Are Ideas Really Getting Harder To Find? R&D Capital and the Idea Production Function

Jakub Growiec¹ Peter McAdam² Jakub Mućk¹

¹SGH Warsaw School of Economics, Poland ²Federal Reserve Bank of Kansas City, USA

> EEA/ESEM Congress Milano, August 24, 2022

Stand with Ukraine

The Idea Production Function in the Growth Literature

- Most R&D-based growth literature assumes that R&D labor is the only input in producing ideas (Romer, 1990; Jones, 1995, 1999; Ha and Howitt, 2007)
- The "lab equipment" specification uses the flow of R&D spending (Rivera-Batiz and Romer, 1991; Kruse-Andersen, 2017)
- Bloom et al. (2020) use effective R&D employment

$$\text{Research Output} = \underbrace{\text{Research Productivity}}_{\alpha_t} \times \text{Researchers.}$$
(1)

• Apparently, no role for R&D capital!

- A E N A E N

Introducing R&D Capital

We introduce **R&D** capital as a factor in producing ideas

- A stock, accumulated through R&D investment
- Arguably, R&D is an increasingly capital-intensive activity: experimentation, numerical computation, prototype testing, etc.
- Practicality and complexity of research equipment has undergone systematic, cumulative changes and productivity improvements over decades and centuries, from Ptolemy's astrolabe or Galileo's telescope to the LHC and VLT
- Modern R&D activity also increasingly uses AI

< □ > < 同 > < 三 > < 三 >

Introducing R&D Capital

We introduce **R&D capital** as a factor in producing ideas

- A stock, accumulated through R&D investment
- Arguably, R&D is an increasingly capital-intensive activity: experimentation, numerical computation, prototype testing, etc.
- Practicality and complexity of research equipment has undergone systematic, cumulative changes and productivity improvements over decades and centuries, from Ptolemy's astrolabe or Galileo's telescope to the LHC and VLT
- Modern R&D activity also increasingly uses AI
- Our expectation
 - Predictions for idea TFP (Γ_t) will differ if the rate of change in R&D capital systematically differs from that of R&D labor

A First Look at the Data (USA, 1968-2019)

Variables	Symbol	Growth Rate
Patent Applications	ΔA	3.211
Patents-in-Force	A	2.410
Patent Applications Relative to Patents-in-Force	$\Delta A/A$	0.782
R&D Capital	\mathcal{K}	3.394
R&D Labor	${\mathcal R}$	2.099
R&D Wage	W	0.848
R&D Expenditure (Real)	Ω	3.319
R&D Expenditure Relative to R&D Wage	Ω/w	2.450
R&D Capital Relative to Patents-in-Force	\mathcal{K}/\mathcal{A}	0.961
R&D Labor Relative to Patents-in-Force	\mathcal{R}/\mathcal{A}	-0.304
Patent Applications Relative to R&D Labor	$\Delta A/\mathcal{R}$	1.090
Patent Applications Relative to Ω/w	$\Delta A/(\Omega/w)$	0.743
Patent Growth Relative to R&D Labor	$(\Delta A/A)/\mathcal{R}$	-1.289
Patent Growth Relative to Ω/w	$(\Delta A/A)/(\Omega/w)$	-1.628

Source: Derived from WIPO, IPUMS CPS.

3

Contribution and Overview of Results

Contribution

- We introduce R&D capital alongside R&D labor into the idea production function (IPF)
- We estimate the IPF allowing for a non-unitary elasticity of substitution and non-neutral productivity changes

$$\Delta \widetilde{A}_{t} = \left[\eta \left(\Gamma_{t}^{\mathfrak{X}} \widetilde{\mathcal{K}}_{t} \right)^{\frac{\xi-1}{\xi}} + (1-\eta) \left(\Gamma_{t}^{\mathfrak{R}} \widetilde{\mathcal{R}}_{t} \right)^{\frac{\xi-1}{\xi}} \right]^{\frac{\xi}{\xi-1}}$$
(2)

Contribution and Overview of Results

Contribution

- We introduce R&D capital alongside R&D labor into the idea production function (IPF)
- We estimate the IPF allowing for a non-unitary elasticity of substitution and non-neutral productivity changes

$$\Delta \widetilde{A}_{t} = \left[\eta \left(\Gamma_{t}^{\mathfrak{X}} \widetilde{\mathcal{K}}_{t} \right)^{\frac{\xi-1}{\xi}} + (1-\eta) \left(\Gamma_{t}^{\mathfrak{R}} \widetilde{\mathcal{R}}_{t} \right)^{\frac{\xi-1}{\xi}} \right]^{\frac{\xi}{\xi-1}}$$
(2)

Overview of Results

- We find an elasticity of substitution $\xi \approx 0.6 0.8$
- We identify a systematic positive trend in R&D labor productivity at about 1% per year on average...
- ...and a cyclical dynamic in R&D capital productivity
- On average, effective supply of R&D capital was lagging behind that of R&D labor, constraining R&D output
- Idea TFP has not been falling but oscillating around a constant mean

R&D Capital

R&D capital is constructed with PIM from BEA data on R&D investment (USA, 1929-2019), $\delta = 15\%$ per annum

→ Ξ →

< □ > < 同 >

R&D Labor

R&D labor is constructed using IPUMS Current Population Survey (CPS) data. We concentrate on **Scientists**; **Engineers**; **Health Professionals**; **Technicians**; **Social Scientists**; and **Mathematical & Computer Occupations**.

< □ > < 同 >

R&D Output and Rental Prices

R&D output

- Patent applications from USPTO/WIPO (Madsen, 2008; Ang and Madsen, 2011; Venturini, 2012)
- Robustness check: growth rate of aggregate TFP (Bloom et al., 2020)

Rental prices in the R&D sector

- Capital rental rate: sum of the real interest rate (from Fred) and the R&D capital deprecation rate
- Wage: real hourly wage in R&D (from CPS)

Estimation

We estimate the normalized CES specification in a 2-equation system (Klump et al., 2007; León-Ledesma et al., 2010)

• This approach combines information from different sides of the production framework (costs and volumes) and exploits cross-equation restrictions

$$\Delta \widetilde{A}_{t} = \left[\eta \left(\Gamma_{t}^{\kappa} \widetilde{\mathcal{K}}_{t} \right)^{\frac{\xi-1}{\xi}} + (1-\eta) \left(\Gamma_{t}^{\kappa} \widetilde{\mathcal{R}}_{t} \right)^{\frac{\xi-1}{\xi}} \right]^{\frac{\xi}{\xi-1}}$$
(3)
$$\ln \left(\frac{r_{t}^{\kappa} \mathcal{K}_{t}}{w_{t}^{\kappa} \mathcal{R}_{t}} \right) = \left(\frac{\xi-1}{\xi} \right) \ln \left(\frac{\Gamma_{t}^{\kappa} \widetilde{\mathcal{K}}_{t}}{\Gamma_{t}^{\kappa} \widetilde{\mathcal{R}}_{t}} \right)$$
(4)

Estimation

We estimate the normalized CES specification in a 2-equation system (Klump et al., 2007; León-Ledesma et al., 2010)

• This approach combines information from different sides of the production framework (costs and volumes) and exploits cross-equation restrictions

$$\Delta \widetilde{A}_{t} = \left[\eta \left(\Gamma_{t}^{\mathfrak{X}} \widetilde{\mathcal{K}}_{t} \right)^{\frac{\xi-1}{\xi}} + (1-\eta) \left(\Gamma_{t}^{\mathfrak{R}} \widetilde{\mathcal{R}}_{t} \right)^{\frac{\xi-1}{\xi}} \right]^{\frac{\xi}{\xi-1}}$$
(3)
$$\ln \left(\frac{r_{t}^{\mathfrak{X}} \mathcal{K}_{t}}{w_{t}^{\mathfrak{R}} \mathcal{R}_{t}} \right) = \left(\frac{\xi-1}{\xi} \right) \ln \left(\frac{\Gamma_{t}^{\mathfrak{X}} \widetilde{\mathcal{K}}_{t}}{\Gamma_{t}^{\mathfrak{R}} \widetilde{\mathcal{R}}_{t}} \right)$$
(4)

We consider three assumptions about technical change (growth in Γ_t^{κ} and $\Gamma_t^{\mathcal{R}}$)

- Exponential trend
- Box-Cox form $\log \Gamma_t^j = \mathbf{B}(\gamma_j, \lambda_j; t)$
- Fourier form $\log \Gamma_t^j = \mathbf{F}(\gamma_j, \kappa_j^{sin}, \kappa_j^{cos}; t)$

Baseline Results

Explained variable: normalized patent applications						
	(3)	(4)	(5)	(6)	(7)	(8)
ξ	0.844***	2.531***	0.737***	0.986***	0.793***	0.760***
$\gamma_{\mathcal{R}}$	0.012***	0.012***	0.011***	-0.013	0.011***	0.011***
$\lambda_{\mathcal{R}}$		2.890***		6.453		
$\gamma_{\mathcal{K}}$			0.004	0.060	-0.016^{***}	-0.013***
$\lambda_{\mathcal{K}}$				5.208		
κ_{κ}^{sin}					0.556***	0.438***
κ_{κ}^{cos}					-0.427***	-0.337***
\mathcal{K} share						0.418***
LATC	Exp.	В	Exp.	В	Exp.	Exp.
KATC	no	no	Exp.	В	F	F
$\xi = 1$	[0.357]	[0.096]	[0.058]	[0.934]	[0.000]	[0.000]
$\lambda_{\mathcal{R}}=1$		[0.014]		[0.775]		
$\lambda_{\mathcal{K}}=1$				[0.279]		
$\gamma_{\mathcal{R}} = \gamma_{\mathcal{K}}$			[0.086]	[0.937]	[0.000]	[0.000]
$\kappa_{cos}^{\mathcal{K}} = \kappa_{sin}^{\mathcal{K}} = 0$	0				[0.000]	[0.006]
res ₄	[0.086]	[0.066]	[0.101]	[0.020]	[0.006]	[0.008]
res ₃	[0.095]	[0.237]	[0.085]	[0.051]	[0.001]	[0.000]
bic	-141.7	-174.2	-133.3	-173.9	-239.0	-237.0

Growiec, McAdam, Mućk (SGH, KC Fed)

2

< □ > < □ > < □ > < □ > < □ >

Robustness Check: Explaining TFP Growth

	Explained variable: normalized TFP growth rate						
	(2)	(3)	(4)	(5)	(6)		
ξ	0.987***	1.001***	0.603***	0.609***	0.601***		
$\gamma_{\mathcal{R}}$	-0.040***	0.405	-0.025***	-0.025***	-0.025***		
$\lambda_{\mathcal{R}}$	0.861***		1.074***				
$\gamma \kappa$		-0.892	-0.029***	-0.035***	-0.034***		
$\lambda_{\mathcal{K}}$			0.423***				
γ_{κ}^{sin}				0.035*	0.025		
γ_{κ}^{cos}				-0.126^{***}	-0.108^{***}		
\mathcal{K} share					0.562***		
LATC	В	Exp.	В	Exp.	Exp.		
KATC	no	E×p.	В	F	F		
$\xi = 1$	[0.611]	[0.650]	[0.000]	[0.000]	[0.000]		
$\lambda_{\mathcal{R}}=1$	[0.063]		[0.579]				
$\gamma_{\mathcal{R}} = \gamma_{\mathcal{K}}$		[0.359]	[0.132]	[0.000]	[0.000]		
$\kappa_{cos}^{\mathcal{K}} = \kappa_{sin}^{\mathcal{K}} = 0$				[0.000]	[0.000]		
$\lambda_{\mathcal{K}}=1$			[0.000]				
res ₃	[0.026]	[0.062]	[0.032]	[0.000]	[0.000]		
res ₄	[0.053]	[0.030]	[0.004]	[0.004]	[0.005]		
bic	-191.2	-197.7	-206.3	-241.3	-237.5		

Growiec, McAdam, Mućk (SGH, KC Fed)

EEA/ESEM, August 24, 2022 11/16

æ

< □ > < □ > < □ > < □ > < □ >

Idea Growth Decomposition (Baseline)

Annual change on HP-filtered contributions

Idea TFP

Hicks-neutral idea TFP backed out from the IPF (in logs, with 95% CI)

Effective Factor Ratio in R&D

Discussion of Baseline Results

Are ideas getting harder to find? Not quite!

- R&D capital is an essential, complementary factor in R&D activity
- In R&D, as in the aggregate economy, capital accumulation outran the growth in labor supply over the long run
- In effective terms, average growth in R&D labor outran that of R&D capital. There is an increasing scarcity of R&D capital required to find the new ideas
- Three main phases of ideas growth
 - (i) sluggish growth in ideas (up to early 1980s)
 - (ii) sharp acceleration in ideas growth (1980s-2000s)
 - (iii) slowdown in ideas growth (since 2000s)

・ロト ・回ト ・ヨト ・ヨト

Discussion of Baseline Results

Are ideas getting harder to find? Not quite!

- R&D capital is an essential, complementary factor in R&D activity
- In R&D, as in the aggregate economy, capital accumulation outran the growth in labor supply over the long run
- In effective terms, average growth in R&D labor outran that of R&D capital. There is an increasing scarcity of R&D capital required to find the new ideas
- Three main phases of ideas growth
 - (i) sluggish growth in ideas (up to early 1980s)
 - (ii) sharp acceleration in ideas growth (1980s-2000s)
 - (iii) slowdown in ideas growth (since 2000s)

Perspectives: secular stagnation vs. transition to a mature digital economy

• The current slowdown in R&D output is likely due to a relative shortage of R&D capital, not sharply falling idea TFP

イロト イボト イヨト イヨト

Thank you for your attention.

Financial support: Narodowe Centrum Nauki (National Science Center) Grant OPUS 14 No. 2017/27/B/HS4/00189

э

イロト イヨト イヨト

- Ang, J. B. and J. B. Madsen (2011). Can second-generation endogenous growth models explain the productivity trends and knowledge production in the asian miracle economies? *Review of Economics and Statistics* 93(4), 1360–1373.
- Bloom, N., C. I. Jones, J. Van Reenen, and M. Webb (2020). Are Ideas Getting Harder to Find? *American Economic Review 110*(4), 1104–1144.
- Ha, J. and P. Howitt (2007, 6). Accounting for Trends in Productivity and R&D: A Schumpeterian Critique of Semi-Endogenous Growth Theory. *Journal of Money, Credit and Banking 39*(4), 733–774.
- Jones, C. I. (1995). Time Series Tests of Endogenous Growth Models. *Quarterly Journal of Economics 110*(2), 495–525.
- Jones, C. I. (1999). Growth: With or Without Scale Effects? American Economic Review 89(2), 139–144.
- Klump, R., P. McAdam, and A. Willman (2007). Factor Substitution and Factor Augmenting Technical Progress in the US. *Review of Economics and Statistics 89*, 183–192.
- Kruse-Andersen, P. K. (2017). Testing R&D-Based Endogenous Growth Models. Working paper, University of Copenhagen.
- León-Ledesma, M. A., P. McAdam, and A. Willman (2010, September). Identifying the Elasticity of Substitution with Biased Technical Change. *American Economic Review 100*(4), 1330–1357.

Growiec, McAdam, Mućk (SGH, KC Fed)

- Madsen, J. B. (2008, Mar). Semi-endogenous versus schumpeterian growth models: testing the knowledge production function using international data. *Journal of Economic Growth 13*(1), 1–26.
- Rivera-Batiz, L. A. and P. M. Romer (1991). Economic Integration and Endogenous Growth. *Quarterly Journal of Economics* 106(2), 531–555.
- Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy 98, S71–S102.
- Venturini, F. (2012). Looking into the black box of schumpeterian growth theories: An empirical assessment of r&d races. *European Economic Review 56*(8), 1530 – 1545.

イロト イボト イヨト イヨト