The impact of policy awareness: Evidence from vehicle registration taxes in Switzerland Davide Cerruti, Claudio Daminato, Massimo Filippini

ETH Zürich Centre for Energy Policy and Economics

24 August 2022 Milano

Centre for Energy Policy and Economics Swiss Federal Institutes of Technology **ETH** zürich

Davide Cerruti - EEA-ESEM 2022 The impact of policy awareness

- Some fiscal policies/incentives targeted at individuals perform poorly
- Why?
 - Bad design/insufficient incentives
 - Behavioral explanations: bounded rationality, ability to understand the information...
 - Lack of awareness: people are not informed about the existence of the policy

Research question

- What is the importance of policy awareness for the effectiveness of fiscal policies?
- Our case: Monetary incentives for energy efficient cars in Switzerland
 - Discount/penalty on vehicle registration tax
 - Not cost-effective according to previous literature (Alberini and Bareit 2017)
 - But: only 42% of Swiss drivers are correctly informed!
 - What is it then?
 - People aware of incentive policy, but not willing/able to change behavior
 - People not aware about incentive policy, but would change behavior if were aware
- Main goal: estimate causal effect of policy awareness on vehicle fuel economy with econometric methods

Vehicle registration tax in Switzerland

- Paid every year a car is owned
- Rate set up by independent administrative units (cantons)
 - Based on: weight, engine size, and/or power
- Some cantons ("<u>treated</u>") have an additional Bonus/Malus (discount/penalty) based on fuel efficiency or CO₂, applied automatically
 - No Bonus/Malus: 11 cantons
 - Bonus/Malus based on energy efficiency rating: 6 cantons
 - $\bullet~Bonus/Malus~based~on~CO_2$ emissions: 6 cantons
 - $\bullet~$ Bonus/Malus based on both: 3 cantons
- Introduced in different years (2009-2014)
- Many cantons have only Bonus, no canton has only Malus
- Discounts from 40% to 100% for 3-4 years after first purchase
- Average vehicle incentive per year: 209 CHF (25% of average fuel cost)

- Swiss Household Energy Demand Survey (SHEDS), years 2018-2019 (2020-2021 for RCT)
- Comprehensive questions on baseline characteristics, environmental attitudes, vehicle characteristics, and more
- Most respondents (92%) provided fuel consumption information
- About 5000 people interviewed each year
- Other important information: year of purchase, canton of residence
- Main variable of interest: fuel consumption per 100km

- Question on policy awareness:
 - "At the time you bought your main car, did you know if in your canton the annual registration tax depended on the level of fuel efficiency and/or on CO₂ emissions of the cars?"
 - Possible answers: 1) Yes, it depended on the fuel efficiency or on CO₂ emissions 2) No, it did not depend on the fuel efficiency or on CO₂ emissions 3) I do not know
- Policy aware respondents (41.80%):
 - Answers Yes if car bought in canton with Bonus/Malus in place, <u>OR</u>
 - Answers No if car bought in canton without Bonus/Malus in place
- All other cases: not policy aware

Empirical strategy

- Goal: measure the effect of awareness of Bonus/Malus on vehicle choice (fuel consumption)
- Problem: awareness is likely endogenous
- Observational evidence
 - Difference in difference model
 - Compare vehicle choice in cantons with and without B/M...
 - ...and aware and unaware respondents within canton
 - Robustness checks, IV
- **2** RCT evidence (main focus of presentation)
 - Influence ourselves degree of policy awareness
 - $\bullet\,$ Send letter to random sample about presence of B/M
 - Observe choice of vehicle after treatment start
 - Use treatment to instrument for awareness

RCT Experimental analysis

- In October 2019 we sent a letter to half of our survey sample, randomly selected
- Letter has simple information table on whether the registration tax depends on CO₂ or energy label in all cantons of Switzerland (yes/no)
- Emphasis on potential savings, no environmental nudge (see later for evidence)
- We observe choice of vehicle occurred in 2019-2020 after treatment start (about 300 individuals)
- Use treatment as instrument for awareness

Treatment effect on awareness

Using only cantons with Bonus/Malus policy

$$y_{ic} = \alpha + \beta \operatorname{Treat}_i + \delta X_i + \epsilon_{ic} \tag{1}$$

Using cantons with and without Bonus/Malus policy

$$y_{ic} = \alpha + \beta \operatorname{Treat}_{i} + \gamma \operatorname{Treat}_{i} * BM_{c} + \theta BM_{c} + \delta X_{i} + \epsilon_{ic} \qquad (2)$$

- y_{ic} = awareness indicator for individual *i* in canton *c*
- *Treat_i* = letter treatment dummy
- $BM_c = Bonus/Malus$ presence dummy
- X_i = socioeconomic characteristics (incl. year of vehicle purchase)

Treatment effect on awareness (only cantons with B/M)

	Only with policy			
	Whole effect		Effect	by year
	(1)	(2)	(3)	(4)
$BM \times Treat$				
Treat	0.138**	0.135**		
	(0.067)	(0.067)		
Treat 2019			0.394***	0.398***
11001 2015			(0.140)	(0.138)
			, , , , , , , , , , , , , , , , , , ,	· · ·
Treat 2020			0.088	0.082
			(0.075)	(0.076)
Controls	No	Yes	No	Yes
Ν	221	221	221	221

Davide Cerruti - EEA-ESEM 2022 The impact of policy awareness

LATE-IV estimation of awareness

Using only cantons with Bonus/Malus policy

$$y_{ic} = \alpha + \beta A ware_i + \delta X_i + \epsilon_{ic}$$
(3)

Using cantons with and without Bonus/Malus policy

$$y_{ic} = \alpha + \beta A ware_i + \gamma A ware_i * BM_c + \theta BM_c + \delta X_i + \epsilon_{ic}$$
(4)

- Dependent variable: log of fuel economy of newly purchased car
- Endogenous variable (awareness) is a dichotomous variable
 - Get fitted values under a probit using treatment dummy and controls
 - Use fitted values as instruments, see Angrist and Pischke (2008)
- Treatment is also split in year 2019 and year 2020 (stronger instruments)

LATE-IV of awareness on fuel consumption

	Only with B/M		Full s	ample
	(1)	(2)	(3)	(4)
BM x Aware			-0.622*	-0.416
			(0.356)	(0.328)
Aware	-0.324*	-0.310*	0.218	0.087
	(0.195)	(0.182)	(0.279)	(0.260)
Controls	No	Yes	No	Yes
Ν	221	221	303	303
Aware + BM x Aware			-0.404*	-0.329
			(0.238)	(0.146)
<i>p-value</i> F-test (Aware)	0.003	0.003	0.000	0.000
<i>p-value</i> F-test (BM × Aware)			0.000	0.000

Score from 1 to 5 (high score = high pro-environment attitude)

	clean env.	\Downarrow elec.	\Downarrow heat.	\Downarrow carb.	\Downarrow flights
	Panel A: Whole sample				
Treat	0.020	0.028	0.021	-0.018	0.012
	(0.020)	(0.030)	(0.031)	(0.031)	(0.040)
N	4598	4599	4599	4599	4599
Panel B: Car buyers					
Treat	0.067	0.016	0.032	0.036	0.200
	(0.075)	(0.111)	(0.111)	(0.110)	(0.143)
N	369	369	369	369	369

LPM for 2020 survey wave participation

	(1)	(2)
Treat	-0.002 (0.010)	
Treat x Age		-0.000 (0.000)
Treat × Female		0.004 (0.019)
Treat x Educ:HS or more		0.003 (0.020)
Treat \times HH size		0.003 (0.007)
Controls	Yes	Yes
Ν	9141	9141

Davide Cerruti - EEA-ESEM 2022 The impact of policy awareness

LPM on car purchase probability

	(1)	(2)	(3)
BM × Treatment			-0.002
			(0.019)
Treatment	-0.007	-0.007	-0.005
Heatment	(0.008)	(0.008)	(0.017)
	(0.000)	(0.000)	(0.017)
BM		-0.013	-0.012
		(0.010)	(0.014)
Ν	4475	4470	4470
Controls	No	Yes	Yes

Conclusion

- Certain fiscal policy measures have little impact <u>because</u> people are not aware of them, or despite people being aware?
- Most people were not informed about Bonus/Malus (and likely similar policies)
- Once aware of B/M, the policy makes people buy more efficient cars compared to unaware individuals
- Relatively cheap and simple information treatments could be very cost-effective...
- ...but effect of information limited over time!
- Awareness should be considered when implementing / evaluating fiscal policies directed to individuals

Observational evidence: Instrumental variables

- Difference in differences model
- Compare aware vs unaware people, in cantons with B/W vs cantons without, before and after B/M introduction
- Instrumenting awareness using...
 - **1** Distance in years from the introduction of B/M in canton
 - Voter turnout in Swiss referendums (social capital, willingness to get informed)
 - Newspaper mentions of vehicle tax in a year X Newspaper stands in municipality X Newspaper sales (information availability)
- Instruments: 1+2; 1+3

Observational evidence: specification

$$y_{ict} = \beta A ware_i * BMP_{ct} + \theta BMP_{ct} + \psi A ware_i * BM_c + \gamma A ware_i + \delta X_i + \eta_c + \xi_t + \epsilon_{ict}$$

- Car/respondent *i*, canton *c*, year of purchase *t*
- Dependent variable: log of fuel consumption per 100 km
- Aware_{ict}: policy awareness dummy
- BM_c canton treated dummy
- BMP_{ct}: dummy for Bonus/Malus in place at year of purchase
- X_{ict}: set of controls
- Robust standard errors (similar results when clustered at cantonal level)

Instrumental variables

	OLS	IV	IV
		(Referendum)	(Newspapers)
	(1)	(2)	(3)
BMP x Aware	-0.141***	-0.336***	-0.247**
	(0.027)	(0.119)	(0.103)
BMP	0.066***	0.124***	0.118***
	(0.019)	(0.039)	(0.034)
$BM \times Aware$	0.072**	0.487***	0.450
	(0.033)	(0.134)	(0.315)
Aware	-0.010	-0.194*	-0.335
	(0.025)	(0.102)	(0.307)
N	3433	3421	2311