such that T ∩ (F̃ \ F ) = {x1, . . . , xn(T )} and u(x?(T )) > u(x1) > · · · > u(xn(T )) >

u(x?(T )). Note that this must be that v(x?(T )) > v(xn(T )) > · · · > v(x1) >

v(x?(T )). Indeed, suppose by contradiction that v(x?(T )) < v(xn(T )), then point
(iii) of theorem 1 implies that for any x ∈ T such that u(x) < u(x?(T )), v(x) <

v(xn(T )). If there exists y such that xRcy, then this would imply that xn(T )Rcy,
which is not possible given proposition 4 and the fact that xn(T ) ∈ F̃ . This
implies that there exists no y such that xRcy, which in turn triggers that for any
y ∈ T there exists no z such that yRcz, from which we obtain that T = T c0 , a
contradiction. Hence we conclude that v(x?(T )) > v(xn(T )) > · · · > v(x1) >

v(x?(T )). At the same time, ṽ(x?(T )) < ṽ(xn(T ) < · · · < ṽ(x1) < ṽ(x?(T )). Given
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that < T , F, u, v > and < T̃ , F̃ , ũ, ṽ > both represent c, this implies that for any
k ∈ {1, . . . , n(T )} and any z /∈ T , c{x?(T ), z} = x?(T ) ⇐⇒ c{xk, z} = xk.
Let νT > 0 be sufficiently small and define û(xk) = v̂(xk) = u(x?(T )) − kνT for
every k ∈ {1, . . . , n}.

Let us now consider the case where x?(T ) does not exist. This means that
T ∩ F = ∅. There exists similarly a sequence of options (xk)

n(T )
k=1 such that T ∩

(F̃ \ F ) = {x1, . . . , xn(T )} and u(x1) > · · · > u(xn(T )) > u(x?(T )). Following a
similar reasoning, one can show that v(x?(T )) > v(xn(T )) > · · · > v(x1) while
ṽ(x?(T )) < ṽ(xn(T ) < · · · < ṽ(x1). Hence for any k ∈ {2, . . . , n(T )} and any
z /∈ T , c{x1, z} = x1 ⇐⇒ c{xk, z} = xk. Let νT > 0 be sufficiently small and
define û(x1) = v̂(x1) = v(x1) and û(xk) = v̂(xk) = v(x1) − (k − 1)νT for every
k ∈ {2, . . . , n}.

In both cases, finally define û|T\(F̃\F ) = u|T\(F̃\F ) and v̂|T\(F̃\F ) = v|T\(F̃\F ).
Repeat these operations for any T such that F ∩ T ( F̃ ∩ T . One can easily
check that by appropriately choosing the νT s, û, v̂ so defined are such that the
reactance structure < T , F ∪ F̃ , û, v̂ > represents c.

C Proof of Proposition 2

Proof of the necessity. Let < T , F, u, v > be a a maximal reactance structure that
represents c. The fact that T c0 ⊂ F directly follows from our proof of theorem
1. Let T 6= T c0 , x ∈ T and define xT,F as in the proposition. Note that T 6⊂ F ,
as otherwise, by proposition 4, it would be the case that T = T c0 . Hence there
exist a sequence of options (xk)

n
k=1 such that T \F = {x1, . . . , xn} and u(xT,F ) >

u(x1) > · · · > u(xn).
First, this must be that v(x1) > u(xT,F ), as otherwise, one could redefine û

by û(x1) = v(x1), û = u elsewhere, and F̂ = F ∪ {x1} such that < T , F̂ , û, v >
also represents c, which contradicts that < T , F, u, v > is maximal.

Second, there exists k? ∈ {1, . . . , n} such that v(xk?) = max v(T \ F ). Given
that v ◦ u−1 is single-peaked on u(T \ F ), for any k′ < k < k?, v(xk′) < v(xk) <

v(xk?). Hence, it is sufficient to show that x1RcxT,F . Suppose by contradiction
that it is not the case. This means that for any z /∈ T , c{xT,F , z} = xT,F =⇒
c{x1, z} = x1. But v(x1) > u(xT,F ) implies that c{x1, z} = x1 =⇒ c{xT,F , z} =
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xT,F . A contradiction.
Third, the single-peakness of v ◦ u−1 on u(T \ F ) implies that for any k′ >

k > k?, v(xk′) < v(xk) < v(xk?). Hence, let k ≥ k?, by proposition 4, there exists
no x such that xRcxk. This implies that there exists x ∈ T , with u(x) > u(xk?),
such that xkRcx, as otherwise, x ∈ T c0 a contradiction. In any case we have
v(xk) > v(x) > v(xT,F ). Indeed, if x = xk̂ for some k̂ < k?, then v(xk̂) > v(x1) >

v(xT,F ) by the previous step. If x ∈ F , then v(x) = u(x) > u(xT,F ) = v(xT,F ), by
definition of xT,F . But applying the same reasoning as for x1, it can be shown
that xkRcxT,F . This concludes the proof of (i).

Now let us consider x ∈ T such that u(x) > u(xT,F ). Hence, x ∈ F , therefore,
there exists no y such that xRcy (by proposition 4). Given that T 6= T c0 , there
must exist y ∈ T such that yRcx. Again by proposition 4, this can be possible
only if u(y) < u(x) and v(y) > v(x), which is possible only if u(y) < u(xT,F ).
Point (i) implies that yRcxT,F , which ends the proof of (ii).

Proof of the sufficiency. Let< T , F, u, v > be a reactance structure that represents
the choice function c and that satisfies the conditions stated in the proposition.
Suppose by contradiction that it is not maximal. Therefore, there exists T 6= T c0

such that T \ F 6= ∅, and there exists < T̃ , F̃ , ũ, ṽ > that represents c with
F̃ ⊃ F and F ∩ T ( F̃ ∩ T . But this contradicts the fact that for any x with
u(x) < u(xT,F ), i.e. x ∈ T \ F , xRcxT,F .

D Proof of Proposition 3

Proof. The proof of (i) directly follows from the proof of theorem 1. The proof
of the if part of (ii) is not complicated and thus left to the readers. We only
prove the only if part.

The fact that f must be increasing on u(T ) for every T ∈ T simply follows
from the fact that the function u represents the binary choices within each type.
f|u(F ) = g|u(F ) is a direct consequence of the requirement that utility and the
reactance functions be equal on the freedom requirement set.

We now prove that g must be increasing on v(X). Suppose by contradiction
that there exists x, y ∈ X such that v(x) > v(y) but g ◦ v(x) ≤ g ◦ v(y). Note
that there must exist a type, denote it T , such that x, y ∈ T , as otherwise v(x) >
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v(y) =⇒ x = c{x, y}, which cannot be accommodated by < T , F, f ◦ u, g ◦ v >
if g ◦ v(x) ≤ g ◦ v(y). Define x? = arg max v(T \ F ) and xT,F as in proposition 2.

(1) Consider the case where u(x) > u(y). If u(y) ≥ u(xT,F ), this would
mean that x, y ∈ F , in which case, given that u|F = v|F , f|u(F ) = g|u(F ) and f is
increasing on u(T ), it is impossible that g ◦ v(x) ≤ g ◦ v(y). If u(y) ≤ u(xT,F ),
it means that y /∈ F . The fact that v(x) > v(y) implies that there exists z /∈ T

such that x = c{x, z} while z = c{y, z}, that is v(x) > v(z) > v(y). Hence,
g ◦ v(x) ≤ g ◦ v(y) cannot accommodate these choices.

(2) Consider the case where u(x) < u(y). Then necessarily u(x) < u(xT,F ),
that is x /∈ F . Given that v(x) > v(y), there exists no z /∈ T such that z = c{x, z}
while y = c{y, z}. Conversely, if there exists z /∈ T such that x = c{x, z} while
z = c{y, z}, that is v(y) > v(z) > v(x), then again g ◦ v(x) ≤ g ◦ v(y) cannot
accommodate these choices. If it is note the case, that is for every z /∈ T such
that x = c{x, z} ⇐⇒ y = c{y, z}, then g ◦ v(x) ≤ g ◦ v(y) does not satisfy the
requirement of reactance structure?.

E Proof of Theorem 2

Proof. The necessity part of the theorem is left to the readers. We only prove
the sufficiency.

(a) We first show that for any A,B such that A ⊆ T and B ⊆ T ′ for some
T, T ′ ∈ T , A � B ⇐⇒ A ∩ F 6= ∅ = B ∩ F . If T = T ′, this is simply a
consequence of part (i) of R-Dominance (RD).

Suppose now that T 6= T ′. Let denote A′ = A \ F = {a1, . . . , an} and B′ =

B \ F = {b1, . . . , bl} and suppose that both are non-empty. By RD, {a1} ∼ A′,
because both are richer than each other. Similarly {b1} ∼ B′. Furthermore, RD
(ii) implies that {a1} ∼ {b1}; hence, by transitivity, A′ ∼ B′.

Let denote A′′ = A \ A′ and B′′ = B \ B′. If A′′ = B′′ = ∅, we conclude from
the previous argument that A ∼ B. Suppose that A′′ 6= ∅ = B′′, so B = B′. By
a simple application of RD (i), A is strictly richer than A′, so A � A′, and by
transitivity, A � B.

Assume now that B′′ 6= ∅. By a similar reasoning as for A′ and B′, one can
easily show that A′′ ∼ B′′. If B′ = ∅, then B = B′′, hence A ∼ B. If B′ 6= ∅, note
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that A′ ∩A′′ = B′ ∩B′′ = ∅ and neither A′ is richer than A′′ nor B′ is richer than
B′′. Hence applying twice R-Composition (RC), we obtain that A ∼ B.

(b) We next show that for any A,B, if #Φ(A) = #Φ(B), then A ∼ B. Denote
Φ(A) = {A1, . . . , An} and Φ(B) = {B1, . . . , Bn}. By (a), we know that for any i,
Ai ∼ Bi. Noting that A1 ∩ A2 = B1 ∩ B2 = ∅, and neither A1 is richer than A2

nor B1 is richer than B2, by applying twice RC, we get that A1 ∪ A2 ∼ B1 ∪ B2.
By reiterating the same argument, we obtain that

⋃
iAi ∼

⋃
iBi. Finally, note

that A is richer that
⋃
iAi and conversely

⋃
iAi is richer than A, hence, by RD,

A ∼
⋃
iAi; similarly B ∼

⋃
iBi. Therefore, by transitivity, we obtain that A ∼

B.
(c) We finally prove that for any A,B, if #Φ(A) > #Φ(B), then A � B.

Denote Φ(A) = {A1, . . . , An} and Φ(B) = {B1, . . . , Bk}, with k < n. By (b)⋃k
i=1Ai ∼ B. Furthermore, by RD,

⋃n
i=1Ai �

⋃k
i=1Ai. A similar argument as

before shows that A ∼
⋃n
i=1Ai and B ∼

⋃k
i=1Bi. Hence by transitivity A � B.

F Proofs of Section 4

Proof of Proposition 5. (i) Denote u(σL) and v(σRR) the DM’s anticipated utility
from choosing respectively σL and σRR in the menu N :

u(σL) ≤ v(σRR) ⇐⇒ (1− p) + pλ− p(1− λ) ≤ p+ (1− p)δ

⇐⇒ p ≥ 1− δ
3− 2λ− δ

=
1/2

5/2− 2λ

We define p? := 1/2
5/2−2λ and verify that p? < 1/2:

p? < 1/2 ⇐⇒ λ <
3

4

which is true by assumption.
(ii). We first compute the value q? of the posterior such that for any q ≥ q?,

action r is preferred. q? solves (1− q)− q = q, hence q? = 1/3.
Then we simply compare the posterior obtained after the realisation of a

signal sr from the news source σRR with 1/3. The posterior is, p
p+(1−p)1/2 , which
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is greater or equal than p. We are in the case where p ≥ p?, hence it is sufficient
to show that p? ≥ 1/3: p? ≥ 1

3
⇐⇒ λ ≥ δ which is true by assumption.

Proof of Lemma 1. The maximand of the program (4) is strictly concave and the
set Kg is compact. Hence, C is well-defined (Weierstrass theorem) and is a
choice function.

Now let us build the reactance structure < T , F, u, v > that represents C.
Given (5), d? strictly increases with g if and only if g > ĝ. Let g(t, d) be the g
such that t+ gdβ = 1.

Let us introduce the three following sets:

D↑ =
⋃
t∈[0,1]
g>ĝ

{d ∈ [0, 1] : (t, d) = C(Kg)},

∀d ∈ D↑, T (d) =
⋃
t∈[0,1]

{(t, d)},

T0 =
⋃
d/∈D↑
t∈[0,1]

{(t, d)}.

From these sets we can define the set of types and the freedom set

T = {T0} ∪
⋃
d∈D↑
{T (d)} and F = T0 ∪

⋃
d∈D↑
{(t, d) ∈ T (d) : g(t, d) ≤ ĝ}

Now let us define u and v. For each (t, d) we posit u(t, d) = t + P (d)V̂ and
v(t, d) = t+ P (d)V

(
g(t, d)

)
.

Given the uniqueness of g(t, d) for each (t, d), v is well-defined. It can eas-
ily be shown that < T , F, u, v > is a reactance structure. Consider the choice
function C ′ which is the RCR defined on the compact subsets of [0, 1]2 and
represented by < T , F, u, v >. We claim that for all g, C(Kg) = C ′(Kg). To
check this claim let (t, d) and g such that (t, d) = C(Kg) and (t′, d′) such that
(t′, d′) = C ′(Kg). Note that (t, d) = C(Kg) implies g = g(t, d). Similarly,
(t′, d′) = C ′(Kg) implies that u(t′, d′) ≥ u(t′′, d′) for all t′′ such that (t′′, d′) ∈ Kg,
that is, for all t′′ ≤ t′. Hence, g = g(t′, d′).

Assume first that g ≤ ĝ. Then, note that (t′, d′) ∈ F . Suppose that there
exists (t′′, d′′) ∈ Kg \ F , this means that g(t′′, d′′) > ĝ, and hence there exists
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t′′′ > t′′, such that g(t′′′, d′′) = g, which implies (t′′′, d′′) ∈ Kg and u(t′′′, d′′) >

u(t′′, d′′). Therefore, only elements in F can be considered for choices in Kg

according to the choice procedure (1). Hence, both (t, d) and (t′, d′) are elements
of arg maxu(Kg). Because the latter is a singleton, (t, d) = (t′, d′).

Assume next that g(t, d) > ĝ. Suppose that (t′, d′) ∈ F , then this implies that
d′ /∈ D↑, that is d′ 6= d. Because, g(t, d) = g(t′, d′), this in turn implies that t′ 6= t.
Furthermore, by definition, (t, d) /∈ F , and from (t′, d′) = C ′(Kg), we deduce
that u(t′, d′) > v(t, d). We also know that v(t′, d′) ≥ u(t′, d′), so v(t′, d′) > v(t, d),
which contradicts that (t, d) = C(Kg). Therefore, (t′, d′) /∈ F . Because (t, d) /∈ F ,
(t′, d′) = C ′(Kg) and (t, d) = C(Kg) imply that v(t′, d′) ≥ v(t, d) = max v(Kg).
Therefore, (t′, d′) ∈ arg max v(Kg), and given that this set is a singleton, this
implies that (t′, d′) = (t, d).

Proof of Proposition 6. This is a straightforward consequence of (6).

Proof of Proposition 7. Action aL can only be implemented in the absence of both
aR and aLL. In any case, if aL is chosen in a menu M by the agent, it is chosen
in both states L and R, which gives the principal the expected payoff:

(15) (1− p)πL(aL) + pπR(aL).

Similarly, action aR can only be implemented in the absence of aRR, in which
case it is chosen in both statesL andR, giving the principal the expected payoff:

(16) (1− p)πL(aR) + pπR(aR).

From this we can deduce the existence of p? ∈ (0, 1) and p? ∈ (0, 1) such that:
for any p < p?, the principal strictly prefers a menu M (e.g. {aL}) such that
aθ(M) = aL for θ = L,R; for any p > p?, the principal strictly prefers a menu M
(e.g. {aR}) such that aθ(M) = aR for θ = L,R. Furthermore, there exists p̂, the
unique belief such that (15) = (16).

Only actions aLL and aRR can be simultaneously implemented respectively
in state L and R. Given that πL(aLL) > πL(aRR) and πR(aRR) > πR(aLL), the
principal will always prefer a menu implementing both actions (e.g. {aLL, aRR})
than a menu implementing only one of them. In this, the principal’s expected
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payoff is:

(17) (1− p)πL(aLL) + pπR(aRR).

Hence there exist p and p̄ such that: (15) ≥ (17) if and only if p ≤ p; and
(16) ≥ (17) if and only if p ≥ p̄.

The conclusions of the proposition follows easily from these observations.
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vain Economic Review, 56(3/4): 383–390.

Pattanaik, Prasanta K, and Yongsheng Xu. 1998. “On preference and free-
dom.” Theory and Decision, 44(2): 173–198.

52



Pattanaik, Prasanta K, and Yongsheng Xu. 2000. “On diversity and freedom of
choice.” Mathematical Social Sciences, 40(2): 123–130.

Reynolds-Tylus, Tobias. 2019. “Psychological Reactance and Persuasive
Health Communication: A Review of the Literature.” Frontiers in Commu-
nication, 4: 56.

Ridout, Sarah. 2021. “Choosing for the Right Reasons.” Unpublished manuscript.

Sen, Amartya. 1971. “Choice Functions and Revealed Preference.” Review of
Economic Studies, 38(July).

Sen, Amartya. 1988. “Freedom of Choice: Concept and Content.” European Eco-
nomic Review, 32.

Sen, Amartya. 1993. “Markets and Freedoms: Achievements and Limitations
of the Market Mechanism in Promoting Individual Freedoms.” Oxford Eco-
nomic Papers, 45(4): 519–541.

Sen, Amartya. 1994. “The formulation of rational choice.” The American Eco-
nomic Review, 84(2): 385–390.

Sen, Amartya. 1997. “Maximization and the Act of Choice.” Econometrica, 745–
779.

Sen, Amartya. 2002. Rationality and Freedom. Harvard University Press.

Sensenig, John, and Jack W Brehm. 1968. “Attitude change from an implied
threat to attitudinal freedom.” Journal of Personality and Social Psychology,
8(4p1): 324.

Wood, Thomas, and Ethan Porter. 2019. “The elusive backfire effect: Mass at-
titudes’ steadfast factual adherence.” Political Behavior, 41(1): 135–163.

53


	Reactance-Induced Choices
	Preliminaries
	Revealed Reactance
	Reactance Choice Properties

	Representation
	Reactance Choice Rule
	Uniqueness of Reactance Choice Rules
	Behavioral Properties of Reactance Choice Rules

	Ranking of Opportunity Sets
	Applications
	Conspiracy Theories
	Integration Policy Backlash
	Optimal Delegation and Reactance

	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 2
	Proofs of Section 4

