Asymmetric Shocks and Heterogeneous Worker Mobility in the Euro Zone

Riccardo Franceschin¹ & Simon Görlach²

¹Sabanci University

²Bocconi University, CReAM, IGIER, IZA

August 2022

Risk sharing in the eurozone

- Labor mobility a corner stone in optimal currency area theory $\overline{(Mundell, 1961)}$, when
 - neither currencies can adjust
 - nor fiscal policy is integrated
- Labor mobility meant to dissipate asymmetric shocks in absence of flexible exchange rates and compensating fiscal policy
- Renewed attention since the euro crisis
 - euro zone with (almost) no integrated fiscal policy
 - integrated labor markets as a core pillar of Single Market
- Common assumption in models used to analyze this: homogeneity of workers.

Migration in Europe

- Empirical fact for many contexts of international migration: higher geographic mobility of high skilled workers (Grogger and Hanson, 2011; Docquier and Rapoport, 2012; Clemens and Mendola, 2020; Bütikofer and Peri, 2021)
- Inner-European migration no exception:

Source: European Union Labour Force Survey.

more

This paper

- Formulates a dynamic spatial equilibrium model with frictions and geographic mobility of heterogeneous workers
 - different skill groups, imperfect substitutes in production
 - migration preference correlated with skill
- Documents higher mobility of more educated workers within Europe
 - May mitigate potential of labor mobility to absorb asymmetric shocks
 - Brain drain may in fact aggravate shocks for individual countries
- Calibrates model to European data to evaluate role of labor mobility.

Labor mobility reduces costs of permanent asymmetric shocks

- labor mobility increases welfare of stayers in a country hit by a negative productivity shock
- limits the effects on unemployment and nominal wages in that country
- raises prices, leading to a real wage loss for low skilled workers
- same for negative shock to demand for a country's output

Labor mobility reduces costs of permanent asymmetric shocks

- labor mobility increases welfare of stayers in a country hit by a negative productivity shock
- limits the effects on unemployment and nominal wages in that country
- raises prices, leading to a real wage loss for low skilled workers
- same for negative shock to demand for a country's output

Gains distributed very unevenly

- high skilled workers almost halve their welfare losses
- low skilled workers reduce loss by about one tenth

Labor mobility reduces costs of permanent asymmetric shocks

- labor mobility increases welfare of stayers in a country hit by a negative productivity shock
- limits the effects on unemployment and nominal wages in that country
- raises prices, leading to a real wage loss for low skilled workers
- same for negative shock to demand for a country's output

Gains distributed very unevenly

- high skilled workers almost halve their welfare losses
- low skilled workers reduce loss by about one tenth

Labor mobility in Europe too low

- for negative overall effect of brain drain on low skill workers
- to mitigate short-lived shocks even for the high skilled.

Labor mobility reduces costs of permanent asymmetric shocks

- labor mobility increases welfare of stayers in a country hit by a negative productivity shock
- limits the effects on unemployment and nominal wages in that country
- raises prices, leading to a real wage loss for low skilled workers
- same for negative shock to demand for a country's output

Gains distributed very unevenly

- high skilled workers almost halve their welfare losses
- low skilled workers reduce loss by about one tenth

Labor mobility in Europe too low

- for negative overall effect of brain drain on low skill workers
- to mitigate short-lived shocks even for the high skilled.

Comparison to integrated fiscal policy

- fiscal transfers would offer faster relief than migration
- but longer-term not superior to integrated labor markets.

Overview of the model

- Heterogeneous workers who differ in productivity and in their preference for locations
- National labor markets with **search frictions** that are linked through **worker mobility**
- Employment in skill-specific intermediate goods market, whose outputs are imperfect substitutes in production of final national goods, traded and consumed internationally
- Nash bargaining, but sluggish wage adjustment
- Taylor rules for economies inside and outside the euro area.

Production

Every worker in country j produces 1 unit of an intermediate good, which can be $\{L_j, H_j\}$, with value $\{p_{j,L}, p_{j,H}\}$

 Intermediate goods combined by competitive firms to produce a country's final output (omitting time subscripts throughout)

$$Y_j = A_j \left((1 - \alpha_j) H_j^{
ho} + \alpha_j L_j^{
ho}
ight)^{rac{1}{
ho}}$$

• National goods have potentially different prices P_j.

more

Model

Utility

Individual *i* chooses consumption vector $(c_{i,1}, ..., c_{i,N})$ and location j_i generating per period utility flow

$$\mathcal{U}(c_{i,1},...,c_{i,N};j_i) = \left(\sum_j \psi_{j,j_i} c_{i,j}^{\xi}\right)^{\frac{1}{\xi}} + \epsilon_{i,j_i}$$

- tastes ψ_{j,j_i} for different countries' goods such that $\sum_j \psi_{j,j_i} = 1$
- location preference shock $\epsilon_{i,j}$ with mean μ_{j,s_i,n_i}
- location chosen every period, migration at cost k_{j,d} (function of distance between current location j and destination d).

optimal consumption

Values of working and unemployment

Working and unemployed individuals respectively maximize

$$W_{j,s,n} = \frac{W_{j,s,n} + d_j - T_j}{P_j^u} + \epsilon_j + \frac{W_{j,s,n}}{1+r}$$
$$U_{j,s,n} = \frac{b_j + d_j - T_j}{P_j^u} + \epsilon_j + \frac{U_{j,s,n}}{1+r},$$

with

- expected continuation values $\mathbb{W}_{j,s,n}$ and $\mathbb{U}_{j,s,n}$ details
- price per utility under optimal consumption

$$P_j^{\mu} = \left(\sum_k P_k^{(1-\xi)} \psi_{k,j}^{\xi}\right)^{\frac{1}{1-\xi}}$$

٠

Model

Labor market

Otherwise (almost) standard DMP

- free firm entry until $Vac_{j,s} = 0$
- Nash bargaining for natives determines w_{j,s,j}
- immigrants $(n \neq j)$ suffer a wage penalty $w_{j,s,n} = \nu_j w_{j,s,j}$
- Cobb-Douglas matching probability
 ^ζ (∑_n u_{j,s,n})^η v^{1-η}_{j,s} with random matches across nationalities n.

details

Equilibrium employment level $\sum_{n} e_{j,s,n}$ in each sector and country then determines supply of intermediate goods

$$H_j = \sum_n e_{j,H,n}$$
 and $L_j = \sum_n e_{j,L,n}$.

Nominal wage rigidity and exchange rates

Role for monetary policy: we assume national central banks sets nominal interest rates according to Taylor-rule

$$int_{j,t} = int + \rho \ int_{j,t-1} + (1 - \rho) \left(\phi_y \Delta output_{j,t} + \phi_p \Delta inflation_{j,t} \right),$$

No-arbitrage then requires

$$(1+int_{j,t})=(1+int_{j',t})\mathbb{E}\left(\frac{E_{j',t+1}}{E_{j',t}}\cdot\frac{E_{j,t}}{E_{j,t+1}}\right),$$

with exchange rates $E_{j,t}$ relative to the euro.

Data

Calibration of 277 parameters to 286 moments from **EU-LFS**, **EU-SILC** and **Eurostat** data for

- 17 countries, grouped as AT, (BE and LU), DE, DK, ES, FR, IT, NL, PT, high income non-euro countries (CH, SE, UK), low income non-euro countries (CZ, HU, PL, RO)
- 2012-2017.

Migration flows constructed from EU-LFS

- info on where respondents were last year
- info on nationality only in broad groups
 ⇒ assume migration only between country of own nationality and any other location (in both directions)

Bilateral migrant stocks from Eurostat

• allows separate identification of taste parameters $\mu_{j,s,n}$ and costs $k_{j,d}$.

Asymmetric shocks

We examine different types of shocks

- Unexpected permanent shock to Italian TFP
- Non-permanent shock
- Shock to southern European countries
- Shock to demand for Italian output.

Unexpected permanent shock to Italian TFP (-1%)

(b) Total unempl.

(d) Output/capita

Unexpected permanent shock to Italian TFP (-1%)

Unexp. perm. shock to either productivity or demand

- Migration response concentrated among the high skilled
- Effects on wages and unemployment of the high skilled largely muted through migration
- Smaller mitigating effect also for the low skilled
- Short-run effect on output smaller with migration
- Long-run effect on output larger with migration
- <u>Price</u> of national good rises more strongly with migration following productivity shock
- <u>Price</u> of national good falls less strongly with migration following demand shock.

Weaker effects when

- shock affects other countries too show
- shock is non-permanent.

Permanent vs Non-Permanent

Welfare effects of perm. shock to Italian TFP (-1%)

Welf. effects of perm. demand shock to Italian good (-1%)

Effect of migration on welfare gap between skill groups

Following a -1% permanent shock to

more

Common fiscal policy

Integrated unemployment insurance as an alternative shock absorption channel

- Government budget constraint becomes $\sum_{j} b_{j} \sum_{s} \sum_{n} u_{j,s,n} = \sum_{j} T_{j} \sum_{s} \sum_{n} (e_{j,s,n} + u_{j,s,n})$
- Italian gross wages \downarrow , net wages \uparrow

More interesting: comparison to migration

- Ambiguous effect on Italian net wages:
 - \downarrow relative to migration if workers cannot leave following the shock \rightarrow dominates in the long-run for high-skilled
 - \uparrow relative to migration because part of unemployment benefits covered by foreign taxes

 \rightarrow dominates in the short-run for both groups

• Italian unemployment rate for all skill types \uparrow compared to migration.

Common fiscal policy, following 1% decrease in demand for Italian output

Common fiscal policy, following 1% decrease in demand for Italian output

(b) High skilled welfare

Tax on skilled emigrants

Any positive tax welfare decreasing (even for stayers)

- We choose a tax rate that following a -1% TFP shock equates loss for low skilled and loss for high skilled workers in Italy
 → ca 1% of high skilled foreign earnings more
- Italian high skilled net emigration ↓, little effect on low skilled emigration
- High skilled unemployment ↑
- High skilled wage \downarrow

Tax on skilled emigrants, following 1% decrease in TFP in Italy

Conclusions

- Heterogeneity in workers' skill levels and migration preferences can attenuate the stabilizing function of labor mobility
- Heterogeneous effects with skilled workers gaining disproportionately
- Effect of migration similar for productivity and demand shocks (though effects on other countries very different)
- Overall beneficial effect of migration for all worker groups in country affected by shock
- Migration in Europe too low for brain drain to reverse beneficial effect also on low skilled workers
- Migration also too low to absorb temporary shocks.

riccardo.franceschin@sabanciuniv.edu

Appendix

Appendix

Migration

Preference shock ϵ drawn from type I EV distribution with mean $\mu_{j,s,n}$

• probabilities of staying in country *j* for workers and unemployed:

$$\pi_{j,s,n,W}^{j} = \frac{\exp(\mu_{j,s,n} + (1 - x_{j,s})W_{j,s,n} + x_{j,s}U_{j,s,n})}{\exp(\mu_{j,s,n} + (1 - x_{j,s})W_{j,s,n} + x_{j,s}U_{j,s,n}) + \sum_{h \neq j} \exp(\mu_{h,s,n} + f_{h,s}W_{h,s,n} + (1 - f_{h,s})U_{h,s,n} - k_{j,h})}$$

$$\pi_{j,s,n,U}^{j} = \frac{\exp(\mu_{j,s,n} + f_{j,s} W_{j,s,n} + (1 - f_{j,s}) U_{j,s,n})}{\exp(\mu_{j,s,n} + (1 - f_{j,s}) W_{j,s,n} + f_{j,s} U_{j,s,n}) + \sum_{h \neq j} \exp(\mu_{h,s,n} + f_{h,s} W_{h,s,n} + (1 - f_{h,s}) U_{h,s,n} - k_{j,h})}.$$

 probabilities of moving from country j destination d for workers and unemployed:

$$\pi_{j,s,n,W}^{d} = \frac{\exp(\mu_{d,s,n} + f_{d,s}W_{d,s,n} + (1 - f_{d,s})U_{d,s,n} - k_{j,d})}{\exp(\mu_{j,s,n} + (1 - x_{j,s})W_{j,s,n} + x_{j,s}U_{j,s,n}) + \sum_{h \neq j} \exp(\mu_{h,s,n} + f_{h,s}W_{h,s,n} + (1 - f_{h,s})U_{h,s,n} - k_{j,h})}$$

$$\pi_{j,s,n,U}^{d} = \frac{\exp(\mu_{d,s,n} + f_{d,s}W_{d,s,n} + (1 - f_{j,s})U_{d,s,n} - k_{j,d})}{\exp(\mu_{j,s,n} + (1 - f_{j,s})W_{j,s,n} + f_{j,s}U_{j,s,n}) + \sum_{h \neq j} \exp(\mu_{h,s,n} + f_{h,s}W_{h,s,n} + (1 - f_{h,s})U_{h,s,n} - k_{j,h})}.$$

Value of a filled vacancy

Firms match with searching workers in their country, but cannot discriminate on nationality.

Profit for an intermediate goods producer in sector $s \in \{H, L\}$ of country j generates per job filled with an n national is

$$J_{j,s,n} = \frac{p_{j,s} - w_{j,s,n}}{P_j^u} + \frac{\mathbb{E}_n \left[\left(x_{j,s} + (1 - x_{j,s}) (1 - \pi_{j,s,n,W}^j) \right) Vac_{j,s} + (1 - x_{j,s}) \pi_{j,s,n,W}^j J_{j,s,n} \right]}{1 + r_j}$$

with

 $x_{j,s}$ the probability of exogenous separations in sector s of country j

 $\pi_{j,s,n,W}^{j}$ the probability of a worker in country j staying.

Transition between steady states

We want to evaluate outcomes following asymmetric changes in productivity and product demand

- steady state outcomes with and without integrated labor markets
- transitions between steady states
- realistic responses in unemployment/wages

Transition between steady states

We want to evaluate outcomes following asymmetric changes in productivity and product demand

- steady state outcomes with and without integrated labor markets
- transitions between steady states
- realistic responses in unemployment/wages

Wages (of natives) in each country follow a path

$$w_{j,s,j,t} = \frac{E_{j,t-1}}{E_{j,t}} \omega w_{j,s,j,t-1} + (1-\omega) w_{j,s,j,t}^*,$$

where

- $w_{j,s,j,t}^*$ would have split surplus according to Nash-bargaining
- $E_{j,t}$ is country j's exchange rate relative to the euro
- ω is a persistence parameter
- \Rightarrow Role for monetary policy.

Location preferences

Note: Correlation of estimated bilateral preference parameters $\mu_{d,s,n}$ with countries *n* and *d* sharing an official language, each residualized after controlling for origin-skill effects; shaded areas indicate 95% confidence intervals on the linear fit; when countries are grouped for the model, a group has a language if at least one country in the group has it as an official language; source: CEPII GeoDist database.

Appendix

Model fit

Calibration

Panel A: Joint Calibration									
Parameter(s)	Notation	estimates	Target						
		25th	50th	75th	(Source)				
Means of location	$\mu_{d,s,n}$	-3.8889	-0.0647	2.4268	Migrations flows				
shock distributions					(EU-LFS)				
Migration cost	$k_0 + k_1 D_{j,d}$	3.978	4.397	5.132	Migration stocks				
					(Eurostat)				
Taste for different goods	$\psi_{j,j}$	0.0684	0.0767	0.1086	Price level				
					(Eurostat)				
Consumption home bias	ζ_j	0.303	0.499	0.551	Import share				
					(OECD)				
Vacancy cost	$\kappa_{j,s}$	0.0193	0.0345	0.0505	Unemployment				
					(EU-LFS)				
TFP	A_j	130.1	167.9	186.9	GDP				
					(Eurostat)				
Low skill efficiency	α_j	0.4232	0.4384	0.4771	Skill premium				
					(EU-SILC)				
Migrant wage penalty	ν_j	0.9429	0.9679	0.9735	Income difference				
					(EU-SILC)				
Panel B: Exogenously Set Parameters									
Parameter(s)	Notation	Pero	centiles of	estimates	Source				
		25th	50th	75th					
Replacement ratio	$b_j/w_{j,1,j}$	60.1%	70.3%	83.4%	OECD				
Separation Rates	xj	0.0225	0.0352	0.0512	EU-LFS				
Skills elasticity	$1/(1 - \rho)$		4	(tried 2-6)	Caliendo et al (forthcoming)				
Goods elasticity	$1/(1 - \xi)$		4	(tried 2-6)	Feenstra et al (2018)				
Bargaining power	β		0.72		Shimer (2005)				
Matching elasticity	η		0.72		Shimer (2005)				
Discount Rate	r		5%	(tried 1-10%)					

Migration in Europe

Source: European Union Labour Force Survey.

Appendix

Model with heterogeneous workers and no frictions

Two countries $j \in \{1, 2\}$ with

$$Y_j = A_j (lpha L_j^
ho + (1-lpha) H_j^
ho)^{1/
ho}$$

Payoffs to low and high skilled individuals i of nationality $n \in \{1,2\}$ in country j

$$\begin{aligned} u_{n,j}^{L} &= w_{j}^{L} + \epsilon_{i,j}^{L} = \alpha A_{j}^{\rho} (Y_{j}/L_{j})^{1-\rho} + \epsilon_{i,j}^{L}, \\ u_{n,j}^{H} &= w_{j}^{H} + \epsilon_{i,j}^{H} = (1-\alpha) A_{j}^{\rho} (Y_{j}/H_{j})^{1-\rho} + \epsilon_{i,j}^{H}, \end{aligned}$$

with $\epsilon_{i,j}^{s} \sim EV$ with mean $\mu_{n,j}^{s}$, $s \in \{L, H\}$ and

• higher mobility of the high skilled, $\mu_{n,i}^L - \mu_{n,n}^L < \mu_{n,j}^H - \mu_{n,n}^H$ for $j \neq n$

• realistic values $\alpha < 0.5$, $\rho < 1$, $H_j \leq L_j$.

 \Rightarrow unambiguously negative effect of migration on sending country.

Model with heterogeneous workers and no frictions

Baseline parameterization: $\alpha = 0.4$, $H_j = L_j = 1$, $A_1 = 1$, $A_2 = 2$, $\rho = 0.75$, $\mu_{n,j}^L = -1$ and $\mu_{n,n}^L = \mu_{n,j}^H = \mu_{n,n}^H = 0$

Labor Market

Search and matching

- Workers differ in skill s_i ∈ {L, H}, origin nationality n_i, and correlated location preference
- Firms in intermediate goods sectors {L_j, H_j} hire high or low skilled workers in segmented labor markets of each country j
- Every worker produces 1 unit of an intermediate good, with value $\{p_{j,L}, p_{j,H}\}$.

Production

Every worker produces 1 unit of an intermediate good, which can be $\{L_j, H_j\}$, with value $\{p_{j,L}, p_{j,H}\}$

• Intermediate goods combined by competitive firms to produce a country's final output (omitting time subscripts throughout)

$$Y_j = A_j \left(\alpha_j H_j^{\rho} + (1 - \alpha_j) L_j^{\rho} \right)^{\frac{1}{\rho}}$$

• National goods have potentially different prices P_j.

Utility

Individual *i* chooses consumption vector $(c_{i,1}, ..., c_{i,N})$ and location j_i generating per period utility flow

$$\mathcal{U}(\boldsymbol{c}_{i,1},...,\boldsymbol{c}_{i,N};j_i) = \left(\sum_{j} \psi_j \boldsymbol{c}_{i,j}^{\xi}\right)^{rac{1}{\xi}} + \epsilon_{i,j_i}$$

- tastes ψ_j for different countries' goods such that $\sum_i \psi_j = 1$
- location preference shock $\epsilon_{i,j}$ with mean μ_{j,s_i,n_i}
- location chosen every period, migration at cost $k_{j,d}$ (function of distance between current location j and destination d).

Appendix

Consumption

Budget constraint

$$\sum_{j} P_j c_{i,j} = \mathbb{1}_{e_i} w_{j_i,s_i} + (1 - \mathbb{1}_{e_i}) b_{j_i} + d_{j_i} - T_{j_i} \equiv I_i.$$

 s_i indicates individual *i*'s skill level/sector they can work $\mathbb{1}_{e_i}$ indicates *i*'s employment status w_{j_i,s_i} is *i*'s labor income if working in country *j* b_{j_i} is the unemployment benefit level in country *j* d_{j_i} are country *j*'s firms' profits, distributed as lump-sum transfer T_{j_i} are lump-sum taxes.

Yields demand

$$c_{i,j} = I_i \left(\frac{\psi_j}{P_j}\right)^{\frac{1}{1-\xi}}$$

Values of working and unemployment

Working and unemployed individuals respectively maximize

$$\begin{aligned} \mathcal{W}_{j,s,n} &= \frac{w_{j,s} + d_j - T_j}{P^u} + \epsilon_j + \frac{\mathbb{W}_{j,s,n}}{1 + r} \\ \mathcal{U}_{j,s,n} &= \frac{b_j + d_j - T_j}{P^u} + \epsilon_j + \frac{\mathbb{U}_{j,s,n}}{1 + r}, \end{aligned}$$

with

- expected continuation values $\mathbb{W}_{j,s,n}$ and $\mathbb{U}_{j,s,n}$ details
- price per utility under optimal consumption

$$P^{u} = \left(\sum_{j} P_{j}^{(1-\xi)} \psi_{j}^{\xi}\right)^{\frac{1}{1-\xi}}$$

.

Appendix

Timing

Value of a filled vacancy

Firms match with searching workers in their country, but cannot discriminate on nationality.

Then intermediate goods producers in sector $s \in \{H, L\}$ of country j generate expected profit per job

$$\mathbb{E}_{n}J_{j,s,n} = p_{j,s} - w_{j,s} + \frac{\mathbb{E}_{n}\left[\left(x_{j,s} + (1 - x_{j,s})(1 - \pi_{j,s,n,W}^{j})\right) Vac_{j,s} + (1 - x_{j,s})\pi_{j,s,n,W}^{j}J_{j,s,n}\right]}{1 + r},$$
with

 $x_{j,s}$ the probability of exogenous separations in sector s of country j $\pi_{j,s,n,W}^{j}$ the probability of a worker in country j staying \mathbb{E}_{n} the expectation over nationalities among the unemployed.

Migration

Preference shock ϵ drawn from type I EV distribution with mean $\mu_{j,s,n}$

• probabilities of staying in country *j* for workers and unemployed:

$$\pi_{j,s,n,W}^{j} = \frac{\exp(\mu_{j,s,n} + (1 - x_{j,s})W_{j,s,n} + x_{j,s}U_{j,s,n})}{\exp(\mu_{j,s,n} + (1 - x_{j,s})W_{j,s,n} + x_{j,s}U_{j,s,n}) + \sum_{h \neq j} \exp(\mu_{h,s,n} + f_{h,s}W_{h,s,n} + (1 - f_{h,s})U_{h,s,n} - k_{j,h})}$$

$$\pi_{j,s,n,U}^{j} = \frac{\exp(\mu_{j,s,n} + f_{j,s} W_{j,s,n} + (1 - f_{j,s}) U_{j,s,n})}{\exp(\mu_{j,s,n} + (1 - f_{j,s}) W_{j,s,n} + f_{j,s} U_{j,s,n}) + \sum_{h \neq j} \exp(\mu_{h,s,n} + f_{h,s} W_{h,s,n} + (1 - f_{h,s}) U_{h,s,n} - k_{j,h})}.$$

 probabilities of moving from country j destination d for workers and unemployed:

$$\pi_{j,s,n,W}^{d} = \frac{\exp(\mu_{d,s,n} + f_{d,s}W_{d,s,n} + (1 - f_{d,s})U_{d,s,n} - k_{j,d})}{\exp(\mu_{j,s,n} + (1 - x_{j,s})W_{j,s,n} + x_{j,s}U_{j,s,n}) + \sum_{h \neq j} \exp(\mu_{h,s,n} + f_{h,s}W_{h,s,n} + (1 - f_{h,s})U_{h,s,n} - k_{j,h})}$$

$$\pi_{j,s,n,U}^{d} = \frac{\exp(\mu_{d,s,n} + f_{d,s}W_{d,s,n} + (1 - f_{j,s})U_{d,s,n} - k_{j,d})}{\exp(\mu_{j,s,n} + (1 - f_{j,s})W_{j,s,n} + f_{j,s}U_{j,s,n}) + \sum_{h \neq j} \exp(\mu_{h,s,n} + f_{h,s}W_{h,s,n} + (1 - f_{h,s})U_{h,s,n} - k_{j,h})}.$$

Labor market

Otherwise (almost) standard DMP

- Nash bargaining
- free firm entry until Vac_{j,s} = 0
- expected profit $\mathbb{E}_n J_{j,s,n}$, with expectation over hired nationalities
- Cobb-Douglas matching probability
 ^ζ (∑_n u_{j,s,n})^η v^{1-η}_{j,s} with random matches across nationalities n.

details

Equilibrium employment level $\sum_{n} e_{j,s,n}$ in each sector and country then determines supply of intermediate goods

$$H_j = \sum_n e_{j,H,n}$$
 and $L_j = \sum_n e_{j,L,n}$.

Appendix

Flows into and out of unemployment

Flow into unemployment:

$$infl_{j,s,n}^{u} = x_{j,s}\pi_{j,s,n,W}^{j}e_{j,s,n} + (1 - f_{j,s})\left(\sum_{\iota \neq j}\pi_{\iota,s,n,W}^{j}e_{\iota,s,n} + \sum_{\iota \neq j}\pi_{\iota,s,n,U}^{j}u_{\iota,s,n}\right)$$

Flow into employment:

$$infl_{j,s,n}^{e} = f_{j,s}\pi_{j,s,n}^{j}u_{j,s,n,U} + f_{j,s}\left(\sum_{\iota\neq j}\pi_{\iota,s,n,W}^{j}e_{\iota,s,n} + \sum_{\iota\neq j}\pi_{\iota,s,n,U}^{j}u_{\iota,s,n}\right)$$

Flow from unemployment:

$$outfl_{j,s,n}^u = (1 - \pi_{j,s,n,U}^j + f_{j,s}\pi_{j,s,n,U}^j)u_{j,s,n}$$

Flow from employment:

$$outfl^e_{j,s,n} = (1 - \pi^j_{j,s,n,W} + x_{j,s}\pi^j_{j,s,n,W})e_{j,s,n}.$$

Steady state equilibrium

Balanced worker flows:

 $\forall j, s, n: \quad outfl_{j,s,n}^u = infl_{j,s,n}^u \qquad \text{and} \qquad outfl_{j,s,n}^e = infl_{j,s,n}^e$

Final goods demand equals supply:

$$\forall j: \quad \left(\sum_{j} D_{j} + \sum_{j} \sum_{s} \sum_{n} w_{j,s} e_{j,s,n}\right) \left(\frac{\psi_{j}}{P_{j}}\right)^{\frac{1}{1-\xi}} = A_{j} \left(\alpha_{j} L_{j}^{\rho} + (1-\alpha_{j}) H_{j}^{\rho}\right)^{\frac{1}{\rho}}$$

Intermediate goods demand equals supply:

$$\forall j: \quad \mathbf{Y}_j \left(\frac{P_j(1-\alpha_j)A_j^{\rho}}{p_{j,H}}\right)^{\frac{1}{1-\rho}} = \sum_n e_{j,H,n} \quad \text{and} \quad \mathbf{Y}_j \left(\frac{P_j\alpha_jA_j^{\rho}}{p_{j,L}}\right)^{\frac{1}{1-\rho}} = \sum_n e_{j,L,n}$$

Balanced government budget: $\forall j: \quad b_j \sum_s \sum_n u_{j,s,n} = T_j \sum_s \sum_n (e_{j,s,n} + u_{j,s,n})$

+ Free entry condition

- + Nash bargaining determines wages
- + Matches are formed according to the matching function
- + Individuals choose the basket of goods and the country of residence to maximize their values $W_{j,s,n}$ or $U_{j,s,n}$.

Labor market

Value of an open vacancy

$$Vac_{j,s} = -\kappa_{j,s} + \frac{q_{j,s}\Pi_{j,s} + (1-q_{j,s})Vac_{j,s}}{1+r},$$

with

cost $\kappa_{j,s}$ of an open vacancy

 $q_{i,s}$ the probability that vacancy is filled

 $\Pi_{j,s} = \mathbb{E}_n J_{j,s,n}$ expected profit if vacancy is filled (expectation over nationalities composition within the unemployment pool)

Appendix

Labor market

Free firm entry reduces the value of a vacancy to zero

$$(1+r)\kappa_{j,s}=q_{j,s}\Pi_{j,s}$$

Nash bargaining shares surplus $S_{j,s,n} = J_{j,s,n} - Vac_{j,s} + W_{j,s,n} - U_{j,s,n}$, such that wage $w_{j,s}$ satisfies

$$\beta \sum_{n} J_{j,s,n} e_{j,s,n} = (1-\beta) \sum_{n} (W_{j,s,n} - U_{j,s,n}) e_{j,s,n}$$

with bargaining power of workers β , and share $e_{j,s,n}$ of nationality *n* among workers of skill *s* in country *j*.

Labor market

Firms cannot discriminate based on workers' nationality, searching workers matched with vacancies at random within country and skill sectors.

Matching function

$$m\left(\sum_{n}u_{j,s,n},v_{j,s}\right)=\varsigma\left(\sum_{n}u_{j,s,n}\right)^{\eta}v_{j,s}^{1-\eta}$$

with matching efficiency $\varsigma,$ and elasticity η with respect to the unemployment pool.

Labor market

Labor market tightness

$$\theta_{j,s}=\frac{V_{j,s}}{u_{j,s}},$$

hence job finding probability

$$f_{j,s} = \varsigma \theta_{j,s}^{1-\eta},$$

vacancy filling probability

$$q_{j,s} = \varsigma \theta_{j,s}^{-\eta} = f_{j,s} \theta_{j,s}.$$

Continuation values

Under the assumption that tastes ϵ_j are extreme value distributed, expected continuation values in the two employment states are

$$\mathbb{W}_{j,s,n} = \\ \log \left[\exp((1 - x_{j,s}) W_{j,s,n} + x_{j,s} U_{j,s,n}) + \sum_{d \neq j} \exp(f_{d,s} W_{d,s,n} + (1 - f_{d,s}) U_{d,s,n} - k_{j,d}) \right] + \gamma$$

and

$$\mathbb{U}_{j,s,n} = \\ \log \left[\exp(f_{j,s} W_{j,s,n} + (1 - f_{j,s}) U_{j,s,n}) + \sum_{d \neq j} \exp(f_{d,s} W_{d,s,n} + (1 - f_{d,s}) U_{d,s,n} - k_{j,d}) \right] + \gamma,$$

with Euler constant $\gamma \approx$ 0.577.

Model fit: Low skilled migration flows

	AT	BE	DE	DK	ES	FR	IT	NL	PT	Rich	Poor
AT	0	0.002	3.054	0.168	0.000	0.034	0.015	0.121	0.000	0.229	0.020
	0	0.014	3.014	0.154	0	0.047	0.029	0.133	0	0.215	0.033
BE	0.010	0	0.589	0.076	0.188	1.705	0.100	3.296	0.136	0.035	0.008
	0.024	0	0.581	0.072	0.181	1.686	0.111	3.242	0.147	0.047	0.023
DE	0.822	0.300	0	0.358	0.891	2.065	0.290	3.211	0.385	3.853	1.275
	0.822	0.287	0	0.345	0.910	2.087	0.287	3.227	0.384	3.838	1.279
DK	0.001	0.000	0.614	0	0.211	0.209	0.000	0.013	0.000	0.868	0.025
	0.012	0.011	0.604	0	0.211	0.219	0	0.028	0.007	0.842	0.039
ES	0.054	0.597	3.266	0.422	0	0.805	0.115	0.006	0.482	1.982	0.076
	0.048	0.590	3.222	0.440	0	0.800	0.010	0	0.471	1.969	0.086
FR	0.068	1.585	2.929	0.273	0.807	0	0.198	0.138	2.792	4.896	0.003
	0.056	1.574	2.882	0.259	0.811	0	0.194	0.144	2.740	4.806	0
IT	0.077	0.351	1.419	0.083	0.313	0.717	0	0.022	0.004	0.235	0.001
	0.079	0.340	1.391	0.069	0.327	0.714	0	0.035	0.018	0.220	0.013
NL	0.006	0.525	2.322	0.066	0.131	0.260	0.005	0	0.557	0.001	0.002
	0.014	0.510	2.286	0.065	0.145	0.260	0.019	0	0.557	0	0
PT	0.001	0.211	0.490	0.045	0.258	0.488	0.000	0.001	0	1.219	0.001
	0	0.201	0.472	0.036	0.243	0.484	0	0.005	0	1.197	0.006
Rich	0.153	0.108	2.638	0.169	3.379	1.819	0.882	0.302	0.428	0	0.001
	0.152	0.116	2.630	0.155	3.40	1.837	0.894	0.306	0.444	0	0.010
Poor	2.664	0.727	8.625	0.328	0.990	0.975	2.268	2.418	0.069	7.397	0
	2.640	0.712	8.480	0.313	0.992	0.959	2.245	2.398	0.061	7.286	0

The table lists low skilled migration flows in 1,000s; rows show countries of origin; columns show countries of destination; italics show migration flows observed in the EU-LFS.

Model fit: High skilled migration flows

	AT	BE	DE	DK	ES	FR	IT	NL	PT	Rich	Poor
AT	0	0.055	2.259	0.044	0.424	0.258	0.089	0.248	0.000	0.283	0.000
	0	0.064	2.244	0.044	0.428	0.274	0.096	0.255	0	0.286	0.014
BE	0.035	0	0.432	0.123	0.361	5.311	0.001	1.632	0.000	0.222	0.003
	0.046	0	0.428	0.108	0.356	5.238	0	1.603	0.015	0.218	0.018
DE	0.749	0.539	0	0.171	1.712	3.528	0.288	1.993	0.201	5.200	0.686
	0.753	0.527	0	0.157	1.686	3.593	0.286	1.996	0.214	5.296	0.700
DK	0.005	0.036	0.388	0	0.006	0.370	0.000	0.021	0.003	0.515	0.062
	0.019	0.051	0.389	0	0.020	0.355	0.015	0.035	0.018	0.510	0.077
ES	0.088	0.254	1.106	0.136	0	2.051	0.062	0.225	0.278	4.454	0.526
	0.076	0.248	1.115	0.133	0	2.143	0.047	0.215	0.292	4.652	0.540
FR	0.011	1.092	1.462	0.156	1.173	0	0.038	0.214	0.296	7.416	0.287
	0.024	1.081	1.423	0.142	1.122	0	0.042	0.210	0.296	7.413	0.295
IT	0.059	0.061	0.617	0.111	0.444	2.132	0	0.000	0.082	0.162	0.001
	0.057	0.050	0.642	0.105	0.472	2.324	0	0.011	0.101	0.158	0
NL	0.046	0.315	1.398	0.155	0.021	0.367	0.032	0	0.223	0.000	0.001
	0.050	0.302	1.377	0.141	0.035	0.375	0.029	0	0.224	0	0
PT	0.001	0.004	0.186	0.004	0.273	0.001	0.036	0.002	0	0.555	0.028
	0	0	0.171	0	0.270	0	0.020	0.007	0	0.561	0.033
Rich	0.090	0.379	2.873	0.285	2.157	2.198	0.754	0.608	0.634	0	0.239
	0.097	0.371	2.825	0.271	2.091	2.210	0.715	0.618	0.628	0	0.250
Poor	0.355	0.605	1.793	0.009	0.253	0.567	0.358	0.664	0.112	4.449	0
	0.339	0.591	1.753	0.007	0.256	0.568	0.334	0.653	0.121	4.448	0

The table lists high skilled migration flows in 1,000s; rows show countries of origin; columns show countries of destination; italics show migration flows observed in the EU-LFS.

Appendix

Joint shock to southern European TFP (-1%) on Italy

Comparison to shock to Italy only:

Unexpected non-permanent shock (persistence 0.8) to Italian TFP (-1%)

