Reactance: a Freedom-Based Theory of Choice

Niels Boissonnet
Bielefeld University

Alexis Ghersengorin
Paris School of Economics

Phosphate Detergent Prohibition in Miami

- In 1972, Miami-Dade county forbade phosphate detergent.

Phosphate Detergent Prohibition in Miami

- In 1972, Miami-Dade county forbade phosphate detergent.
- This decision raised significant protests.

Phosphate Detergent Prohibition in Miami

- In 1972, Miami-Dade county forbade phosphate detergent.
- This decision raised significant protests.
- Some people, that were not using phosphate detergent prior to the law, started buying it in a neighbouring county, stockpiling it and smuggling it at extra cost.

Phosphate Detergent Prohibition in Miami

- In 1972, Miami-Dade county forbade phosphate detergent.
- This decision raised significant protests.
- Some people, that were not using phosphate detergent prior to the law, started buying it in a neighbouring county, stockpiling it and smuggling it at extra cost.
\Longrightarrow Typical psychological reactance (Brehm, 1966; Mazis et al., 1973)

Phosphate Detergent Prohibition in Miami

- In 1972, Miami-Dade county forbade phosphate detergent.
- This decision raised significant protests.
- Some people, that were not using phosphate detergent prior to the law, started buying it in a neighbouring county, stockpiling it and smuggling it at extra cost.
\Longrightarrow Typical psychological reactance (Brehm, 1966; Mazis et al., 1973)
- Agents' propensity to reverse their choice as a reaction to a threat to their freedom.

This Paper

- Revealed preference approach to reactance.

This Paper

- Revealed preference approach to reactance.
- Primitives:
- X a finite set of options.
- $\mathcal{X}=2^{X} \backslash \varnothing$ the collection of non-empty subsets of X, that is, the menus.
- A choice function $c: \mathcal{X} \longrightarrow X$ associates to each menu the option chosen by the DM in this menu. Namely, for any menu $A, c(A) \in A$.

This Paper

- Revealed preference approach to reactance.
- Primitives:
- X a finite set of options.
$-\mathcal{X}=2^{X} \backslash \varnothing$ the collection of non-empty subsets of X, that is, the menus.
- A choice function $c: \mathcal{X} \longrightarrow X$ associates to each menu the option chosen by the DM in this menu. Namely, for any menu $A, c(A) \in A$.
- Main contribution: axiomatic characterization of reactance choices and a (unique) representation.

This Paper

- Revealed preference approach to reactance.
- Primitives:
- X a finite set of options.
$-\mathcal{X}=2^{X} \backslash \varnothing$ the collection of non-empty subsets of X, that is, the menus.
- A choice function $c: \mathcal{X} \longrightarrow X$ associates to each menu the option chosen by the DM in this menu. Namely, for any menu $A, c(A) \in A$.
- Main contribution: axiomatic characterization of reactance choices and a (unique) representation.
- Derive preferences over menus (not today).

This Paper

- Revealed preference approach to reactance.
- Primitives:
$-X$ a finite set of options.
- $\mathcal{X}=2^{X} \backslash \varnothing$ the collection of non-empty subsets of X, that is, the menus.
- A choice function $c: \mathcal{X} \longrightarrow X$ associates to each menu the option chosen by the DM in this menu. Namely, for any menu $A, c(A) \in A$.
- Main contribution: axiomatic characterization of reactance choices and a (unique) representation.
- Derive preferences over menus (not today).
- Three applications: formation of conspiracy theories (today), backlash of integration policies targeted towards minority, principal-agent's delegation problem (not today).

Phosphate Detergent again

- x : a phosphate detergent in a neighbouring county.
- y : a phosphate detergent in Miami.
- z : a phosphate-free detergent in Miami.

Phosphate Detergent again

- x : a phosphate detergent in a neighbouring county.
- y : a phosphate detergent in Miami.
- z : a phosphate-free detergent in Miami.

The following choice reversal happened:

Phosphate Detergent again

- x : a phosphate detergent in a neighbouring county.
- y : a phosphate detergent in Miami.
- z : a phosphate-free detergent in Miami.

The following choice reversal happened:

- $z=c\{x, y, z\}$,

Phosphate Detergent again

- x : a phosphate detergent in a neighbouring county.
- y : a phosphate detergent in Miami.
- z : a phosphate-free detergent in Miami.

The following choice reversal happened:

- $z=c\{x, y, z\}$,

$$
\{x, z\} .
$$

Phosphate Detergent again

- x : a phosphate detergent in a neighbouring county.
- y : a phosphate detergent in Miami.
- z : a phosphate-free detergent in Miami.

The following choice reversal happened:

- $z=c\{x, y, z\}$,
- but $x=c\{x, z\}$.

Phosphate Detergent again

- x : a phosphate detergent in a neighbouring county.
- y: a phosphate detergent in Miami.
- z : a phosphate-free detergent in Miami.

The following choice reversal happened:

- $z=c\{x, y, z\}$,
- but $x=c\{x, z\}$.

The removal of y entails reactance and the DM chooses x as a way to restore this threatened freedom.

The Representation

1. Options are sorted by (revealed) types:

$$
T^{p}=\{x, y\} \quad ; \quad T^{p f}=\{z\} .
$$

The Representation

1. Options are sorted by (revealed) types:

$$
T^{p}=\{x, y\} \quad ; \quad T^{p f}=\{z\}
$$

2. The freedom requirement set gathers option that satisfy DM's freedom:

$$
F=\{y, z\}
$$

The Representation

1. Options are sorted by (revealed) types:

$$
T^{p}=\{x, y\} \quad ; \quad T^{p f}=\{z\}
$$

2. The freedom requirement set gathers option that satisfy DM's freedom:

$$
F=\{y, z\} .
$$

3. In a menu A, the DM first retains the best options from each type according to her welfare criterion $u(u(y)>u(x))$, forming the set $d(A)$:

$$
d\{x, y, z\}=\{y, z\} \quad ; \quad d\{x, z\}=\{x, z\}
$$

The Representation

1. Options are sorted by (revealed) types:

$$
T^{p}=\{x, y\} \quad ; \quad T^{p f}=\{z\}
$$

2. The freedom requirement set gathers option that satisfy DM's freedom:

$$
F=\{y, z\} .
$$

3. In a menu A, the DM first retains the best options from each type according to her welfare criterion $u(u(y)>u(x))$, forming the set $d(A)$:

$$
d\{x, y, z\}=\{y, z\} \quad ; \quad d\{x, z\}=\{x, z\}
$$

4. Finally, the DM chooses in $d(A)$ the best option according to her welfare $u+$ a boost v, the reactance function, with $v(F)=\{0\}$ and $u(y)<u(z)<$ $u(x)+v(x)$, so that,

$$
c\{x, y, z\}=z \quad ; \quad c\{x, z\}=x
$$

The Representation - Definition

A choice function c is represented by a reactance structure $\langle\mathcal{T}, F, u, v\rangle$ if:

The Representation - Definition

A choice function c is represented by a reactance structure $\langle\mathcal{T}, F, u, v\rangle$ if:
(i) \mathcal{T} is a partition of X;

The Representation - Definition

A choice function c is represented by a reactance structure $\langle\mathcal{T}, F, u, v\rangle$ if:
(i) \mathcal{T} is a partition of X;
(ii) for any menu A,

$$
\begin{equation*}
c(A)=\arg \max _{x \in d(A)} v(x)+u(x), \text { where } d(A)=\bigcup_{T \in \mathcal{T}} \arg \max _{x \in T \cap A} u(x) ; \tag{1}
\end{equation*}
$$

The Representation - Definition

A choice function c is represented by a reactance structure $\langle\mathcal{T}, F, u, v\rangle$ if:
(i) \mathcal{T} is a partition of X;
(ii) for any menu A,

$$
\begin{equation*}
c(A)=\arg \max _{x \in d(A)} v(x)+u(x), \text { where } d(A)=\bigcup_{T \in \mathcal{T}} \arg \max _{x \in T \cap A} u(x) ; \tag{1}
\end{equation*}
$$

(iii) for any $T \in \mathcal{T}$ and any $x, y \in T$, if $x \in F$ and $u(x)<u(y)$, then $y \in F$;

The Representation - Definition

A choice function c is represented by a reactance structure $\langle\mathcal{T}, F, u, v\rangle$ if:
(i) \mathcal{T} is a partition of X;
(ii) for any menu A,

$$
\begin{equation*}
c(A)=\arg \max _{x \in d(A)} v(x)+u(x), \text { where } d(A)=\bigcup_{T \in \mathcal{T}} \arg \max _{x \in T \cap A} u(x) ; \tag{1}
\end{equation*}
$$

(iii) for any $T \in \mathcal{T}$ and any $x, y \in T$, if $x \in F$ and $u(x)<u(y)$, then $y \in F$;
(iv) $v(x)>\mathrm{o}$ for all $x \notin F$ and $v(x)=\mathrm{o}$ for all $x \in F$;

The Representation - Definition

A choice function c is represented by a reactance structure $\langle\mathcal{T}, F, u, v\rangle$ if:
(i) \mathcal{T} is a partition of X;
(ii) for any menu A,

$$
\begin{equation*}
c(A)=\arg \max _{x \in d(A)} v(x)+u(x), \text { where } d(A)=\bigcup_{T \in \mathcal{T}} \arg \max _{x \in T \cap A} u(x) ; \tag{1}
\end{equation*}
$$

(iii) for any $T \in \mathcal{T}$ and any $x, y \in T$, if $x \in F$ and $u(x)<u(y)$, then $y \in F$;
(iv) $v(x)>o$ for all $x \notin F$ and $v(x)=0$ for all $x \in F$;
(V) for any $T \in \mathcal{T},(u+v) \circ u^{-1}$ is single-peaked on $u(T \backslash F)$.

Types and Freedom Requirement Set

Reactance and Utility Functions in One Type.

Expansion \& Revealed Reactance
Expansion. For any $x \in X, A, B \in \mathcal{X}$, if $x=c(A)=c(B)$, then $x=c(A \cup B)$.

Expansion \& Revealed Reactance

Expansion. For any $x \in X, A, B \in \mathcal{X}$, if $x=c(A)=c(B)$, then $x=c(A \cup B)$.

Definition. x reacts to the absence of y if there exists z such that, $z=$ $c\{x, y, z\}$, and $x=c\{x, z\}$. We then write $x \mathbf{R}^{c} y$.

Expansion \& Revealed Reactance

Expansion. For any $x \in X, A, B \in \mathcal{X}$, if $x=c(A)=c(B)$, then $x=c(A \cup B)$.

Definition. x reacts to the absence of y if there exists z such that, $z=$ $c\{x, y, z\}$, and $x=c\{x, z\}$. We then write $x \mathbf{R}^{c} y$.

- Note that if Expansion is satisfied, then $x \mathbf{R}^{c} y$ implies:

Expansion \& Revealed Reactance

Expansion. For any $x \in X, A, B \in \mathcal{X}$, if $x=c(A)=c(B)$, then $x=c(A \cup B)$.

Definition. x reacts to the absence of y if there exists z such that, $z=$ $c\{x, y, z\}$, and $x=c\{x, z\}$. We then write $x \mathbf{R}^{c} y$.

- Note that if Expansion is satisfied, then $x \mathbf{R}^{c} y$ implies:

1. $y=c\{x, y\}$

Expansion \& Revealed Reactance

Expansion. For any $x \in X, A, B \in \mathcal{X}$, if $x=c(A)=c(B)$, then $x=c(A \cup B)$.

Definition. x reacts to the absence of y if there exists z such that, $z=$ $c\{x, y, z\}$, and $x=c\{x, z\}$. We then write $x \mathbf{R}^{c} y$.

- Note that if Expansion is satisfied, then $x \mathbf{R}^{c} y$ implies:

1. $y=c\{x, y\}$

Expansion \& Revealed Reactance

Expansion. For any $x \in X, A, B \in \mathcal{X}$, if $x=c(A)=c(B)$, then $x=c(A \cup B)$.

Definition. x reacts to the absence of y if there exists z such that, $z=$ $c\{x, y, z\}$, and $x=c\{x, z\}$. We then write $x \mathbf{R}^{c} y$.

- Note that if Expansion is satisfied, then $x \mathbf{R}^{c} y$ implies:

1. $y=c\{x, y\}$

- In some cases, we might suspect $x \mathbf{R}^{c} y$, although no third option z allows for revealing a reversal as stated by definition.

Expansion \& Revealed Reactance

Expansion. For any $x \in X, A, B \in \mathcal{X}$, if $x=c(A)=c(B)$, then $x=c(A \cup B)$.

Definition. x reacts to the absence of y if there exists z such that, $z=$ $c\{x, y, z\}$, and $x=c\{x, z\}$. We then write $x \mathbf{R}^{c} y$.

- Note that if Expansion is satisfied, then $x \mathbf{R}^{c} y$ implies:

1. $y=c\{x, y\}$
2. $z=c\{y, z\}$

- In some cases, we might suspect $x \mathbf{R}^{c} y$, although no third option z allows for revealing a reversal as stated by definition.
\Longrightarrow we write $x \mathbf{P}^{c} y$ for x potentially reacts to the absence of y.

Characterization

In addition to Expansion, we use three axioms, all structuring \mathbf{R}^{c} and \mathbf{P}^{c}.

- Transitivity of \mathbf{R}^{c}, non- \mathbf{R}^{c}, and non- \mathbf{P}^{c}. (Reactance Transitivity)
- A form a consistency over the options for which no reactance-driven choice is observed (which are revealed to be in the freedom requirement set). (Reactance Consistency)
- A form of consistency over the options which reacts to common options. (Reactance Monotonicity)

Reactance Transitivity.

For any $x, y, z \in X$, (i) if $x \mathbf{R}^{c} y$ and $y \mathbf{R}^{c} z$, then $x \mathbf{R}^{c} z$, (ii) let $y=c\{x, y\}$, $z=c\{y, z\}=c\{x, z\}$: if $\neg\left[x \mathbf{R}^{c} y\right]$ and $\neg\left[y \mathbf{R}^{c} z\right]$, then $\neg\left[x \mathbf{R}^{c} z\right]$; if $\neg\left[x \mathbf{P}^{c} y\right]$ and $\neg\left[y \mathbf{P}^{c} z\right]$, then $\neg\left[x \mathbf{P}^{c} z\right]$.

Reactance Consistency.

For any $x, y, z \in X$, if $z=c\{y, z\}$, there exists no t such that $y \mathbf{R}^{c} t$ or $z \mathbf{R}^{c} t$, and $x \mathbf{R}^{c} y, x \mathbf{R}^{c} z$, then for any $u \in X$: (i) $u \mathbf{R}^{c} z \Longrightarrow u \mathbf{R}^{c} y$; (ii) $u \mathbf{R}^{c} y \Longrightarrow z=$ $c\{u, z\}$.

Reactance Monotonicity.

For any $x, y, z \in X$, such that $z=c\{y, z\}, y=c\{x, y\}:(i)$ if $x \mathbf{R}^{c} t$ and $z \mathbf{R}^{c} t$ for some $t \in X$, then $\left[x \mathbf{R}^{c} y \Longrightarrow y \mathbf{P}^{c} z\right]$; (ii) if $x \mathbf{P}^{c} z$, then $\left[x \mathbf{P}^{c} y \Longrightarrow y \mathbf{P}^{c} z\right]$.

Main Results

Theorem I
c satisfies Expansion, Reactance-Transitivity, Reactance-Consistency and Reactance-Monotonicity if and only if there exist a reactance $<\mathcal{T}, F, u, v>$ that represents c.

Main Results

Theorem I

c satisfies Expansion, Reactance-Transitivity, Reactance-Consistency and Reactance-Monotonicity if and only if there exist a reactance $<\mathcal{T}, F, u, v>$ that represents c.

Proposition 2

If c is represented by $\langle\mathcal{T}, F, u, v\rangle$ and $\left\langle\mathcal{T}^{\prime}, F^{\prime}, u^{\prime}, v^{\prime}\right\rangle$, then:

1. $\mathcal{T}=\mathcal{T}^{\prime}$;
2. there exist $u^{\prime \prime}, v^{\prime \prime}$ such that $<\mathcal{T}, F \cup F^{\prime}, u^{\prime \prime}, v^{\prime \prime}>$ represents c.

Reactance in the Representation

Proposition 3

Let c be an RCR represented by the reactance structure $\mathcal{S}=<\mathcal{T}, F, u, v\rangle$. For any $x, y \in X$:
(i) if $x \mathbf{R}^{\mathbf{c}} y$, then there exists $T \in \mathcal{T}$ such that $x, y \in T, x \notin F, u(x)<u(y)$ and $u(x)+v(x)>u(y)+v(y) ;$

Reactance in the Representation

Proposition 3

Let c be an RCR represented by the reactance structure $\mathcal{S}=\langle\mathcal{T}, F, u, v\rangle$. For any $x, y \in X$:
(i) if $x \mathbf{R}^{\mathbf{c}} y$, then there exists $T \in \mathcal{T}$ such that $x, y \in T, x \notin F, u(x)<u(y)$ and $u(x)+v(x)>u(y)+v(y) ;$
(ii) if \mathcal{S} is maximal and there exists $T \in \mathcal{T}$ such that $x, y \in T \backslash F, u(x)<u(y)$ and $u(x)+v(x)>u(y)+v(y)$, then $x \mathbf{P}^{c} y$.

The boomerang effect

- Reactance has its counterpart in the realm of beliefs:
- boomerang/backfire effect.

The boomerang effect

- Reactance has its counterpart in the realm of beliefs:
- boomerang/backfire effect.
- We show how our model can accomodate this, with a model of allocation of attention between biased sources of information with a reactance phenomenon (adapted from Che and Mierendorff, 2019)

The model

- 2 states of the world: L or R
- 2 actions: l or r
- Payoffs : $u_{r}^{R}=u_{l}^{L}=1, u_{l}^{R}=u_{r}^{L}=-1$.
- $p \in(0,1 / 2]$: prior belief that the state is R.

The boomerang effect

- Reactance has its counterpart in the realm of beliefs:
- boomerang/backfire effect.
- We show how our model can accomodate this, with a model of allocation of attention between biased sources of information with a reactance phenomenon (adapted from Che and Mierendorff, 2019)

The model

- 2 states of the world: L or R
- 2 actions: l or r
- Payoffs : $u_{r}^{R}=u_{l}^{L}=1, u_{l}^{R}=u_{r}^{L}=-1$.
- $p \in(0,1 / 2]$: prior belief that the state is R.
- Before choosing his action, the DM acquires information by allocating his attention across 4 biased sources of information (e.g newspapers).
- The sources are represented by statistical experiments.
- The L-biased ones, denoted $\sigma^{L L}$ and σ^{L}.
- The R-biased ones, denoted $\sigma^{R R}$ and σ^{R}.
- The sources are represented by statistical experiments.
- The L-biased ones, denoted $\sigma^{L L}$ and σ^{L}.
- The R-biased ones, denoted $\sigma^{R R}$ and σ^{R}.
- For $i=L, R, \sigma^{i}$ is strictly more Blackwell informative than $\sigma^{i i}$.
- The sources are represented by statistical experiments.
- The L-biased ones, denoted $\sigma^{L L}$ and σ^{L}.
- The R-biased ones, denoted $\sigma^{R R}$ and σ^{R}.
- For $i=L, R, \sigma^{i}$ is strictly more Blackwell informative than $\sigma^{i i}$.

σ^{L}		
State/signal	s^{L}	s^{R}
L	1	0
R	$1-\lambda$	λ

σ^{R}		
State/signal	s^{L}	s^{R}
L	λ	$1-\lambda$
R	0	1

Table: Experiments induced by the moderate sources.

- The sources are represented by statistical experiments.
- The L-biased ones, denoted $\sigma^{L L}$ and σ^{L}.
- The R-biased ones, denoted $\sigma^{R R}$ and σ^{R}.
- For $i=L, R, \sigma^{i}$ is strictly more Blackwell informative than $\sigma^{i i}$.

σ^{L}		
State/signal	s^{L}	s^{R}
L	1	0
R	$1-\lambda$	λ

σ^{R}		
State/signal	s^{L}	s^{R}
L	λ	$1-\lambda$
R	0	1

Table: Experiments induced by the moderate sources.

- $\left\{\sigma^{L L}, \sigma^{L}\right\}$ and $\left\{\sigma^{R R}, \sigma^{R}\right\}$ each represents a type.
- The sources are represented by statistical experiments.
- The L-biased ones, denoted $\sigma^{L L}$ and σ^{L}.
- The R-biased ones, denoted $\sigma^{R R}$ and σ^{R}.
- For $i=L, R, \sigma^{i}$ is strictly more Blackwell informative than $\sigma^{i i}$.

σ^{L}		
State/signal	s^{L}	s^{R}
L	1	0
R	$1-\lambda$	λ

σ^{R}		
State/signal	s^{L}	s^{R}
L	λ	$1-\lambda$
R	0	1

Table: Experiments induced by the moderate sources.

- $\left\{\sigma^{L L}, \sigma^{L}\right\}$ and $\left\{\sigma^{R R}, \sigma^{R}\right\}$ each represents a type.
- The DM's demands of freedom are satisfied when the moderate sources are available, that is, his freedom requirement set is $F=\left\{\sigma^{L}, \sigma^{R}\right\}$.
- Initially the DM faces the complete menu $M=\left\{\sigma^{L L}, \sigma^{L}, \sigma^{R}, \sigma^{R R}\right\}$.
- Initially the DM faces the complete menu $M=\left\{\sigma^{L L}, \sigma^{L}, \sigma^{R}, \sigma^{R R}\right\}$.
- The DM will never choose any of the extreme sources when his opportunity set is M, that is: $d(M)=\left\{\sigma^{L}, \sigma^{R}\right\}$.
- Initially the DM faces the complete menu $M=\left\{\sigma^{L L}, \sigma^{L}, \sigma^{R}, \sigma^{R R}\right\}$.
- The DM will never choose any of the extreme sources when his opportunity set is M, that is: $d(M)=\left\{\sigma^{L}, \sigma^{R}\right\}$.
- Given the payoff, the DM will prefer action r if and only if his posterior belief is greater than $1 / 2$.
- Initially the DM faces the complete menu $M=\left\{\sigma^{L L}, \sigma^{L}, \sigma^{R}, \sigma^{R R}\right\}$.
- The DM will never choose any of the extreme sources when his opportunity set is M, that is: $d(M)=\left\{\sigma^{L}, \sigma^{R}\right\}$.
- Given the payoff, the DM will prefer action r if and only if his posterior belief is greater than $1 / 2$.

Observation 1 (See Che and Mierendorff, 2019)
The DM chooses σ^{L} in menu M.

- Suppose the moderate R-biased source σ^{R} is made unavailable.
- Suppose the moderate R-biased source σ^{R} is made unavailable.
- The DM now faces the menu $N=\left\{\sigma^{L L}, \sigma^{L}, \sigma^{R R}\right\}$.
- Suppose the moderate R-biased source σ^{R} is made unavailable.
- The DM now faces the menu $N=\left\{\sigma^{L L}, \sigma^{L}, \sigma^{R R}\right\}$.
- He interprets this removal as revealing that the disutility from making a mistake in state L-i.e choosing action r-is lower than expected, so: $u_{r}^{L}+v_{r}^{L}=0$.
- Suppose the moderate R-biased source σ^{R} is made unavailable.
- The DM now faces the menu $N=\left\{\sigma^{L L}, \sigma^{L}, \sigma^{R R}\right\}$.
- He interprets this removal as revealing that the disutility from making a mistake in state L-i.e choosing action r-is lower than expected, so: $u_{r}^{L}+v_{r}^{L}=0$.
- Now $d(N)=\left\{\sigma^{L}, \sigma^{R R}\right\}$.
- Suppose the moderate R-biased source σ^{R} is made unavailable.
- The DM now faces the menu $N=\left\{\sigma^{L L}, \sigma^{L}, \sigma^{R R}\right\}$.
- He interprets this removal as revealing that the disutility from making a mistake in state L-i.e choosing action r-is lower than expected, so: $u_{r}^{L}+v_{r}^{L}=0$.
- Now $d(N)=\left\{\sigma^{L}, \sigma^{R R}\right\}$.

Proposition 4

There exists $p^{\star}<1 / 2$ such that if $p \in\left[p^{\star}, 1 / 2\right]$:
(i) The DM prefers $\sigma^{R R}$ to σ^{L} in тепи N;
(ii) After a realisation of signal s^{R} from $\sigma^{R R}$, the DM chooses action r.

Thank You!

