Should we increase or decrease public debt? Optimal fiscal policy in heterogeneous agents

François Le Grand^a, Xavier Ragot^{b,c}

 a Rennes Business School and ETH Zurich b SciencesPo and OFCE c CNRS

EEA, Milano, August 2022

Introduction

- new public spending shocks should be expected (climate policy, health, military spending)
- How should we finance them? : Capital tax, progressive tax, public debt?

Old public finance question : heterogeneous-agent models seem the perfect tool.

- Realistic amount of inequality to consider redistributive issue.
- A relevant fiscal system to quantify distortions.
- Non-Ricardian environment : Public debt "well-defined".

Many new normative results can be expected in this environment. However, many questions...

- 1. Is capital tax positive ? (Chien, Chien, Wen, Yang, 2021)
- 2. Does the steady-state exist? (Straub-Werning 2020; Auclert and Rognlie, 2022).
- Is public debt well defined ? (critics of Aiyagari and Mc Grattan 1998; Bhandari et al, 2017).

Actually, less work on optimal fiscal policy than on optimal monetary policy, whereas more important (Martin-Baillon, Le Grand Ragot, 2022).

What we do

Study optimal (Ramsey) fiscal policy in heterogeneous-agent model with capital, and with aggregate shocks and capital tax, non-linear labor tax (HSV), public debt. We prove that the equilibrium is well defined.

- capital tax and public debt are generally positive (Woodford, 1990)
- steady-state is stable

Main new result: After a positive public spending shock (given NPV)

- Public debt should increase if the persistence is low ("Keynesian")
- Public debt should **decrease**, front-load with taxes, if the persistence is high ("Classical")

Intuition : high persistence, you have to pay both interest payment on public debt and public spending.

Consistent with US data.

Other literature on Optimal policy in HA model

- Linear-quadratic approach Woodford, 2003; Bilbiie 2008, Bilbiie and Ragot, 2021; Mckay and Wolf, 2022
- 2. Transitions Dyrda and Pedroni (2021)
- 3. Continuous-time techniques (Achdou et al 2022; Nuno and Thomas, 2022 among others)
- 4. Primal Approach + time-varying perturbations (Bhandari, et al. 2022)
- Lagrangian approach + truncation (Legrand Ragot, 2022a, 2022b, (see also Acikgoz et al 2021).

Outline of the presentation

- 1. The Simple Model
- 2. General model
- 3. US data

1 - The Simple Model

As Woodford (1990) and

1. GHH utility function

$$U(c,l) = \log\left(c - \chi^{-1} \frac{l^{1+1/\varphi}}{1+1/\varphi}\right),$$

- 2. Two types of agents, alterning (deterministically) between productivve and unproductive states.
 - Agents A Earn wage w_t in even periods **employed**, (nothing odd periods, **unemployed**).
 - Agents B Earn wage w_t in odd periods (nothing even periods).
- 3. All agents face credit constraints $a_t \geq -\bar{a}$
- 4. save in a risless asset (capital or public debt)
- 5. Standard production sector

$$Y_t = F(K_{t-1}, L_t) = K_{t-1}^{\alpha} L_t^{1-\alpha} - \delta K_{t-1},$$

Tax system

Three instruments: linear labor tax: τ_t^L ; Linear capital tax: $\tau_t^K;$ Public debt B_t

$$G_t + (1 + \tilde{r}_t)B_{t-1} = \tau_t^L \tilde{w}L_t + \tau_t^K \tilde{r}_t (B_{t-1} + K_{t-1}) + B_t.$$

Market equilibrium

$$L_t = l_{e,t} \text{ and } B_t + K_t = a_{e,t} + a_{u,t}.$$
 (1)

The utilitarian planner objective:

$$W_0 = \sum_{t=0}^{\infty} \beta^t \left[\log \left(c_t^u \right) + \log \left(c_t^e - \chi^{-1} \frac{l_{e,t}^{1+1/\varphi} d}{1+1/\varphi} \right) \right],$$
(2)

Program

We show that unemployed agents are credit constraint, solve in post-tax price (Chamley, 1986). Define $R_t = 1 + (1 - \tau_t^K)\tilde{r}$ and $w_t = (1 - \tau_t^L)\tilde{w}$

$$\begin{split} \max_{(B_t, w_t, R_t)_{t \ge 0}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left((1+\beta) \log \left(\frac{1}{1+\beta} \frac{w_t(\chi w_t)^{\varphi}}{\varphi+1} \right) + \log \left(\beta R_t\right) \right), \\ \text{s.t. } G_t + B_{t-1} + (R_t - 1) \frac{\beta}{1+\beta} \frac{w_{t-1}(\chi w_{t-1})^{\varphi}}{1+\varphi} + w_t(\chi w_t)^{\varphi} = \\ F(\frac{\beta}{1+\beta} \frac{w_{t-1}(\chi w_{t-1})^{\varphi}}{1+\varphi} - B_{t-1}, (\chi w_t)^{\varphi}) + B_t, \end{split}$$

Some Issues:

- Kuhn-Tucker, non linear-constraints : Qualification of the constraints.
- Second-order conditions : Gobal concavity.
- Local stability of the equilibrium

Result; Steady State

Three thresholds $\overline{G}_1, \overline{G}_{SW}$ and \overline{G}_{La} ,

Proposition

When $\overline{G}_1 \leq G$, $G \leq \overline{G}_{SW}$, $G \leq \overline{G}_{pos}$, and $G < \overline{G}_{La}$, there exists a steady-state equilibrium, where B, τ^L and τ^K are positive.

Key equations :

• Modified Golden Rule (Aigarti, 1995), with $B = S^{private} - K$ with

$$F(K,L) = \frac{1}{\beta} - 1$$

Tradeoff between taxes

$$\tau^{K} = \varphi \frac{1+\beta}{1-\beta} \frac{\tau^{L}}{1-\tau^{L}}$$

Optimal Dynamics

Analytical results after a MIT public spending shock

$$\widehat{G}_t = \begin{cases} \sigma_G & \text{ if } t = 0, \\ \rho_G \widehat{G}_{t-1} & \text{ if } t > 0, \end{cases}$$

Then
$$\hat{K}_t = \rho_K \hat{K}_{t-1} + \sigma_K \hat{G}_t$$

Proposition

Denoting by \widehat{B}_0 the public debt variation on impact, we have:

$$\frac{\partial \widehat{B}_0}{\partial \rho_G} < 0.$$

Optimal Dynamics

Figure: Fiscal variables for two persistence $\rho_G = 0.1$ (black line) and $\rho_G = 0.99$ (blue dashed line). Parameters are $\alpha = 0.4, \beta = 0.97, \varphi = .5, G = 0.05$.

2 - General model

- 1. Utility function u(c) v(l), (Chetty et al., 2011)
- 2. General income process, first-order Markov chain, (Mitman, Krueger, perri, 2018)
- 3. Fiscal system : labor tax HSV (Heathcote et al. 2017): $T_t(\tilde{w}yl) := \tilde{w}yl - \kappa_t(\tilde{w}yl)^{1-\tau_t}$

The Program

$$\max_{\left(r_{t},w_{t},B_{t},K_{t},L_{t},\left(a_{t}^{i},c_{t}^{i},l_{t}^{i},\nu_{t}^{i}\right)\right)_{t\geq0}}\sum_{t=0}^{\infty}\beta^{t}\int_{i}\omega\left(y_{t}^{i}\right)\left(u(c_{t}^{i})-v(l_{t}^{i})\right)\ell(di),$$

$$\begin{split} G_t + R_t B_{t-1} + (R_t - 1) K_{t-1} + w_t \int_i (y_t^i l_t^i)^{1 - \tau_t} \ell(di) &= F(K_{t-1}, L_t) + B_t \\ \text{for all } i \in \mathcal{I}: \; a_t^i + c_t^i = R_t a_{t-1}^i + w_t (y_t^i l_t^i)^{1 - \tau_t}, \\ & a_t^i \geq -\bar{a}, \; \nu_t^i (a_t^i + \bar{a}) = 0, \; \nu_t^i \geq 0, \\ & U_c(c_t^i, l_t^i) = \beta \mathbb{E}_t \left[R_t U_c(c_{t+1}^i, l_{t+1}^i) \right] + \nu_t^i, \\ & - U_l(c_t^i, l_t^i) = (1 - \tau_t) w_t y_t^i (y_t^i l_t^i)^{-\tau_t} U_c(c_t^i, l_t^i), \\ & K_t + B_t = \int_i a_t^i \ell(di), \; L_t = \int_i y_t^i l_t^i \ell(di), \end{split}$$

Parameter values

Parameter	Description	Value			
	Preference and technology				
β	Discount factor	0.99			
α	Capital share	0.36			
δ	Depreciation rate	0.025			
\bar{a}	Credit limit	0			
x	Scaling param. labor supply	0.05			
φ	Frisch elasticity labor supply	0.5			
Shock process					
ρy	Autocorrelation idio. income	0.993			
σ_y	Standard dev. idio. income	0.082			
Tax system					
τ^{K}	Capital tax	36%			
κ	Scaling of Labor tax	0.75			
au	Progressivity of tax	0.181			

The model is solved using the truncation method, estimating Pareto weight, using the specification of Heathcote and Tsujiyama, 2021.

Dynamics (1/2)

Figure: The black solid line is for the persistence $\rho_G = 0.6$. The blue dashed line is for persistence $\rho_G = 0.97$.

Dynamics (2/2)

Figure: The blue dashed line is for persistence $\rho_G = 0.97$. All variables are in proportional deviations.

3 - US data

Using data of Ramey and Zubairy, 2018 : shocks and path of public spending.

Egrand, Ergure: The blue dashed line is for persistence $\rho_G=0.97$. All variables are in

17/19

Change in debt

Event	Quart. Pers.(%)	Dates		$\Delta Debt/G_{NPV}$ (%)
		Beg.	End	
WWI	59	1914:Q3	1920:Q3	7.0
WWII	66	1939:Q3	1947:Q1	6.7
9/11	74	2001:Q3	2007:Q1	1.1
Korean War	78	1950:Q3	1957:Q1	-3.7
Soviet Inv. of Afg.	84	1980:q1	1983:Q4	2.2
Vietnam War	94	1965:Q1	1975:Q2	-1.5

Table: Estimated persistence of public spending in percent for the six events, in increasing order and change in public debt divided by the net present value of public spending.

Conclusion

- Can be either procyclical or countercyclical depending on persistence.
- Tax and progressitivity can be procyclical or countercyclical depending on persistence.
- Public debt is slow moving
- Consider mny other frictions.