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Abstract

In many contexts, a decision-maker must screen applicants using only imperfect
information about their quality. The decision-maker may use information about the
applicant’s race or gender to guide their decision, resulting in discrimination. Using
data on the group differences in the output of applicants that pass the screening process,
is it possible to assess the extent and nature of discrimination?

In this paper, we tackle this question in the context of the motion picture industry.
The underrepresentation of non-white actors among the leading awards has raised
concerns about discrimination in the industry. Using machine learning technology, we
construct a new data set with racial identifiers of the cast of more than 7,000 motion
pictures released in the United States between 1997 and 2017. We use this data set to
test the predictions of a model of discrimination. Producers receive offers to produce
movies (“scripts”), observe the racial composition of the cast implied by the script, and
receive a noisy signal of a movie’s expected revenue. They must then decide whether
to produce and release the movie. The model nests different forms of discrimination
and delivers a rich set of predictions for the difference in revenue distribution between
“white” and “non-white” movies, which allows to distinguish between different forms
of discrimination. Empirically, we document the following facts: a) Average box-office
revenue of non-white movies is substantially higher (82%, or 60 log-points) than white
movies; b) This difference is driven primarily by the left-tail of the distribution – the
gap at the 10th percentile is about 80 log-points while at the 90th percentile it is
about 27 log-points, suggesting that non-white movies with low box-office potential
are never produced; c) These findings are robust to different definitions of non-white
movies, the inclusion of an extensive battery of control variables, or using profits as the
dependent variable; d) Using the difference between actual opening-weekend box office
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revenue and predicted revenue based on the number of theaters in which the movie is
initially released, we find that relative to white movies, non-white movies substantially
overperform relative to expectations.

The pattern of results cannot be rationalized by customer discrimination, nor by a
model of statistical discrimination where the signal embodied in non-white movies is
less precise. Instead, the findings are consistent with our theoretical model if producers
hold non-white movies to a higher standard or if they systematically underestimate the
revenue potential of non-white movies.

Keywords: Discrimination, Machine learning, Motion picture industry
JEL codes:



1 Introduction

An employer must decide whether to hire a job applicant. An admission committee must

decide whether to admit a candidate to its entering freshman class. A journal editor must

decide whether to accept an article for publication. All these settings are characterized by

a decision maker who must make an in-or-out decision about an applicant, having only im-

perfect information about the applicant’s quality. The decision-maker may use information

about the applicant’s race or gender to guide their decision, which may result in discrimina-

tion, i.e., the unequal treatment of applicants with otherwise identical characteristics. The

econometrician, however, can typically observe only the ex-post outcomes of these decisions:

the worker’s productivity, the student’s grades, or the number of citations received by an

article. If we observe differences by race or gender in the outcomes, what can we infer about

the extent and nature of discrimination by the decision maker?

In this paper, we address this question in the context of the U.S. motion picture industry,

where the producer is the decision maker. There are three main advantages to studying

discrimination in the motion picture industry: First, this setting is of intrinsic interest

because of the widespread perception of bias in the industry. For example, in the 2010s,

only 7% of nominees for the Academy Awards were African Americans, far less than their

proportion in the population.1 Does this underrepresentation reflect racial bias? Second,

box-office revenue can be measured precisely as productivity, which is essential for the topics

of discrimination. Last but not least, as Riley (2022) pointed out, movie characters can act

as role models in students’ education attainment. So, discrimination in this context will

potentially affect children’s sense of the world and the outlook of value.

We develop a model of discrimination that allows us to interpret differences in box-office

revenue, conditional on production. In the model, producers receive offers to produce movies

(“scripts,” akin to the applicant in the examples above). They observe the expected racial

composition of the cast based on the script and receive a noisy signal of the movie’s ex-

pected box-office revenue. Based on the information, they must choose whether to produce

1https://www.washingtonpost.com/news/arts-and-entertainment/wp/2016/02/26/

these-charts-explain-how-oscars-diversity-is-way-more-complicated-than-you-think/, ac-
cessed on October 26, 2021.
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the movie and release it to the public or not. We define a “white” movie as a movie in

which the leading roles are solely played by whites and a “non-white” movie as a movie in

which the leading roles include non-whites. Our model nests different forms of discrimination

within it and delivers a rich set of predictions regarding the extent and nature of discrimi-

nation. We distinguish between three types of discrimination: a) customer discrimination,

whereby moviegoers have a preference for white movies over non-white movies; b) employer

or taste-based discrimination, where the producer suffers a negative utility from producing a

non-white movie; and c) statistical discrimination, where the signal conveyed by non-white

movies is less informative about the movie’s true quality. We show that the moments of

the distribution of box-office revenue of movies that are produced allow one to distinguish

between the three types of discrimination.

To test the model’s predictions, we construct a novel data set with racial identifiers for

the cast of more than 7,000 motion pictures released in the United States between 1997 and

2017. We obtained the data by scraping the popular websites IMDB,2 and combined it with

extensive information from OpusData, a private company that specializes in providing data

and information on the motion picture industry.3 The racial identifiers are constructed using

a machine learning architecture that combines a convolutional neural network (CNN) and

support vector machine (SVM; Anwar and Islam, 2017). As a result, the algorithm obtains

a classification accuracy of more than 95% in our validation data set, which is considered

excellent in the image classification literature.

In our main analysis, we define a movie as “non-white” if two of the four top-billed

performers are classified as non-white.4 We document the following findings. First, the

average box-office revenue of non-white movies is substantially higher than that of white

movies. The raw non-white/white revenue gap is close to 300%. Inclusion of a standard set

of control variables for other movie characteristics and the cast lowers the gap to between

80% and 90%, still large and highly statistically significant. Second, the box office premium

of non-white movies is driven primarily by movies in the bottom half of the distribution.

2http://www.imdb.com
3www.opusdata.com
4The non-white category includes mostly African-Americans but may also include Asians, Hispanics, and

other ethnicities.
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Quantile regressions show that the adjusted gap is around 60 log points (about 82%) at the

bottom quantiles of the distribution, but the gap at the upper end of the distribution shrinks

to about 35 log points (about 42%). These results are robust to different definitions of “non-

white” movies or different dependent variables (e.g., profit margins or profits). Third, we

create a measure of the extent to which a movie’s box-office revenue overperforms relative

to expectations. Following Moretti (2011), we calculate this as the residual in a regression

of opening weekend box-office revenue on the number of opening-weekend theaters. We

find that, relative to white movies, non-white movies substantially overperform relative to

expectations.

These results are not consistent with either customer discrimination or statistical discrim-

ination. Instead, we argue that the results are consistent with taste-based discrimination,

where non-white movies are held to a higher standard, i.e., they are produced only if the

expected revenue surpasses a threshold that is higher than the one set for white movies. This

pattern may result from either proper taste-based discrimination on the part of producers

or a systematic underestimation of the box-office potential of non-white movies.

This paper contributes to the stream of the literature that aims to understand the nature

of unequal treatments by either distinguishing between statistical and taste-based discrim-

ination in the data,5 or testing for the presence of one of the two in a specific market or

context. These goals have been pursued experimentally (List, 2004; Zussman, 2013; Doleac

and Stein, 2013; Bohren et al., 2019), as well as by testing theoretical predictions on already

collected data (Altonji and Pierret, 2001; Knowles et al., 2001; Charles and Guryan, 2008).

Close to our paper is the work by Knowles et al. (2001). They derive a test to disentangle

between statistical discrimination and racial animus in the context of motor vehicle searches

conducted by police officers. We contribute to this literature by focusing on a market where

some salient interactions exist between employees and final customers, and customer de-

mand drives profit maximization. Specifically, we propose a simple theoretical framework

that nests not only employer taste-based and statistical discrimination but also customer

racial animus, and delivers testable predictions for each source of unequal treatment. The

5For a review of the literature on the topic, see Guryan and Charles (2013) and Lippens et al. (2020).
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paper also adds to the line of research that documents the presence of racial discrimination

in the movie industry (Weaver, 2011; Fowdur et al., 2012). Closest to our work is the paper

by Kuppuswamy and Younkin (2020), who find that movies with multiple African American

actors enjoy a box office premium. They rule out customer racial tastes as a discrimina-

tion mechanism through an experimental approach. We confirm their conclusion on a more

comprehensive data set and provide an analytical framework that can be used to interpret

racial differences in the entire distribution of revenue as a function of different forms of

discrimination.

The rest of the paper proceeds as follows. Section 2 describes the institutional background

of the motion picture industry. Section 3 presents our theoretical model and discusses its

empirical implications. Section 4 describes the data and the machine learning methodology

used to classify performers by race. Section 5 presents the main empirical findings and

assesses the robustness of the results to different definitions of race or dependent variables.

Section 6 presents suggestive evidence of incorrect beliefs on the revenue potential of non-

white movies within the industry. Section 7 discusses and concludes.

2 Institutional background of film production

Film-making is a complex industry involving a multiplicity of skills, targets, and decision

makers. Each movie displayed on screen has been through three articulated macro-phases:

script writing, production, and distribution. This paper studies racial discrimination at the

production stage.

The key decision maker in the production phase is the producer.6 She decides whether a

script is worth being turned into a movie and, if so, raises the money (sometimes supported

by one or more executive producers). The producer is then responsible for the financial and

logistic aspects of the movie.7 She oversees the hiring of the director, who is the creative

soul of the movie, the cast, and the crew, and decides on the budget allocation.

6See for reference Crimson Engine, 2018.
7The Producers Guild of America (P.G.A.) has established that the producer’s name in the film credits

can be followed by the p.g.a. certification mark only if the producer has performed a significant portion of the
producing duties, which includes being physically present on set for a substantial fraction of the production
time (P.G.A., n.d.).
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In our conceptual framework, we assume that the movie script itself determines the racial

composition of the leading characters in a movie. While the producer and the casting team8

might have some latitude in choosing the supporting characters, we think it is plausible that

the race of the main characters can be inferred directly from the script. In fact, casting

notices for actors typically specify features such as race and ethnicity (and other aspects of

physical appearance) for specific roles.

Our model, presented below, describes the producer’s decision about whether to produce

the movie after she has seen the movie’s script, and observed the racial composition of the

cast and a signal of the movie’s quality.

3 A Model of the screening process

We propose a theoretical framework that helps us understand how observed box-office rev-

enue can inform us about the extent and nature of discrimination in the industry. We assume

that the movie production process is modeled according to the following timeline.

Step 1: Script arrival

There are two types of movies: white movies, denoted by w, and non-white movies,

denoted by b. A risk-averse producer wishes to maximize log revenue, denoted by π. The

producer receives a script and perfectly observes its type t. However, box office revenues

are not observed. We assume that ex-ante, box-office revenues of a movie of type t follow a

log-normal distribution with type-specific parameters µt and σ2
πt :

π | t ∼ N(µt, σ
2
πt), ∀t ∈ {w, b}

.

Step 2: Signal and prior updating

Based on the script, the producer updates her prior about the movie’s box-office revenue.

Formally, we can think of the producer observing a signal (y) of the movie’s expected box-

office revenue. The signal is normally distributed and is well-calibrated, meaning that in

8While the producer can be correctly thought of as the primary decision maker in the production process,
casting decisions are typically shared among multiple roles.

5



expectation it is equal to the movie’s actual (log) box-office revenue, but it is noisy. Critically,

we assume that the precision of the signal may differ by type. Therefore:

y | π ∼ N(π, σ2
yt).

Given this setup, it is straightforward to calculate the posterior mean of log box-office

revenue, conditional on the signal and the movie’s type:

E(π | y, t) =
σ2
πt

σ2
πt + σ2

yt

y +
σ2
yt

σ2
πt + σ2

yt

µt. (1)

Step 3: Production decision

Producers will produce a movie and release it to the public if the expected log box-

office revenue, conditional on the movie’s type and signal, exceeds a given threshold. This

threshold (the revenue threshold) is exogenously given. We can think of it as the reservation

revenue from a sequential search model, i.e., the value of the revenue that makes the producer

indifferent between producing the movie or waiting for a better script. We denote this

revenue threshold π0t, making the critical assumption that the threshold is type-specific.

For example, this could result from the producer having a taste for producing movies of a

given type.

The movie will be produced if

E(π|y, t) > π0t, (2)

This is equivalent to saying that the movie will be produced only if the signal y exceeds a

given threshold (the signal threshold). Based on equation 1 and condition 2, it is easy to

show that the signal threshold is

ȳt = π0t + (π0t − µt)
σ2
yt

σ2
πt

.

In other words, the signal threshold is type-specific, and depends on the revenue threshold,

the parameters of the prior distribution, and the precision of the signal.

This threshold, together with the statistical features of the ex-ante distribution of box-

office revenue and the distribution of revenue conditional on the signal, determines the ex-

post distribution of box-office revenue. The following proposition establishes the comparative

statics of the signal threshold with respect to the parameters of the model.
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Proposition 1 The following comparative statics results hold:

(a) ȳt decreases in µt.

(b) ȳt increases in π0t.

(c) If π0t > µt, ȳt increases in σ2
yt.

(d) If π0t < µt, ȳt decreases in σ2
yt.

Proof. See Appendix A

The first two statements in Proposition 1 are straightforward and intuitive. If ex-ante

expected (log) revenue is higher (a high µt), the movie will still be produced even if the

signal is not very good. Similarly, when the revenue threshold (π0t) is high, the signal must

be excellent to produce the movie. The third and fourth items in the Proposition are more

involved but are familiar from the literature on statistical discrimination (Aigner and Cain,

1977; Lundberg and Startz, 1983; Neumark, 2012). Intuitively, if the signal is less precise

(a high value of σ2
yt) and the producer wants to produce only high revenue movies, she will

have to set a high signal threshold to make sure she only picks the right tail of the revenue

distribution (item (c) in Proposition 1); on the other hand, if the producer only wants to

cull out very low revenue movies and the signal is uninformative, the threshold must be set

at a low value to ensure that only the very worst (i.e., lowest-revenue) movies are weeded

out (item (d) in the proposition).

3.1 Predictions for empirical work

Proposition 1 characterizes the properties of the signal threshold that determines whether a

movie is produced. In practice, we do not observe the signal threshold, so the results are not

useful for empirical analysis. However, we do observe the box office revenue of movies that

are actually produced and released to the public. The mean and variance of log box-office

revenue, conditional on production, are:
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E(π | y > ȳt) = µt + σ
φ(π0−µt

σ
)

1− Φ(π0−µt
σ

)

V ar(π | y > ȳt) = σ2

(
1 + σ2

yt + λ(
π0 − µt
σ

)

(
π0 − µt
σ

− λ(
π0 − µt
σ

)

))
,

where σ =
σ2
πt√

σ2
πt+σ

2
yt

and λ(x) = φ(x)
(1−Φ(x))

.

We can then formulate our central proposition, which enables us to predict how different

types of discrimination affect box-office revenues of white and non-white movies produced.

Proposition 2 Let Et ≡ E(π|y > ȳt) and V art ≡ V ar(π|y > ȳt) be the mean and variance

of log box-office revenue conditional on production. Then

Et = µt + σ
φ(π0−µt

σ
)

1− Φ(π0−µt
σ

)

V art = σ2

(
1 + σ2

yt + λ(
π0 − µt
σ

)

(
π0 − µt
σ

− λ(
π0 − µt
σ

)

))
,

where σ =
σ2
πt√

σ2
πt+σ

2
yt

and λ(x) = φ(x)
(1−Φ(x))

. The following comparative statics results hold:

(a) Et and V art increase in µt.

(b) Et increases in π0, V art decreases in π0.

(c) Et decreases in σ2
yt, V art increases in σ2

yt.

Proof. See Appendix A

We focus first on the intuition for the comparative statics of Et with respect to the

parameters. The intuition for the first two results is straightforward. Expected revenue

conditional on production is higher the more shifted to the right is the prior distribution

of revenue (result (a)), and the higher the revenue threshold (result (b)). The third result

says that expected revenue conditional on production is always higher the more precise

the signal. This result is slightly counterintuitive, because the signal threshold can either
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increase or decrease with σ2
yt (Proposition 1, results from (c) and (d)). To gain intuition on

this result, it is useful to consider the extreme cases of a perfectly informative (σ2
yt = 0) or

perfectly uninformative signal (σ2
yt → ∞). If the signal is perfectly informative, the movie

is produced only if the signal (which is exactly equal to box-office revenue) is above the

revenue threshold. This implies that expected revenue conditional on production is strictly

greater than µt because some movies will be below the threshold and are not produced. On

the other hand, if the signal is perfectly uninformative, whether a movie exceeds the signal

threshold conveys no information about its revenue – the expected revenue conditional on

production is, therefore, µt.

To gain intuition on the variance results, it is helpful to consider the case of a perfectly

informative signal. The distribution of revenue conditional on production is a truncated

normal distribution, with the truncation point equal to the revenue threshold π0. If the

whole distribution is shifted to the right and the threshold remains the same, it is easy

to see that the variance also increases (result (a)). If the revenue threshold π0 increases,

the truncation point shifts to the right, and the distribution variance decreases (result (b)).

As for the third result, it is again useful to consider the two polar cases: with a perfectly

informative signal, the distribution of box-office revenue is a truncated normal distribution,

which necessarily has a smaller variance than the untruncated distribution that results if the

signal is perfectly uninformative.

We can now use Proposition 2 to characterize the mean and variance of box-office revenue

for white and non-white movies under different types of discrimination.

Case 1: Customer discrimination. Customer discrimination implies that the viewing

public has a preference for white movies over non-white ones. In terms of our model, this

means that the entire distribution of log box-office revenue for white movies is shifted to the

right relative to the distribution for non-white movies, or that µb < µw.

Then, by result 1, it follows that Eb < Ew, and Vb < Vw. We can therefore state the

following prediction:

Prediction 1 Under customer discrimination, the mean log box-office revenue for non-white

movies is lower than for white movies, and the variance of log box-office revenue for non-white

9



movies is lower than for white movies.

Case 2: Taste-based discrimination. We can think of taste-based discrimination as

the producer suffering a negative utility from producing non-white movies. Holding every-

thing else constant, the producer will produce a non-white movie only if expected log revenue

exceeds a higher threshold than the one she sets for white movies to compensate her for the

disutility of producing a non-white movie. In this case, π0b > π0w. By result 2, we have that

Eb > Ew and Vb < Vw. We can therefore state Prediction 2:

Prediction 2 Under taste-based discrimination, the mean log box-office revenue for non-

white movies is higher than for white movies. The variance of log box-office revenue for

non-white movies is lower than for white movies.

Case 3: Statistical discrimination. We classify under statistical discrimination the

case where the informativeness of the signal for non-white movies is smaller than the one

for white movies. We believe this assumption is plausible because it may be more difficult

for producers to evaluate how successful a movie with non-white characters will be. In this

case, σ2
yb > σ2

yw. By result 3, we have that Eb < Ew and Vb > Vw. We can therefore state

prediction 3:

Prediction 3 Under statistical discrimination, the mean log box-office revenue for non-

white movies is lower than for white movies. The variance of log box-office revenue for

non-white movies is higher than for white movies.

In the remainder of the paper, we use the above predictions to assess the extent and

nature of discrimination in the motion picture industry.

4 Data

4.1 Facial classification

A key ingredient of the paper is creating a data set with racial identifiers for the movie’s cast.

We classify all performers as either “white” or “non-white”9 using the algorithm proposed

9We define “non-white” as a residual category including African Americans, East and South Asians,
Native Americans, etc.
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by Anwar and Islam (2017)10. The algorithm is based on a machine learning architecture

that combines a convolutional neural network (CNN) and support vector machine (SVM),

described below.

Step 1. We started with a sample of more than 7000 motion pictures released in the

United States between 1997 and 2017, taken from Opus Data,11 a private company that

collects data on the industry. For each movie, we took the names of the four top-billed

performers. We then scraped and cropped the image appearing on each performer’s page on

the popular website IMDB.12

Step 2. We used the Visual Geometry Group13 (V.G.G.) technique to locate the actor’s

face on each picture. The output of this step is a vector of information extracted from each

image, or a “feature vector.”

Step 3. We repeated step 2 on our training data set, the Chicago Face Database (CFD).14

This database is intended for use in scientific research. It is useful as it contains images of

597 unique individuals (both male and female) who self-identify as White, Black, Asian, or

Latino/a.

Step 4. We used CFD to train our algorithm using the Support Vector Machine (SVM)

approach.15 Intuitively, the purpose of SVM is to find the “best separation line,” meaning the

hyper-plane that correctly separates white from non-white performers when such performers

are located in a multi-dimensional space through their feature vectors.

Step 5. We applied our trained algorithm to the pictures obtained from Steps 1 and

2. We validated our algorithm on a subsample of actors for which we manually coded the

racial groups and obtained a success rate of 95%. A few examples of the outcomes of our

classification algorithm are presented in Figure 1.

10Link: https://arxiv.org/ftp/arxiv/papers/1709/1709.07429.pdf.
11www.opusdata.com
12www.imdb.com
13See for reference https://www.robots.ox.ac.uk/~vgg/.
14The CFD is available at https://www.chicagofaces.org/.
15See for reference https://scikit-learn.org/stable/modules/svm.html.
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4.2 Additional variables

From Opus data, we collected aggregate financial data (box office revenue, production bud-

get, opening weekend revenue, etc.) and metadata (genre, production method) for all movies

in our sample. The main variables of interest in our data set include the gross domestic box-

office revenue, production costs,16 the movie run time, Metacritic score, release date, MPAA

rating, the number of theaters in which the movie was released, and the number of weeks

in which the movie was in theaters. We also collected information on the gender and age of

the four top-billed performers. We created a variable called “star power,” equal to the cu-

mulative box-office revenue of all movies in which each performer appeared up to the release

date of the current movie.

Summary statistics are shown in Table 1. The top panel in the table shows that about 11

percent of the top-billed performers in our sample are non-white. More than three-quarters

of the movies have zero non-white performers, and about 17 percent have only one non-

white performer. Our baseline analysis defines a movie as non-white if at least two of the

four top-billed performers are non-white. Based on this definition, about five percent of the

movies in our sample are non-white. We also assess the robustness of the results to different

definitions of non-white movies.

As for the other variables, we see that the distribution of box office revenue is heavily

skewed to the right. Therefore, we take the logarithm of box office revenue as the main

dependent variable in our baseline analysis. We collapse some of the more niche genres

into broader categories so that all movies fall into one of five broad genres. For some of the

variables, we only have incomplete data. For example, production costs are available for only

about 55 percent of the sample,17 while the Metacritic score is available only for 68 percent

of the sample. To maximize sample size, in the empirical analysis, we replace missing values

with zeros and add a dummy variable indicating that the variable is missing if the missing

value is not central to the analysis.

16All monetary values are expressed in 2005 dollars.
17Probit and logit regressions suggest that movies with higher revenue have a higher probability of non-

missing cost, and non-white films are more likely to have a missing cost variable.
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5 Results

5.1 Non-parametric analysis

Figure 2 presents a box-whisker plot of box-office revenue by the number of non-white per-

formers in the movie. The mean box-office revenue increases markedly with the number of

non-white performers, while the dispersion of the distribution decreases. The box-whisker

plot allows us to examine in detail the behavior of different quantiles of the distribution as

the number of non-white performers increases. The comparison between the upper and lower

quantiles is striking. The 25th percentile of the distribution and the lower adjacent value

increase substantially with the number of non-white performers. On the other hand, the 75th

percentile increases more modestly, and the upper adjacent value seems to decrease. The

entire left tail of the distribution of movies with a predominantly non-white cast appears to

be missing. It is consistent with the notion that non-white movies have to pass a higher bar

to be produced.

Of course, this analysis does not take into account other observable differences between

white and non-white movies. In the following, we assess whether the non-white premium in

box-office revenue is robust to including a broad set of other movie and cast characteristics.

5.2 OLS regressions

The main regression model is the following:

ln yit = β0 + β1Nonwhiteit + β2Xit + δt + εit, (3)

where yit denotes domestic box-office revenue, in 2005 U.S. dollars, of movie i released in

year t; Nonwhiteit, the key explanatory variable of interest, is a dummy variable indicating

whether at least two of the four top-billed performers are non-white; Xit is a vector of

additional control variables, including both cast (average age, gender composition, the “star

power” variable described previously) and movie (the production budget, the MPAA rating,

the Metacritic score, run time, genre dummies) characteristics; δt is a year-of-release fixed

effect, and εit is the usual error term.
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The results are presented in Table 2. The first column of the table shows the unadjusted

difference in mean log revenue between white and non-white movies, without any controls.

Mean box-office revenue of non-white movies is almost 3 times as high as that of white

movies (exp(1.095) ≈ 2.99). In column 2, we include controls for other characteristics of the

cast (average age, gender composition, and star power), and the coefficient remains almost

unchanged. In column 3, we add controls for the production budget, a dummy for whether

the production budget is missing, and all other movie characteristics, including genre and

year-of-release fixed effects. The coefficient on the non-white indicator drops to about 0.6,

implying that non-white movies earn about 82 percent more than white movies at the box

office.18. Finally, column 4 replicates column 3, but we restrict the analysis to those movies

with non-missing data on production costs. The results in this restricted sample are mostly

unchanged – the coefficient on the non-white indicator rises to 0.68, implying that non-white

movies earn on average about 98 percent more than white movies19.

These initial results on the differences between white and non-white movies are not con-

sistent with either a model of customer discrimination, where audiences prefer white movies

to non-white movies nor a model of statistical discrimination, where the signal conveyed by

non-white scripts is less informative about future box-office revenue. Both models predict

that white movies should have on average higher box-office revenue than non-white movies,

in contrast to our findings. Instead, the results are consistent with a model of taste-based

discrimination, where non-white movies are held to a higher standard, i.e., they are only

produced if the revenue exceeds a higher threshold than the one required of white movies.

In what follows, we look at how other features of the distribution differ between white and

non-white movies.

18The coefficient appears to be driven down primarily by the inclusion of the Metacritic score and the cost
of production variables.

19We have data on the script languages for approximately 70% of the working sample. Within the matched
sample, approximately ninety percent of the movies in our sample have English as main language, while
around 95% have some parts of the script in English. Hence, our results are not driven by foreign-language
movies.
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5.3 Quantile regressions

The model described in Section 3 derived predictions not only for the mean revenue but also

for the variance and the entire distribution of box-office revenue. In this subsection, we look

specifically at the white-nonwhite gap at different quantiles of the distribution. Specifically,

we estimate a series of quantile regressions of the following type:

Qτ (ln yit|Nonwhite,X) = γ0τ + γ1τNonwhiteit + γ2τXit + δt,

where Qτ (ln yit|Nonwhite,X) denotes the τth conditional quantile of the distribution of log

box-office revenue, and τ ∈ {0.05, 0.10, ...0.95}. The main coefficients of interest are the

γ1τ ’s, which tell us how the conditional quantiles of the distribution of log box-office revenue

differ between white and non-white movies.

Figure 3 plots the quantile regression coefficients against the quantiles. As was already

apparent from the box-whisker plots in Figure 2, from the 20th quantile onwards there is

a clear downward trend in the quantile coefficients: The white-nonwhite gap at the lower

quantiles is around 60 log points, while it is only about 30 log points at the upper quantiles.

This further confirms that non-white movies at the low end of the distribution of box-office

revenue are never produced.

5.4 Robustness

We next investigate the robustness of our results to different definitions of movie type and

different dependent variables.

Classification of non-white movies. In Table 3, we consider additional definitions

of “non-white” movies. The first column in the table reproduces the results using our

baseline classification of non-white movies as those in which at least two of the four top-billed

performers are non-white. The first row in the table shows the OLS. results from Table 2,

while the remaining rows present the quantile regression coefficients at selected quantiles.

All specifications include the full set of control variables.

In column 2, we change the definition of non-white movies to include all movies in which at

least one of the four top-billed performers is non-white. We view this as a noisier indicator of
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the movie type, as a non-white actor may be cast in a supporting role in a movie that is mainly

about white characters and storylines (a form of tokenism). Using this definition, the OLS

coefficient is substantially reduced (about 24 log points) but still large and highly statistically

significant. The pattern of quantile regression coefficients is also clearly downward sloping,

with the gap going from about 30 log points at the 10th to about 13 log points at the 90th

percentile. In column 3, we replace the dummy indicator for non-white movies with the

share of non-whites among the four top-billed performers. The results are quantitatively

and qualitatively similar to those of the baseline specification. Finally, in column 4, we

classify a movie as non-white only if the top-billed performer is non-white. According to this

definition, the average white-nonwhite premium is slightly smaller than in the baseline (45

log points), and the pattern of the quantile regression coefficients is also downward sloping.

On the whole, Table 3 shows that the main conclusions regarding the white-nonwhite

premium and the nature of discrimination in the industry are not sensitive to the exact

definition of non-white movies.

Choice of the dependent variable. In all the analysis so far, we have looked at the

logarithm of box-office revenue as the primary dependent variable of interest. The main

reason for this choice is that box-office revenue is readily available for almost all movies, and

it has been traditionally used as the primary metric for assessing the commercial success

of a movie.20 However, producers are likely also to consider the expected costs of a movie

when making production decisions, an aspect that we have ignored so far. In the Opus data

set, we observe a movie’s production budget for about 54% of all movies, so that we can

calculate various measures of profit.21 In Table 4 we examine whether the main results are

robust to different measures of the dependent variable. We restrict attention only to those

20A movie’s revenue also includes the income derived from international box-office sales, home video,
broadcasting, and merchandise. With the rise of streaming services over the past few years, the share of
incomes from domestic box-office revenue has shrunk. Nevertheless, for the period under analysis, we still
think domestic box office revenue is a good measure of a movie’s success.

21It should be noted that the production budget does not represent all of a movie’s production costs,
which typically also include marketing costs. Marketing costs are rarely disclosed in the industry. Also, the
producer typically does not collect all of the box-office revenue, as the theaters also receive a cut, which will
depend on bilateral negotiations between the distributor and the theaters, as well as on the length of time
that a movie has been in theaters. Therefore, our measures should be viewed as only a coarse estimate of a
movie’s profits.
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movies for which we observe the production budget. All specifications include the full set of

control variables.

In column 1, we use the logarithm of the gross profit margin as a dependent variable,

defined as the ratio of domestic box-office revenue to the production budget. The results are

broadly consistent with those in the previous sections: non-white movies have on average a

substantially higher profit margin, and the white-nonwhite gap becomes smaller as we move

from the low to the high end of the distribution.

In column 2, we look instead at a total profit, calculated simply as the difference between

box-office revenue and the production budget. It is still the case that the average non-

white movie earns a higher profit than the average non-white movie (by about $11 million).

However, we no longer observe a clear declining pattern in the white-nonwhite gap as we

move from lower to upper quantiles in the profit distribution. In fact, the gap appears to

be fairly stable at all quantiles of the distribution. This could be partly due to the shape

of the profit distribution, which tends to be quite right-skewed. We confirm this in column

3, where we use the level of box-office revenue (rather than the logarithm) as the dependent

variable. We find a positive premium favoring white movies, but now the pattern of quantile

regression coefficients shows that the gap becomes larger as we move from the low to the

high end of the distribution. We should note that, given the substantial right skew of the

revenue distribution, the predictions regarding the variance of box-office revenue conditional

on production, derived from a model that assumes normal distributions, no longer hold

necessarily.

5.5 The white-nonwhite gap in residual variance

An alternative approach to verify our prediction is to look directly at how residual variance

differs between white and non-white movies. Borrowing from the heteroskedasticity litera-

ture, we posit that the squared residuals from the OLS regression in equation 3 have the

form:

u2
it = exp(Z ′itα),
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where the vector Zit contains a subset of the variables included in the main regression

(potentially all of them); therefore, we estimate regressions of ln û2
it on the racial indicator

and the additional control variables. The results are reported in Table 5.

In column 1, the residual variance is assumed to depend only on the racial indicator.

Consistent with the results of the box-whisker plot and the quantile regressions, we find that

non-white movies have a substantially lower residual variance than white movies. In columns

2 and 3, we progressively add additional controls to the variance regression. The results are

essentially unchanged – the residual variance of non-white movies is 36% to 57% lower than

that of white movies.

In the remaining three columns, we experiment with different definitions of non-white

movies. The coefficients on the racial variables in the residual regressions are always negative

but statistically significant at conventional levels only when the share of non-white performers

is used.

In Table 6 we conduct the same type of analysis, but now examining robustness with

respect to alternative dependent variables, as in Table 4. For all three measures, we find that

the residual variance is lower for non-white movies. However, the difference is statistically

significant only when using the gross profit margin (column 1). These results are broadly

consistent with those of Table 4, where we found that the pattern of quantile regression

coefficients exhibits a downward sloping pattern only when the profit margin is used as the

dependent variable.

Overall, the results in this section, even though somewhat sensitive to the outcome mea-

sure, are broadly consistent with the predictions of the theoretical model with taste-based

discrimination. Non-white movies appear to be held to a higher standard, resulting in a

higher mean and lower variance of box-office revenue for the produced movies.

5.6 Heterogeneity Analysis

In Table 7 we explore heterogeneity of our results along a number of different dimensions.

First, we look at whether our results are driven by movies produced and distributed by

specific segments of the industry. One concern is that perhaps our results are capturing
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differences between movies produced by the major studios (the so-called “Big-6”)22, and

those produced by smaller studios. It could be that the smaller box-office revenue of white

movies reflects the fact that these are often produced by small independent studios, while

non-white movies are passed over by these studios altogether. Columns 1 and 2 of the table,

however, show that this is not the case: the non-white revenue premium is present among

movies distributed by both types of studios.

We next look at differences across genre (columns 3-5 of the table). The non-white

premium is more pronounced among comedies and dramas, where it is more likely that

the script conveys information about the racial composition of the cast. By contrast, the

non-white premium is small and not statistically significant in action/adventure movies.

Columns 6 and 7 examine heterogeneity by time period. We look separately at movies

produced before and after 2007, the median year in our sample. If taste-based discrimination

declines over time, either because of a change in attitudes, or because non-profit maximizing

producers are weeded out by market forces, we would expect the non-white premium to

shrink over time. The premium is in fact slightly larger in the pre-2007 period, but the

difference is small and not statistically significant. It would be hard to conclude based on

this evidence that taste-based discrimination has declined substantially over time.

Finally, in columns 8 and 9 we look at whether the results differ by the gender composition

of the cast. We define “female” movies as those in which (strictly) more than 50% of the

leading actors are women. The non-white premium is considerably larger among female

movies, suggesting that non-white movies must pass an even higher threshold if the cast is

predominantly female.

6 Alternative explanation: is the industry surprised?

The empirical results so far suggest that non-white movies are held to higher production

standards than white movies. In the context of the model from Section 3, this means that

π0b > π0w. We interpreted this difference as indicating that producers dislike producing non-

22These Big-6 studios are: Warner Bros., Paramount Pictures, Walt Disney, Sony / Columbia Pictures,
Universal Studios, and 20th Century Fox. These six studios accounted for almost 90% of the US/Canadian
market as of 2007.
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white movies and face a disutility cost every time they produce one. As a result, πb needs

to be higher than πw, to compensate the producer for the disutility of producing non-white

movies.

An alternative, non mutually exclusive, interpretation is that the industry systematically

underestimates the revenue potential of non-white movies relative to white movies. In other

words, actual box-office revenue for non-white movies is πb, but producers perceive it to be

π̂b = πb − eb, with eb > 0. This explanation would yield similar predictions to the ones

derived from taste-based discrimination, even if the nature of discrimination in the industry

is quite different.

Our model is intrinsically unable to identify taste-based disutility costs and incorrect

beliefs separately. Nevertheless, we can make some progress on the front exploiting the

decision that distributors make on the number of theaters at which the movie would be

displayed over the opening weekend. We argue that this decision reflects the market’s rational

expectation on the movie potential upon production, as distributors’ decision-making is less

likely to be affected by taste-based or statistical discrimination. While producers “sign”

a movie as a creation of theirs and create a permanent bond with the film, studios and

theater owners are more likely to make distribution choices based on purely profit-maximizing

considerations once the movie has been produced. Moreover, statistical discrimination should

also be of relatively less importance at the distribution stage because distributors also observe

the ex-post quality of the movie, rather than just a script..

We conjecture that distributors choose the number of theaters as a function of expected

customer demand. If non-white movies are displayed in fewer theaters than white movies,

this indicates that distributors expect relatively smaller revenue from the non-white movies.

Therefore, if non-white movies have the same level of customer demand but are displayed in

fewer theaters, we conclude that distributors underestimate their revenue potential.

We can test for the hypothesis that the industry systematically underestimates the rev-

enue potential of non-white movies using data on film distribution. Specifically, we first

regress first-weekend box office revenues on the number of theaters in which movies are

projected over the first weekend upon their release. Following Moretti (2011), we interpret
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this as a proxy for the industry expectation of a movie’s box-office revenue. The residuals

from this regression can then be viewed as a measure of the industry’s underestimation or

overestimation of a movie’s revenue potential. If the non-white mean residual is signifi-

cantly larger than the white mean residual, this will suggest that the industry systematically

underestimates non-white movies’ revenue potential relative to white movies.

We start by running a simple bivariate regression of log first-weekend revenues on the

log number of theaters.23 The results, shown in the top panel of Table 8, suggest that the

independent variable explains around 89% of the variability in the dependent (column 1).

The R-squared is relatively stable as further controls are added (columns 2 through 4). The

number of theaters is hence a good predictor of first-weekend revenues.

We then test whether the residuals obtained from the regressions in Table 8, column (1)

are different on average across non-white and white movies. The results are presented in

the bottom panel of the table. We find that the mean residual for non-white movies ranges

between 15 and 20 log points, while the mean residual for white movies is close to zero.

This is equivalent to saying that the industry underestimates the first-weekend success of

non-white movies by around 15% on average, while white movie performance is predicted

much more accurately. The difference between the white and the non-white residual is always

statistically significant.

We therefore conclude that at least part of the explanation for the higher standard to

which non-white movies are held lies in systematic underestimation of non-white movies’

box-office potential by distributors and, likely, producers.

7 Conclusion

This paper presented a framework for detecting the extent and nature of discrimination in

contexts in which decision-makers screen applicants, and the econometrician can only observe

the outcomes of applicants who successfully passed this screening process. The framework

23We pass from 6,990 (Table 2) down to 6,276 observations (Table 8) because of missing information for
opening weekend revenues (310), number of theaters (253), or both (96), or zero first weekend revenues
(55). We choose the log-to-log specification over the level-to-level, log-to-level, and level-to-log specifications
because it fits the data best.
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nests several leading theories of discrimination and derives a rich set of testable empirical

predictions.

We applied these tests in the context of racial differences in the U.S. motion picture

industry. We found consistent and robust evidence that non-white movies earn a box-office

premium. The gap is particularly pronounced at low quantiles of the distribution, suggesting

that non-white movies with low box-office potential are never produced; in other words, those

non-white movies are held to a higher standard in the production decision. This evidence

is consistent with taste-based discrimination on the part of producers, who suffer a utility

loss from producing non-white movies. However, we also find some evidence that the results

may be driven by systematic underestimation by producers and distributors of the revenue

potential of non-white movies. These results are somewhat puzzling because both taste-

based discrimination and systematic underestimation of a movie’s potential because of the

racial composition of its cast should not be able to persist in a competitive equilibrium.

At the same time, the motion picture industry is highly concentrated, with the ”Big Five”

studios24 typically accounting for more than 80% of the industry’s total market share. We

leave the investigation of this puzzle to future research.

While the specific application in this paper looked at the motion picture industry, it

is not difficult to see how our model can be readily applied to other contexts in which

decision makers can use group identifiers to screen applicants, and one can observe the

outcome or productivity of successful applicants. For example, Card et al. (2020) find that

female-authored papers in four leading economics journals receive 25% more citations than

comparable male-authored papers and argue that one possible explanation for these findings

is that referees hold female authors to a higher bar. Other contexts in which this framework

can be applied are a promising avenue for future research.

24Disney, Paramount, Sony/Columbia, Universal Pictures and Warner Bros. The group was formerly
known as the ”Big Six” when it also included 20th Century Fox, which Disney acquired in 2020.
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Tables and Figures

Table 1: Summary Statistics

(1) (2) (3) (4) (5)
VARIABLES N mean sd min max

PANEL A: Classification of movies by type

Share of non-white performers 7,840 0.11 0.22 0 1
At least one non-white 7,840 0.23 0.42 0 1
At least two non-whites 7,840 0.05 0.23 0 1

Distribution of the number of non-white performers (percentages):
0 77.2%
1 17.3
2 3.6
3 1.6
4 0.3

PANEL B: Other variables

Gross revenue(in Millions of 2005 Dollars) 7,205 26 54.3 1.94 ∗ 10−5 804
Ln (Gross revenue) 7,205 14.15 3.39 2.97 20.50
Cost(in Millions of 2005 Dollars) 3,984 37.7 45.1 1.1 ∗ 10−3 907
Ln(Cost) 3,984 16.73 1.45 7.01 20.63
Run time(minutes) 6,851 103.54 18.47 38 600
IMDB score 4,962 6.25 0.97 1.50 9
Metacritic score 4,962 51.55 17.08 1 100
Average age of billed performers 7,762 41.91 10.40 10 99
Star power(in Millions) 7,840 263 304 0 2,350
Ln(Star power) 7,840 17.51 4.53 0 21.58
Number of weeks 6,472 11.62 14.66 1 476
Ln(Number of screens) 6,802 4.36 3.17 0.69 8.43

Distribution of movies by genre (percentages):
Action 16.77
Animation 0.17
Comedy 26.20
Drama 36.58
Other 20.28

Note: Source: authors’ calculations. Data sources are described in Section 4.
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Table 2: The non-white revenue premium

(1) (2) (3) (4)
Sample: Full Full Full Non-missing cost variable

Ln(Gross Revenue) Ln(Gross Revenue) Ln(Gross Revenue) Ln(Gross Revenue)
Race: At least two non-white 1.093∗∗∗ 1.058∗∗∗ 0.560∗∗∗ 0.628∗∗∗

(0.169) (0.159) (0.094) (0.096)

Share of female -1.078∗∗∗ 0.174∗∗ 0.128
(0.142) (0.087) (0.107)

ln(Star Power) 0.234∗∗∗ 0.023∗∗∗ -0.034∗∗∗

(0.008) (0.006) (0.008)

Average age -0.065∗∗∗ -0.004 -0.012∗∗∗

(0.004) (0.002) (0.003)

ln(Cost) 0.556∗∗∗ 0.726∗∗∗

(0.027) (0.025)

=1 if ln(Cost) is missing 6.268∗∗∗ omitted
(0.432)

Movie’s control Y Y

N 6943 6943 6943 3853
R2 0.006 0.125 0.697 0.597

Note: Data sources and specification are described in Sections 4 and 5. Cast control variables
include the share of females, the average age of the four top-billed performers, and ”star power”
(defined as the log of performers’ cumulative box office revenues up to the movie release date).
Movie control variables include indicators for movie genre, indicator of whether the movie is from
the ”Big 6”, run time, Metacritic score, MPAA rating, year fixed effects, and indicators for missing
run time, Metacritic score, or MPAA rating. The movie budget cost (in the log) is included among
the control variables when revenue is the dependent variable. Standard errors in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3: Robustness with respect to different definitions of ”non-white” movies

(1) (2) (3) (4)
Race: At least two non-white At least one non-white Share of non-white Leading role is non-white

Ln(Gross Revenue) Ln(Gross Revenue) Ln(Gross revenue) Ln(Gross revenue)
Race 0.560∗∗∗ 0.221∗∗∗ 0.623∗∗∗ 0.436∗∗∗

(0.094) (0.053) (0.101) (0.075)

Q10 0.574∗∗∗ 0.191∗∗ 0.642 ∗∗∗ 0.417∗∗∗

(0.164) (0.097) (0.178) (0.135)

Q25 0.613∗∗∗ 0.227∗∗∗ 0.740 ∗∗∗ 0.430∗∗∗

(0.131) (0.075) (0.139) (0.107)

Q50 0.492∗∗∗ 0.184∗∗∗ 0.576∗∗∗ 0.315∗∗∗

(0.121) (0.069) (0.135) (0.097)

Q75 0.344∗∗∗ 0.181∗∗∗ 0.424∗∗∗ 0.312∗∗∗

(0.111) (0.064) (0.121) (0.087)

Q90 0.350∗∗∗ 0.217∗∗ 0.509∗∗∗ 0.325∗∗∗

(0.134) (0.073) (0.139) (0.109)

Cast’s control Y Y Y Y

Movie’s control Y Y Y Y
N 6943 6943 6943 6943

Note: Data sources and specification are described in Sections 4 and 5. Cast control variables
include the share of females, the average age of the four top-billed performers, and ”star power”
(defined as the log of performers’ cumulative box office revenues up to the movie release date).
Movie control variables include indicators for movie genre, indicator of whether the movie is from
the ”Big 6”, run time, Metacritic score, MPAA rating, year fixed effects, and indicators for missing
run time, Metacritic score, or MPAA rating. The movie budget cost (in the log) is included among
the control variables when revenue is the dependent variable. Standard errors in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4: Robustness to different dependent variables

(1) (2) (3)
Sample: Non-missing cost variable Non-missing cost variable Non-missing cost variable

Ln(Profit Margin+1) Profit(in million) Revenue(in million)
Race: At least two non-white 0.660∗∗∗ 10.57∗∗∗ 4.76

(0.098) (3.19) (3.33)

Q10 0.591∗∗ 7.09∗∗∗ 3.96∗∗∗

(0.231) (2.64) (1.25)

Q25 0.524∗∗∗ 8.11∗∗∗ 6.31 ∗∗∗

(0.142) (2.00) (1.86)

Q50 0.576∗∗∗ 9.42∗∗∗ 5.64∗∗

(0.092) (1.99) (2.68)

Q75 0.450∗∗∗ 12.56∗∗∗ 8.40∗

(0.088) (3.56) (4.71)

Q90 0.399∗∗∗ 13.21∗ 9.18
(0.116) (7.93) (8.96)

Cast’s control Y Y Y

Movie’s control Y Y Y
N 3853 3853 3853

Note: Data sources and specification are described in Sections 4 and 5. Cast control variables
include the share of females, the average age of the four top-billed performers, and ”star power”
(defined as the log of performers’ cumulative box office revenues up to the movie release date).
Movie control variables include indicators for movie genre, indicator of whether the movie is from
the ”Big 6”, run time, Metacritic score, MPAA rating, year fixed effects, and indicators for missing
run time, Metacritic score, or MPAA rating. The movie budget cost (in the log) is included among
the control variables when revenue is the dependent variable. Standard errors in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: Conditional residual variance regressions:
robustness with respect to different definitions of non-white movies

(1) (2) (3) (4) (5) (6)
Race definition At least two At least two At least two At least one Share Leading role

Dependent variable: Ln(residual square)
Race -0.493∗∗∗ -0.490∗∗∗ -0.340∗∗∗ -0.074 -0.334∗∗∗ -0.104

(0.116) (0.116) (0.110) (0.061) (0.118) (0.088)

Cast’s Control Y Y Y Y Y

Movie’s Control Y Y Y Y

N 6943 6943 6943 6943 6943 6943
R2 0.003 0.012 0.121 0.122 0.123 0.120

Note: Data sources and specification are described in Sections 4 and 5.5. Cast control variables
include the share of females, the average age of the four top-billed performers, and ”star power”
(defined as the log of performers’ cumulative box office revenues up to the movie release date).
Movie control variables include indicators for movie genre, indicator of whether the movie is from
the ”Big 6”, run time, Metacritic score, MPAA rating, year fixed effects, and indicators for missing
run time, Metacritic score, or MPAA rating. The movie budget cost (in the log) is included among
the control variables when revenue is the dependent variable. Standard errors in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Conditional residual variance regressions:
robustness with respect to different dependent variables

(1) (2) (3)
Ln(Profit Margin+1) Profit(in million) Revenue(in million)

Race: At least two non-white -0.289∗ -0.124 -0.053
(0.149) (0.152) (0.145)

Cast Controls Y Y Y

Movie Controls Y Y Y

N 3853 3853 3853
R2 0.133 0.132 0.144

Note: Data sources and specification are described in Sections 4 and 5.5. In all specifications,
the sample is restricted to observations with non-missing data on production costs. Cast control
variables include the share of females, the average age of the four top-billed performers, and ”star
power” (defined as the log of performers’ cumulative box office revenues up to the movie release
date). Movie control variables include indicators for movie genre, indicator of whether the movie
is from the ”Big 6”, run time, Metacritic score, MPAA rating, year fixed effects, and indicators
for missing run time, Metacritic score, or MPAA rating. The movie budget cost (in the log) is
included among the control variables when revenue is the dependent variable. Standard errors in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Heterogeneity Analysis

(1) (2) (3) (4) (5)
Distributor Distributor Genre: Genre: Genre:
Not Big-6 Big-6 Action/Adventure Comedy Drama

Race: At least two non-white 0.719∗∗∗ 0.450∗∗∗ 0.153 0.860∗∗∗ 0.607∗∗∗

(0.139) (0.0920) (0.188) (0.173) (0.142)

Cast Controls Y Y Y Y Y

Movie Controls Y Y Y Y Y

N 4770 2173 1136 1881 2593

(6) (7) (8) (9)
Period: Period: Gender: Gender:

Pre-2007 Post-2008 ≤50% female >50% female
Race: At least two non-white 0.588∗∗∗ 0.452∗∗∗ 0.544∗∗∗ 1.015∗∗∗

(0.131) (0.131) (0.104) (0.315)

Cast Controls Y Y Y Y

Movie Controls Y Y Y Y

N 2774 4169 5932 1011

Note: Data sources and specification are described in Sections 4 and 5.5. In all specifications,
the sample is restricted to observations with non-missing data on production costs. Cast control
variables include the share of females, the average age of the four top-billed performers, and ”star
power” (defined as the log of performers’ cumulative box office revenues up to the movie release
date). Movie control variables include indicators for movie genre, indicator of whether the movie
is from the ”Big 6”, run time, Metacritic score, MPAA rating, year fixed effects, and indicators
for missing run time, Metacritic score, or MPAA rating. The movie budget cost (in the log) is
included among the control variables when revenue is the dependent variable. Standard errors in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 8: Regressions of first-weekend theaters on number of theaters

(1) (2) (3)
VARIABLES First-weekend First-weekend First-weekend

revenues, log revenues, log revenues, log
First-weekend 0.990*** 0.980*** 0.855***
# theaters, log (0.004) (0.005) (0.007)

Cast’s control N Y Y
Movie’s control N N Y

Residuals: white vs non-white
Average difference -0.153 -0.148 -0.200
p-value of t-test (two-sided) 0.011 0.013 0.000
N 6,276 6,276 6,276
R2 0.889 0.890 0.926

Note: Data sources and specification are described in Sections 4 and 6. Cast control variables
include the share of females, the average age of the four top-billed performers, and ”star power”
(defined as the log of performers’ cumulative box office revenues up to the movie release date).
Movie control variables include indicators for movie genre, indicator of whether the movie is from
the ”Big 6”, run time, Metacritic score, MPAA rating, year fixed effects, and indicators for missing
run time, Metacritic score, or MPAA rating. The movie budget cost (in the log) is included among
the control variables when revenue is the dependent variable. Standard errors in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 1: Output of facial classification
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Figure 2: Revenue distribution by number of non-white members
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Figure 3: Coefficients are decreasing over Quantiles
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A Appendix: Proofs

Lemma 1: (Inverse Mills ratio). If X is a normally distributed random variable with mean

µ and variance σ2, then

E(X | X > α) = µ+ σ
φ(α−µ

σ
)

1− Φ(α−µ
σ

)

where φ and Φ are the p.d.f. and c.d.f. of the Normal, respectively.

Proof of Proposition 2:

Part 1: mean and variance of box-office revenue conditional on production

(i) Given two normal distributions π and y, yt ∼ N(µt, σ
2
πt + σ2

yt), so:

E(π|y) = µπ + ρ
σπ√

σ2
πt + σ2

yt

(y − µy)

V ar(π|y) = σ2
π(1− ρ2)

where ρ is the correlation between π and y: ρ = σπ√
σ2
πt+σ

2
yt

.

Hence, E(πt | yt) =
σ2
πt

σ2
πt+σ

2
yt
yt +

σ2
yt

σ2
πt+σ

2
yt
µt ∼ N(µt, σ

2), where σ =
σ2
πt√

σ2
πt+σ

2
yt

Then by Lemma 1 and the law of total expectation,

E(πt|yt > ȳt) = E(πt | E(πt | yt) > π0)

= E(E(πt | yt) | E(πt | yt) > π0)

= µt + σ
φ(π0−µt

σ
)

1− Φ(π0−µt
σ

)
(3)

END.
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(ii) Now for variance:

V ar(πt|yt > ȳt) = V ar(πt|E(πt|yt) > π0)

= E(π2
t |E(πt|yt) > π0)− E2(πt|E(πt|yt) > π0)

= E(E(π2
t |yt)|E(πt|yt) > π0)− E2(πt|E(πt|yt) > π0)

= E([V ar(πt|yt) + E2(πt|yt)]|E(πt|yt) > π0)− E2(E(πt|yt)|E(πt|yt) > π0)

=
σ2
πtσ

2
yt

σ2
πt + σ2

yt

+ E
(
E2(πt|yt)|E(πt|yt) > π0

)
− E2

(
E(πt|yt)|E(πt|yt) > π0

)
(4)

For a standard normal distribution, z ∼ N(0, 1).

E(z2|z > c) =
1

1− Φ(c)

∫ ∞
c

z2

√
2π
exp
(
− z2

2

)
dz

=
1

1− Φ(c)

∫ ∞
c

(
1√
2π
exp
(
− z2

2

)
−
( z√

2π
exp
(
− z2

2

))′)
dz

=
1

1− Φ(c)

∫ ∞
c

(
1√
2π
exp
(
− z2

2

)
−
( z√

2π
exp
(
− z2

2

))′)
dz

=
1

1− Φ(c)

∫ ∞
c

(
1√
2π
exp
(
− z2

2

)
−
( z√

2π
exp
(
− z2

2

))′)
dz

= 1 +
cφ(c)

1− Φ(c)

So, for x ∼ N(µ, σ2)

1 +
c−µ
σ
φ( c−µ

σ
)

1− Φ( c−µ
σ

)
= E

((x− µ
σ

)2

|x− µ
σ

>
c− µ
σ

)
=

1

σ2

(
E(x2|x > c)− 2µE(x|x > c) + µ2

)
Combining with

E(x|x > c) = µ+ σ
φ( c−µ

σ
)

1− Φ( c−µ
σ

)

we obtain

E(x2|x > c) = σ2 + σ2
c−µ
σ
φ( c−µ

σ
)

1− Φ( c−µ
σ

)
+ µ2 + 2µσ

φ( c−µ
σ

)

1− Φ( c−µ
σ

)

Plugging in (4) yields

V ar(πt|E(πt|yt) > π0) =
σ2
πtσ

2
yt

σ2
πt + σ2

yt

+ σ2 + σ2
π0−µt
σ

φ(π0−µt
σ

)

1− Φ(π0−µt
σ

)
− σ2

(
φ(π0−µt

σ
)

1− Φ(π0−µt
σ

)

)2

(I)
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Then, (I) = σ2
πt + σ2(xλ(x)− λ2(x)), by σ2 =

σ4
πt

σ2
πt

+σ2
yt

, x = π0−µt
σ

, λ(x) = φ(x)
1−Φ(x)

END.

Part 2: comparative statics

Building blocks

Lemma 2: For λ(x) = φ(x)
1−Φ(x)

, 3x+
√
x2+8

4
< λ(x) < x+

√
x2+4
2

for x ∈ R.

Proof : Normally, a computer can confirm this lemma. However, when x > 7, both the

numerator and the denominator of λ are so close to 0 that the value for λ is heavily biased.

Hence, this proof will only target the case where x > 7.

First, taking the first derivative of φ(x) = 1√
2π
e−

x2

2 yields φ
′
(x) = −x 1√

2π
e−

x2

2 = −xφ(x).

It follows that

1− Φ(x) =

∫ ∞
x

φ(u)du

= −
∫ ∞
x

φ′(u)

u
du

=
φ(x)

x
− φ(x)

x3
+

3φ(x)

x5
− 15φ(x)

x7
+

∫ ∞
x

105φ(u)

u8
du

=
φ(x)

x
− φ(x)

x3
+

3φ(x)

x5
− 15φ(x)

x7
+

105φ(x)

x9
−
∫ ∞
x

945φ(u)

u10
du

Then

1
1
x
− 1

x3
+ 3

x5
− 15

x7
+ 105

x9

<
φ(x)

1− Φ(x)
<

1
1
x
− 1

x3
+ 3

x5
− 15

x7

when x > 7

Let the left (right) term of the inequality be denoted as LHS (RHS). We first prove

that when x > 7, LHS > 3x+
√
x2+8

4
. Assume that this is true. Then
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LHS >
3x+

√
x2 + 8

4

⇐⇒ (x9 + 3x7 − 9x5 + 45x3 − 315x)2 > (x2 + 8)(x8 − x6 + 3x4 − 15x2 + 105)2

⇐⇒ x18 + 6x16 − 9x14 + 36x12 − 279x10 − 27000x8 + 7695x6 − 28350x4 + 99225x2 >

x18 + 6x16 − 9x14 + 20x12 − 39x10 + 1692x8 − 1545x6 + 3690x4 − 14175x2 + 88200

⇐⇒ 16x12 − 240x10 − 4392x8 + 9240x6 − 32040x4 + 113400x2 − 88200 > 0

Then for x > 7, 16x12 > 16 ∗ 72x10, i.e. 16x12 > 784x10, which is true.

We now prove that when x > 7, RHS < x+
√
x2+4
2

⇐⇒ (x7 + x5 − 3x3 + 15x)2 < (x2 + 4)(x6 − x4 + 3x2 − 15)2

⇐⇒ x14 + 2x12 − 5x10 + 24x8 + 39x6 − 90x4 + 225x2 <

x14 + 2x12 − x10 − 8x8 − 105x6 + 66x4 − 135x2 + 900

⇐⇒ x10 − 8x8 − 36x6 + 39x4 − 90x2 + 225 > 0

Then for x > 7, x10 > 72x8, i.e. x10 > 49x8, which is also true.

A computer can easily confirm that the lemma holds also for x < 7, which completes the

proof. In addition, for x > 0, we can show that x < 3x+
√
x2+8

4
< λ(x) < x+

√
x2+4
2

< x+ 1
x
.

END.

Comparative statics 2(a):

(i) Let x = π0−µ
σ

. Then

d(3)

dµ
= 1+σλ′(x) = 1+σ(−xλ(x)+λ2(x))

(
− 1

σ

)
= −

(
λ(x)−x+

√
x2 + 4

2

)(
λ(x)−x−

√
x2 + 4

2

)
(i)

By Lemma 2, d(3)
dµ

> 0 ∀x ∈ R.

END.
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(ii) Again let x = π0−µ
σ

. Then

d(I)

dµ
= σ2(λ(x) + xλ′(x)− 2λ(x)λ′(x))

(
− 1

σ

)
= −σ

(
λ(x)− x2λ(x) + 3xλ2(x)− 2λ3(x)

)
= σλ(x)

(
λ(x)− 3x+

√
x2 + 8

4

)(
λ(x)− 3x−

√
x2 + 8

4

)

By Lemma 2, d(I)
dµ

> 0 ∀x ∈ R.

END.

Comparative statics 2(b):

(i)
d(3)

dπ0

= σλ′(x) = σ(−xλ(x) + λ2(x))(
1

σ
) = (−x+ λ(x))λ(x) > 0

.

END.

(ii) See the proof for 2(a), (ii).

END.

Comparative statics 2(c):

(i)

d(3)

dσ
= σλ′(x)+λ(x) =

(
−xλ(x)+λ2(x)

)(
− y0 − µt

σ

)
+λ(x) = λ(x)

(
1+x2−xλ(x)

)
(4)

where, again, σ =
σ2
πt√

σ2
πt+σ

2
yt

, x = π0−µt
σ

, x > 0 , and λ(x) = φ(x)
1−Φ(x)

.

When x > 0, we can write (4) = xλ(x)( 1
x

+x−λ(x)). By Lemma 2 and x+
√
x2+4
2

< x+ 1
x
,

(4) > 0 holds.

When x < 0, (4) > 0 clearly holds.

Hence, if σ2
yt increases, then σ2 decreases and (3), i.e. Et decreases too.

END.
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(ii)

d(I)

dσ2
yt

= σ4
yt

(
xλ(x)− λ2(x)

)′
(σ2

πt + σ2
yt)−

(
xλ(x)− λ2(x)

)
(σ2

πt + σ2
yt)

2

= σ4
πt

(
λ(x)

(
1− x2 + 3xλ(x)− 2λ2(x)

)
σ2
πt + σ2

yt

(
− π0 − µ

σ2

)(
− σ2

πt

2(σ2
πt + σ2

yt)
3
2

)
− xλ(x)− λ2(x)

(σ2
πt + σ2

yt)
2

)

= −2x
λ(x)σ4

πt

2(σ2
πt + σ2

yt)
2

(
λ(x)− x

2

)(
λ(x)− x− 1

x

)

When x > 0, x < λ(x) < x+ 1/x, which implies that d(I)

dσ2
yt
> 0.

When x < 0, it is easy to see that d(I)

dσ2
yt
> 0.

Hence, if σ2
yt increases, (I), i.e. V art increases too.

END.
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