Reactance: a Freedom-Based Theory of Choice

Niels Boissonnet Bielefeld University **Alexis Ghersengorin** *Paris School of Economics*

ESEM-EEA Conference — August 2022

• In 1972, Miami-Dade county forbade phosphate detergent.

- In 1972, Miami-Dade county forbade phosphate detergent.
- This decision raised significant protests.

- In 1972, Miami-Dade county forbade phosphate detergent.
- This decision raised significant protests.
- Some people, that were not using phosphate detergent prior to the law, started buying it in a neighbouring county, stockpiling it and smuggling it at extra cost.

- In 1972, Miami-Dade county forbade phosphate detergent.
- This decision raised significant protests.
- Some people, that were not using phosphate detergent prior to the law, started buying it in a neighbouring county, stockpiling it and smuggling it at extra cost.
- \implies Typical **psychological reactance** (Brehm, 1966; Mazis et al., 1973)

- In 1972, Miami-Dade county forbade phosphate detergent.
- This decision raised significant protests.
- Some people, that were not using phosphate detergent prior to the law, started buying it in a neighbouring county, stockpiling it and smuggling it at extra cost.
- \implies Typical **psychological reactance** (Brehm, 1966; Mazis et al., 1973)
- Agents' propensity to reverse their choice as a reaction to a threat to their freedom.

• Revealed preference approach to reactance.

- Revealed preference approach to reactance.
- Primitives:
 - *X* a finite set of **options**.
 - $\mathcal{X} = 2^X \setminus \emptyset$ the collection of non-empty subsets of *X*, that is, the **menus**.
 - A **choice function** $c : \mathcal{X} \longrightarrow X$ associates to each menu the option chosen by the DM in this menu. Namely, for any menu $A, c(A) \in A$.

- Revealed preference approach to reactance.
- Primitives:
 - *X* a finite set of **options**.
 - $-\mathcal{X} = 2^X \setminus \emptyset$ the collection of non-empty subsets of *X*, that is, the **menus**.
 - A **choice function** $c : \mathcal{X} \longrightarrow X$ associates to each menu the option chosen by the DM in this menu. Namely, for any menu $A, c(A) \in A$.
- <u>Main contribution</u>: axiomatic characterization of reactance choices and a (unique) representation.

- Revealed preference approach to reactance.
- Primitives:
 - *X* a finite set of **options**.
 - $-\mathcal{X} = 2^X \setminus \emptyset$ the collection of non-empty subsets of *X*, that is, the **menus**.
 - A **choice function** $c : \mathcal{X} \longrightarrow X$ associates to each menu the option chosen by the DM in this menu. Namely, for any menu $A, c(A) \in A$.
- <u>Main contribution</u>: axiomatic characterization of reactance choices and a (unique) representation.
- Derive preferences over menus (not today).

- Revealed preference approach to reactance.
- Primitives:
 - *X* a finite set of **options**.
 - $\mathcal{X} = \mathbf{2}^X \setminus \emptyset$ the collection of non-empty subsets of *X*, that is, the **menus**.
 - A **choice function** $c : \mathcal{X} \longrightarrow X$ associates to each menu the option chosen by the DM in this menu. Namely, for any menu $A, c(A) \in A$.
- <u>Main contribution</u>: axiomatic characterization of reactance choices and a (unique) representation.
- Derive preferences over menus (not today).
- Three applications: formation of conspiracy theories (today), backlash of integration policies targeted towards minority, principal-agent's delegation problem (not today).

- *x* : a phosphate detergent in a neighbouring county.
- *y* : a phosphate detergent in Miami.
- *z* : a phosphate-free detergent in Miami.

- *x* : a phosphate detergent in a neighbouring county.
- *y* : a phosphate detergent in Miami.
- *z* : a phosphate-free detergent in Miami.

The following choice reversal happened:

- *x* : a phosphate detergent in a neighbouring county.
- *y* : a phosphate detergent in Miami.
- *z* : a phosphate-free detergent in Miami.

The following choice reversal happened:

• $z = c\{x, y, z\},$

- *x* : a phosphate detergent in a neighbouring county.
- *y* : a phosphate detergent in Miami.
- *z* : a phosphate-free detergent in Miami.

The following choice reversal happened:

• $z = c\{x, y, z\}, \{x, z\}.$

- *x* : a phosphate detergent in a neighbouring county.
- *y* : a phosphate detergent in Miami.
- *z* : a phosphate-free detergent in Miami.

The following choice reversal happened:

- $z = c\{x, y, z\},$
- but $x = c\{x, z\}$.

- *x* : a phosphate detergent in a neighbouring county.
- *y* : a phosphate detergent in Miami.
- *z* : a phosphate-free detergent in Miami.

The following choice reversal happened:

- $z = c\{x, y, z\},$
- but $x = c\{x, z\}$.

The **removal** of *y* entails **reactance** and the DM chooses *x* as a way to **restore** this threatened freedom.

1. Options are sorted by (revealed) types:

$$T^p = \{x, y\}$$
; $T^{pf} = \{z\}.$

1. Options are sorted by (revealed) types:

$$T^p = \{x, y\}$$
; $T^{pf} = \{z\}.$

2. The **freedom requirement set** gathers option that satisfy DM's freedom:

$$F = \{\mathbf{y}, \mathbf{z}\}.$$

1. Options are sorted by (revealed) types:

$$T^p = \{x, y\}$$
; $T^{pf} = \{z\}.$

2. The **freedom requirement set** gathers option that satisfy DM's freedom:

$$F=\{\mathbf{y},\mathbf{z}\}.$$

3. In a menu *A*, the DM first retains the best options from each type according to her welfare criterion u(u(y) > u(x)), forming the set d(A):

$$d\{x, y, z\} = \{y, z\}$$
; $d\{x, z\} = \{x, z\}.$

1. Options are sorted by (revealed) types:

$$T^p = \{x, y\}$$
; $T^{pf} = \{z\}.$

2. The freedom requirement set gathers option that satisfy DM's freedom:

$$F=\{\mathbf{y},\mathbf{z}\}.$$

3. In a menu *A*, the DM first retains the best options from each type according to her welfare criterion u(u(y) > u(x)), forming the set d(A):

$$d\{x, y, z\} = \{y, z\}$$
; $d\{x, z\} = \{x, z\}.$

4. Finally, the DM chooses in d(A) the best option according to her welfare u + a boost v, the **reactance function**, with $v(F) = \{o\}$ and u(y) < u(z) < u(x) + v(x), so that,

$$c\{x, y, z\} = z$$
; $c\{x, z\} = x$.

A choice function *c* is represented by a **reactance structure** < T, *F*, *u*, *v* > if:

A choice function *c* is represented by a **reactance structure** $\langle \mathcal{T}, F, u, v \rangle$ if: (i) \mathcal{T} is a partition of *X*;

A choice function *c* is represented by a **reactance structure** $\langle T, F, u, v \rangle$ if: (i) T is a partition of *X*;

(ii) for any menu A,

$$c(A) = \arg \max_{x \in d(A)} v(x) + u(x), \text{ where } d(A) = \bigcup_{T \in \mathcal{T}} \arg \max_{x \in T \cap A} u(x); \quad (1)$$

A choice function *c* is represented by a **reactance structure** $\langle T, F, u, v \rangle$ if: (i) T is a partition of *X*;

(ii) for any menu A,

$$c(A) = \arg \max_{x \in d(A)} v(x) + u(x), \text{ where } d(A) = \bigcup_{T \in \mathcal{T}} \arg \max_{x \in T \cap A} u(x); \quad (1)$$

(iii) for any $T \in \mathcal{T}$ and any $x, y \in T$, if $x \in F$ and u(x) < u(y), then $y \in F$;

A choice function *c* is represented by a **reactance structure** $\langle T, F, u, v \rangle$ if: (i) T is a partition of *X*;

(ii) for any menu A,

$$c(A) = \arg \max_{x \in d(A)} v(x) + u(x), \text{ where } d(A) = \bigcup_{T \in \mathcal{T}} \arg \max_{x \in T \cap A} u(x); \quad (1)$$

(iii) for any $T \in \mathcal{T}$ and any $x, y \in T$, if $x \in F$ and u(x) < u(y), then $y \in F$; (iv) v(x) > 0 for all $x \notin F$ and v(x) = 0 for all $x \in F$;

A choice function *c* is represented by a **reactance structure** $\langle T, F, u, v \rangle$ if: (i) T is a partition of *X*;

(ii) for any menu A,

$$c(A) = \arg \max_{x \in d(A)} v(x) + u(x), \text{ where } d(A) = \bigcup_{T \in \mathcal{T}} \arg \max_{x \in T \cap A} u(x); \quad (1)$$

(iii) for any $T \in \mathcal{T}$ and any $x, y \in T$, if $x \in F$ and u(x) < u(y), then $y \in F$; (iv) v(x) > 0 for all $x \notin F$ and v(x) = 0 for all $x \in F$; (v) for any $T \in \mathcal{T}$, $(u + v) \circ u^{-1}$ is single-peaked on $u(T \setminus F)$.

Types and Freedom Requirement Set

Back

Types and Freedom Requirement Set

Types and Freedom Requirement Set

и

Types and Freedom Requirement Set

Back

Reactance and Utility Functions in One Type.

EXPANSION. For any $x \in X$, $A, B \in \mathcal{X}$, if x = c(A) = c(B), then $x = c(A \cup B)$.

EXPANSION. For any $x \in X$, $A, B \in \mathcal{X}$, if x = c(A) = c(B), then $x = c(A \cup B)$.

Definition. *x* reacts to the absence of *y* if there exists *z* such that, $z = c\{x, y, z\}$, and $x = c\{x, z\}$. We then write $x\mathbf{R}^{c}y$.

EXPANSION. For any $x \in X$, $A, B \in \mathcal{X}$, if x = c(A) = c(B), then $x = c(A \cup B)$.

Definition. *x* reacts to the absence of *y* if there exists *z* such that, $z = c\{x, y, z\}$, and $x = c\{x, z\}$. We then write $x\mathbf{R}^{c}y$.

• Note that if Expansion is satisfied, then *x***R**^{*c*}*y* implies:

EXPANSION. For any $x \in X$, $A, B \in \mathcal{X}$, if x = c(A) = c(B), then $x = c(A \cup B)$.

Definition. *x* reacts to the absence of *y* if there exists *z* such that, $z = c\{x, y, z\}$, and $x = c\{x, z\}$. We then write $x\mathbf{R}^{c}y$.

Note that if Expansion is satisfied, then *x***R**^c*y* implies:
1. *y* = *c*{*x*, *y*}

EXPANSION. For any $x \in X$, $A, B \in \mathcal{X}$, if x = c(A) = c(B), then $x = c(A \cup B)$.

Definition. *x* reacts to the absence of *y* if there exists *z* such that, $z = c\{x, y, z\}$, and $x = c\{x, z\}$. We then write $x\mathbf{R}^{c}y$.

Note that if Expansion is satisfied, then *x***R**^c*y* implies:
1. *y* = *c*{*x*, *y*}
2. *z* = *c*{*y*, *z*}

EXPANSION. For any $x \in X$, $A, B \in \mathcal{X}$, if x = c(A) = c(B), then $x = c(A \cup B)$.

Definition. *x* reacts to the absence of *y* if there exists *z* such that, $z = c\{x, y, z\}$, and $x = c\{x, z\}$. We then write $x\mathbf{R}^{c}y$.

- Note that if Expansion is satisfied, then *x***R**^c*y* implies:
 1. *y* = *c*{*x*, *y*}
 2. *z* = *c*{*y*, *z*}
- In some cases, we might suspect $x \mathbf{R}^c y$, although no third option z allows for revealing a reversal as stated by definition.

EXPANSION. For any $x \in X$, $A, B \in \mathcal{X}$, if x = c(A) = c(B), then $x = c(A \cup B)$.

Definition. *x* reacts to the absence of *y* if there exists *z* such that, $z = c\{x, y, z\}$, and $x = c\{x, z\}$. We then write $x\mathbf{R}^{c}y$.

- Note that if Expansion is satisfied, then *x***R**^c*y* implies:
 1. *y* = *c*{*x*, *y*}
 2. *z* = *c*{*y*, *z*}
- In some cases, we might suspect $x \mathbf{R}^c y$, although no third option z allows for revealing a reversal as stated by definition.
 - \implies we write $x \mathbf{P}^c y$ for x potentially reacts to the absence of y.

In addition to **Expansion**, we use three axioms, all structuring \mathbf{R}^{c} and \mathbf{P}^{c} .

- Transitivity of **R**^{*c*}, non-**R**^{*c*}, and non-**P**^{*c*}. (**Reactance Transitivity**)
- A form a consistency over the options for which no *reactance-driven choice* is observed (which are revealed to be in the freedom requirement set). (**Reactance Consistency**)
- A form of consistency over the options which reacts to common options. (Reactance Monotonicity)

Reactance Transitivity.

For any $x, y, z \in X$, (*i*) if $x\mathbf{R}^c y$ and $y\mathbf{R}^c z$, then $x\mathbf{R}^c z$, (*ii*) let $y = c\{x, y\}$, $z = c\{y, z\} = c\{x, z\}$: if $\neg [x\mathbf{R}^c y]$ and $\neg [y\mathbf{R}^c z]$, then $\neg [x\mathbf{R}^c z]$; if $\neg [x\mathbf{P}^c y]$ and $\neg [y\mathbf{P}^c z]$, then $\neg [x\mathbf{P}^c z]$.

Reactance Consistency.

For any $x, y, z \in X$, if $z = c\{y, z\}$, there exists no t such that $y\mathbf{R}^{c}t$ or $z\mathbf{R}^{c}t$, and $x\mathbf{R}^{c}y, x\mathbf{R}^{c}z$, then for any $u \in X$: (*i*) $u\mathbf{R}^{c}z \implies u\mathbf{R}^{c}y$; (*ii*) $u\mathbf{R}^{c}y \implies z = c\{u, z\}$.

Reactance Monotonicity.

For any $x, y, z \in X$, such that $z = c\{y, z\}, y = c\{x, y\}$: (*i*) if $x\mathbf{R}^{c}t$ and $z\mathbf{R}^{c}t$ for some $t \in X$, then $[x\mathbf{R}^{c}y \implies y\mathbf{P}^{c}z]$; (*ii*) if $x\mathbf{P}^{c}z$, then $[x\mathbf{P}^{c}y \implies y\mathbf{P}^{c}z]$.

Main Results

Theorem 1

c satisfies Expansion, Reactance-Transitivity, Reactance-Consistency and Reactance-Monotonicity if and only if there exist a reactance < T, F, u, v > that represents *c*.

Main Results

Theorem 1

c satisfies Expansion, Reactance-Transitivity, Reactance-Consistency and Reactance-Monotonicity if and only if there exist a reactance < T, F, u, v > that represents *c*.

Proposition 2

If c is represented by $\langle T, F, u, v \rangle$ and $\langle T', F', u', v' \rangle$, then: **1.** T = T';

2. there exist u'', v'' such that $\langle \mathcal{T}, F \cup F', u'', v'' \rangle$ represents *c*.

Reactance in the Representation

Proposition 3

Let c be an RCR represented by the reactance structure $S = \langle T, F, u, v \rangle$ *. For any* $x, y \in X$ *:*

(*i*) if $x \mathbb{R}^{c} y$, then there exists $T \in \mathcal{T}$ such that $x, y \in T$, $x \notin F$, u(x) < u(y) and u(x) + v(x) > u(y) + v(y);

Reactance in the Representation

Proposition 3

Let *c* be an RCR represented by the reactance structure $S = \langle T, F, u, v \rangle$. For any $x, y \in X$:

- (*i*) if $x\mathbf{R}^{\mathbf{c}}y$, then there exists $T \in \mathcal{T}$ such that $x, y \in T$, $x \notin F$, u(x) < u(y) and u(x) + v(x) > u(y) + v(y);
- (*ii*) if S is maximal and there exists $T \in T$ such that $x, y \in T \setminus F$, u(x) < u(y)and u(x) + v(x) > u(y) + v(y), then $x\mathbf{P}^{c}y$.

Curves

The boomerang effect

- Reactance has its counterpart in the realm of beliefs:
 - boomerang/backfire effect.

The boomerang effect

- Reactance has its counterpart in the realm of beliefs:
 - boomerang/backfire effect.
- We show how our model can accomodate this, with a model of allocation of attention between biased sources of information with a reactance phenomenon (adapted from Che and Mierendorff, 2019)

The model

- 2 states of the world: *L* or *R*
- 2 actions: *l* or *r*
- Payoffs : $u_r^R = u_l^L = 1$, $u_l^R = u_r^L = -1$.
- $p \in (0, 1/2]$: prior belief that the state is *R*.

The boomerang effect

- Reactance has its counterpart in the realm of beliefs:
 - boomerang/backfire effect.
- We show how our model can accomodate this, with a model of allocation of attention between biased sources of information with a reactance phenomenon (adapted from Che and Mierendorff, 2019)

The model

- 2 states of the world: *L* or *R*
- 2 actions: *l* or *r*
- Payoffs : $u_r^R = u_l^L = 1$, $u_l^R = u_r^L = -1$.
- $p \in (0, 1/2]$: prior belief that the state is *R*.
- Before choosing his action, the DM acquires information by allocating his attention across 4 biased sources of information (e.g newspapers).

- The sources are represented by statistical experiments.
 - The L-biased ones, denoted σ^{LL} and σ^{L} .
 - The R-biased ones, denoted σ^{RR} and σ^{R} .

- The sources are represented by statistical experiments.
 - The L-biased ones, denoted σ^{LL} and σ^{L} .
 - The R-biased ones, denoted σ^{RR} and σ^{R} .
- For $i = L, R, \sigma^i$ is strictly more Blackwell informative than σ^{ii} .

- The sources are represented by statistical experiments.
 - The L-biased ones, denoted σ^{LL} and σ^{L} .
 - The R-biased ones, denoted σ^{RR} and σ^{R} .
- For $i = L, R, \sigma^i$ is strictly more Blackwell informative than σ^{ii} .

Table: Experiments induced by the moderate sources.

- The sources are represented by statistical experiments.
 - The L-biased ones, denoted σ^{LL} and σ^{L} .
 - The R-biased ones, denoted σ^{RR} and σ^{R} .
- For $i = L, R, \sigma^i$ is strictly more Blackwell informative than σ^{ii} .

Table: Experiments induced by the moderate sources.

• { σ^{LL} , σ^{L} } and { σ^{RR} , σ^{R} } each represents a **type**.

- The sources are represented by statistical experiments.
 - The L-biased ones, denoted σ^{LL} and σ^{L} .
 - The R-biased ones, denoted σ^{RR} and σ^{R} .
- For $i = L, R, \sigma^i$ is strictly more Blackwell informative than σ^{ii} .

Table: Experiments induced by the moderate sources.

- { σ^{LL} , σ^{L} } and { σ^{RR} , σ^{R} } each represents a **type**.
- The DM's demands of freedom are satisfied when the moderate sources are available, that is, his freedom requirement set is F = {σ^L, σ^R}.

• Initially the DM faces the complete menu $M = \{\sigma^{LL}, \sigma^{L}, \sigma^{R}, \sigma^{RR}\}.$

- Initially the DM faces the complete menu $M = \{\sigma^{LL}, \sigma^{L}, \sigma^{R}, \sigma^{RR}\}$.
- The DM will never choose any of the extreme sources when his opportunity set is *M*, that is: *d*(*M*) = {σ^L, σ^R}.

- Initially the DM faces the complete menu $M = \{\sigma^{LL}, \sigma^{L}, \sigma^{R}, \sigma^{RR}\}.$
- The DM will never choose any of the extreme sources when his opportunity set is *M*, that is: *d*(*M*) = {σ^L, σ^R}.
- Given the payoff, the DM will prefer action r if and only if his posterior belief is greater than 1/2.

- Initially the DM faces the complete menu $M = \{\sigma^{LL}, \sigma^{L}, \sigma^{R}, \sigma^{RR}\}.$
- The DM will never choose any of the extreme sources when his opportunity set is *M*, that is: *d*(*M*) = {σ^L, σ^R}.
- Given the payoff, the DM will prefer action r if and only if his posterior belief is greater than 1/2.

Observation 1 (See Che and Mierendorff, 2019) *The DM chooses* σ^{L} *in menu M.* • Suppose the moderate R-biased source σ^R is made unavailable.

- Suppose the moderate R-biased source σ^{R} is made unavailable.
- The DM now faces the menu $N = \{\sigma^{LL}, \sigma^{L}, \sigma^{RR}\}.$

- Suppose the moderate R-biased source σ^{R} is made unavailable.
- The DM now faces the menu $N = \{\sigma^{LL}, \sigma^{L}, \sigma^{RR}\}.$
- He interprets this removal as revealing that the disutility from making a mistake in state *L*—i.e choosing action *r*—is lower than expected, so: u_r^L + v_r^L = o.

- Suppose the moderate R-biased source σ^{R} is made unavailable.
- The DM now faces the menu $N = \{\sigma^{LL}, \sigma^{L}, \sigma^{RR}\}.$
- He interprets this removal as revealing that the disutility from making a mistake in state *L*—i.e choosing action *r*—is lower than expected, so: u_r^L + v_r^L = o.
- Now $d(N) = \{\sigma^L, \sigma^{RR}\}.$

- Suppose the moderate R-biased source σ^{R} is made unavailable.
- The DM now faces the menu $N = \{\sigma^{LL}, \sigma^{L}, \sigma^{RR}\}.$
- He interprets this removal as revealing that the disutility from making a mistake in state *L*—i.e choosing action *r*—is lower than expected, so: u_r^L + v_r^L = o.
- Now $d(N) = \{\sigma^L, \sigma^{RR}\}.$

Proposition 4

There exists $p^* < 1/2$ such that if $p \in [p^*, 1/2]$: (*i*) The DM prefers σ^{RR} to σ^L in menu N; (*ii*) After a realisation of signal s^R from σ^{RR} , the DM chooses action r.

Thank You!