The Financial (In)Stability Real Interest Rate, r**

Ozge Akinci^{†*}, Gianluca Benigno^{†*}, Marco Del Negro^{†*}, Albert Queralto[‡] Federal Reserve Bank of New York[†], Federal Reserve Board[‡], and CEPR^{*}

EEA, Milan 2022

Disclaimer: The views expressed here do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System.

Why do we need another *?

• The *natural rate of interest* r* is associated with the notion of *macroeconomic* stability: the rate consistent with output equaling its natural rate and constant inflation (Wicksell, Woodford, ..., Laubach & Williams, ...)

• This paper introduces r**, the financial stability interest rate: the threshold real rate above which financial instability arises

• Goal of r**: Map the notion of financial stability onto the interest rate space, and complement r* as a guide to policy

Outline

 Illustrate r** in the context of a simple macrofinance model with an occasionally binding financing constraint

Ø Discuss the drivers and dynamics of r**

• e.g., "financial dominance": persistently low real interest rates trigger an eventual drop in r**

- **3** Provide an empirical measure of r**
 - Show that the Fed effectively tracked r** in periods of financial stress

Akinci, Benigno, Del Negro, Queralto

A Model With Financial (In)Stability Regimes

A Model With Financial (In)Stability Regimes

- Simple dynamic macrofinance model with financial intermediaries that face *agency frictions* in raising funds → (Gertler & Kiyotaki '10)
- Occasionally binding leverage constraint \rightarrow two regimes depending on whether the constraint is binding
 - Tranquil times: dynamics resemble run-of-the-mill DSGE
 - Financial instability: financial accelerator, asset fire-sale dynamics
- The real rate is one of the state variables determining in which regime we are in

A Model With Financial (In)Stability Regimes

- Simple dynamic macrofinance model with financial intermediaries that face *agency frictions* in raising funds → (Gertler & Kiyotaki '10)
- Occasionally binding leverage constraint \rightarrow two regimes depending on whether the constraint is binding
 - Tranquil times: dynamics resemble run-of-the-mill DSGE
 - Financial instability: financial accelerator, asset fire-sale dynamics
- The real rate is one of the state variables determining in which regime we are in
- r** is the threshold real rate above which financial instability arises:

 → the real interest rate that makes the financial constraint just bind
- Use r** as a summary statistic for financial stability, just like r* is for macro conditions

Sketch of the model

Bankers

- Hold (risky) capital s_t and safe asset b_t
- Households
 - Consume, supply labor, save through bank deposits d_t
- The real interest rate, R_t , follows an exogenous process

 \rightarrow In the background we will be thinking of monetary policy as determining R_t , although we do not explicitly model that in this paper

Bankers' Problem

$$V_t(n_t) = max_{s_t,b_t} E_t \Lambda_{t+1}[(1-\sigma)n_{t+1} + \sigma V_{t+1}(n_{t+1})]$$
 subject to

1 Evolution of net worth: $n_t = (R_{\kappa t} - R_{t-1})Q_{t-1}s_{t-1} + R_{t-1}n_{t-1}$

2 Occasionally binding leverage constraint:

$$\frac{Q_t s_t}{\underbrace{n_t}_{leverage}} \leq \underbrace{\frac{V_t'}{\Theta(x_t)}}_{\text{max. leverage}} \text{ where } x_t = Q_t s_t / b_t, \ \Theta' > 0$$

 \hookrightarrow time-varying and forward-looking

• Banks use "augmented" stochastic discount factor (SDF) in pricing assets

$$\Omega_{t+1} \equiv \underbrace{\Lambda_{t+1}}_{\text{HH SDF}} \left[1 - \sigma + \sigma V'_{t+1}\right]$$

Akinci, Benigno, Del Negro, Queralto

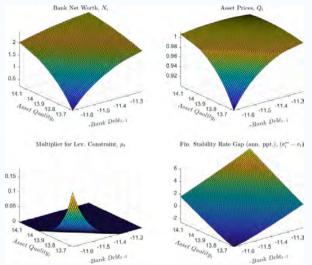
Financial (In)Stability Regimes

- When the constraint does not bind (financial stability):
 - $\mathbb{E}_t(\Omega_{t+1}R_{Kt+1}) = \mathbb{E}_t(\Omega_{t+1})R_t$
 - $\mathbb{E}_t(R_{Kt+1}) \approx R_t$: spreads are low when the economy is far away from the constraint
 - Responses of the economy to shocks resemble frictionless RBC
- When the constraint binds (*financial instability*):

Financial (In)Stability Regimes

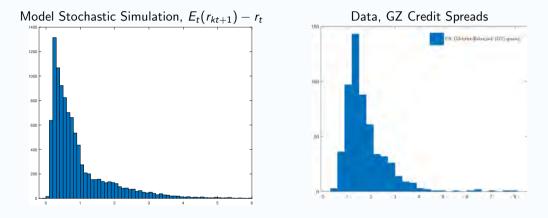
- When the constraint does not bind (financial stability):
 - $\mathbb{E}_t(\Omega_{t+1}R_{Kt+1}) = \mathbb{E}_t(\Omega_{t+1})R_t$
 - $\mathbb{E}_t(R_{Kt+1}) \approx R_t$: spreads are low when the economy is far away from the constraint
 - Responses of the economy to shocks resemble frictionless RBC
- When the constraint binds (*financial instability*):
 - Risky asset holdings constrained by net worth
 - Responses of the economy to shocks reflect the *nonlinear financial accelerator* effect: $N_t (\equiv \int n_t) \downarrow \Rightarrow Q_t \downarrow \Rightarrow N_t \downarrow$
 - $\mathbb{E}_t(\Omega_{t+1}R_{Kt+1}) > \mathbb{E}_t(\Omega_{t+1})R_t \to \text{spreads are large and volatile}$
- Compute fully nonlinear solution (Akinci and Queralto '21)

Akinci, Benigno, Del Negro, Queralto

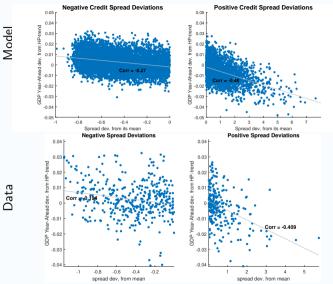

Constructing r**

• If the economy is in the unconstrained/constrained regime: increase/decrease R_t such that the constraint just binds/ceases to bind, given the other state variables

 \Rightarrow r** is a *threshold* : real interest rate below r** ensures the economy remains in the financial stability regime

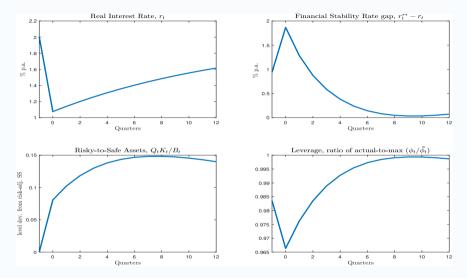

• Financial stability rate gap, r^{**} - r, *depends* on the evolution of other state variables, e.g., leverage and the share of risky assets in banks' portfolio

Equilibrium objects as a function of states

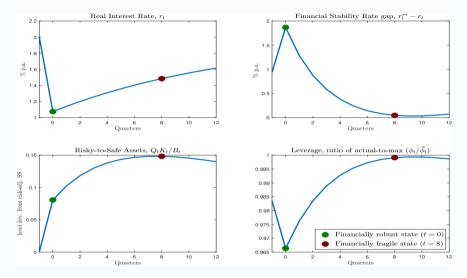

• When the constraint binds net worth and asset prices fall nonlinearly, and $\mathsf{r}^{**}-\mathsf{r}$ becomes negative

Histogram of Credit Spreads: Model vs GZ Spreads

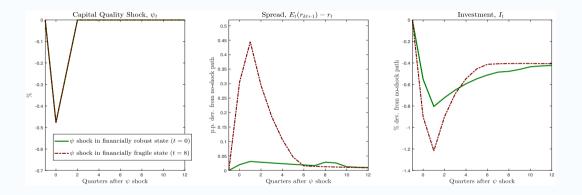
• Credit spreads displays occasional spikes in the model as in GZ spread


Credit Spreads and Output

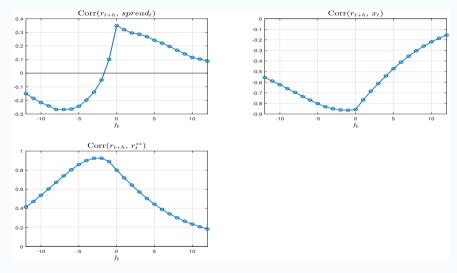
• Model captures asymmetries in the relationship between output and credit spreads


Dynamics of r**

Dynamics of r**: Impulse responses to low interest rates


• Persistently low rates today cause vulnerabilities to build up \rightarrow reduce monetary policy space for maintaining "financial stability" in the future

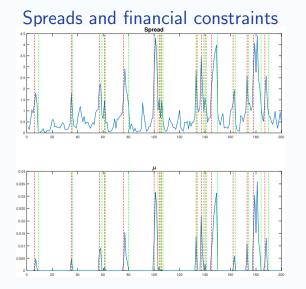
Dynamics of r**: Impulse responses to low interest rates


• Persistently low rates today cause vulnerabilities to build up \rightarrow reduce monetary policy space for maintaining "financial stability" in the future

Decline in Capital Quality: State-Dependent Effects

• Credit spreads increase, and investment falls 50 percent more if the economy is in financially fragile state when the shock hits

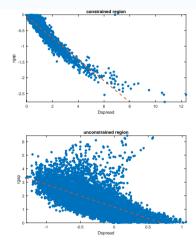
Real Rate, Credit Spreads and r**, Lead-Lag Correlations

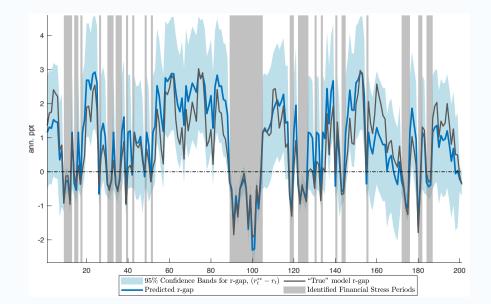


• Low real interest rates today predict high credit spreads and low r** in the future

Akinci, Benigno, Del Negro, Queralto

The Financial (In)Stability Real Interest Rate, r**

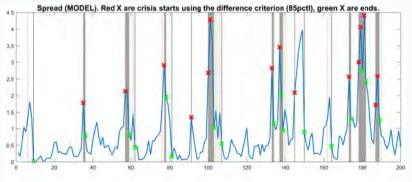

Measuring r**


- Financially constrained regime: spreads are very volatile and correlated with the degree of constraints µ (⇒ with r**-r)
- Unconstrained regime: spreads only loosely correlated with the proximity of the constraint

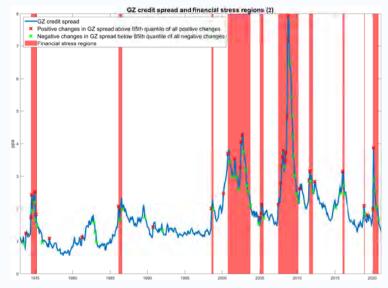
Spreads, financial constraints, and r**-r

- Financially constrained regime:
 - $(r_t^{**} r_t) = \beta_c Dspread_t + \epsilon_t$, $Var(\epsilon_t) = \sigma_c^2$.
 - $\rightarrow \beta_c = -0.34$ and $\sigma_c^2 = 0.034$.
- Unconstrained regime:
 - $(r_t^{**} r_t) = \beta_u Dspread_t + \epsilon_t$, $Var(\epsilon_t) = \sigma_u^2$.
 - $\rightarrow \beta_u = -1.67$ and $\sigma_u^2 = 0.693$.
- where Dspread_t = (spread_t spread_t), with <u>t</u> = period before/after the economy enters/exits a financial stress episode
- Dspread_t = level of spreads relative to just before the stress period begins (r**-r ~ 0)

True vs Predicted r-gap, $r_t^{**} - r_t$, **Model**

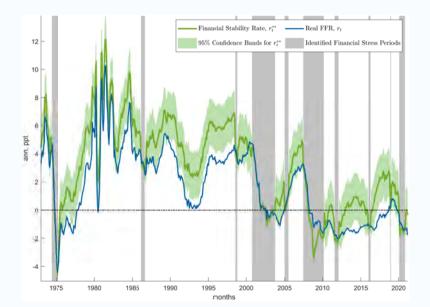


Identifying financial stress regions

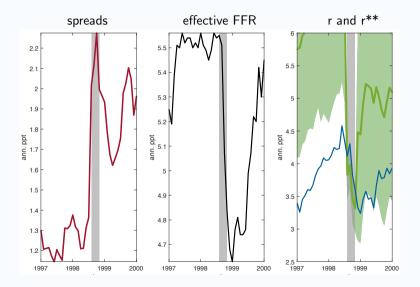

• **Financially constrained** regions 1) have very *volatile* spreads; 2) begin with spreads *rising* and finish with spreads *declining*

Identifying financial stress regions

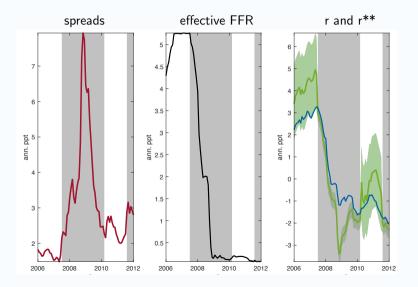
- **Financially constrained** regions 1) have very *volatile* spreads; 2) begin with spreads *rising* and finish with spreads *declining*
- Identify "spread jumps" as changes in spread that are above some quintile of the distribution ($|\Delta spread| > q_{85}$).
- Construct financial stress region in which many of these jumps occur closely together ("a sequence of jumps no less than 6 months apart")



Credit spreads and financial stress regions, data



Akinci, Benigno, Del Negro, Queralto


The financial stability interest rate r_t^{**} in the **data**

LTCM episode

Financial Crisis

Conclusion

- Introduce a new concept: r**
 - threshold real interest rate above which the tightness of financial conditions may generate financial instability
 - enables us to translate financial vulnerabilities into an object comparable to the monetary policy rate and to the natural real interest rate
- Thank you for your attention!