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Time-varying Expectation and Limited Memory

Motivation:

▶ Investors’ expectations on future return in surveys tend to be extrapolative

▶ Novel fact: the mapping from past observations to expectation is time-varying

▶ But, full information rational expectations (FIRE) models with a unique
forward-looking equilibrium preclude such dynamics

Question: What if we perturb the full memory assumption?

This paper:
A theory of asset pricing based on limited memory and time-varying expectations
⇒ time-varying equity premium and stochastic volatility arise endogenously



Past observations on Price Matter for Belief Formation

Figure 1: Price-Dividend (PD) ratio and expected return one year ahead
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Expected own return one−year ahead
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Data source: UBS/Gallup Survey. The figure contains the cross-sectional average of investors’ one-year ahead
expected return on the market portfolio and on respondents’ own portfolio as well as the actual PD ratio.



Past observations on Price Matter for Belief Formation

▶ A regression of survey expected excess return (one-year ahead) on log PD ratio

Êtrs,t+1 − rf ,t = β0 + βt log(PDt) + εt

▶ In constant parameter model (βt = β), regress gives β = 0.0269

▶ To test the parameter stability, we augment the standard regression model with

βt = βt−1 + νt

where εt and νt ∼ i.i.d N(0, τ2G ) are uncorrelated



The Mapping from Past Observation to Expectations is Time-varying

Figure 2: Estimated coefficient βt over sample period
 

b
e

ta

2000 2002 2004 2006 2008

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

The Figure plots the coefficient in a TVP regression of survey expected excess return on log PD ratio.
Dashed lines show the 95% probability intervals standard error bands for the coefficient.

Fitted Value



A Simple Example

▶ The forward-looking asset-pricing equation:

yt = θEtyt+1 + εt , εt ∼ N(0, σ2)

where θ ∈ (0, 1], with εt standing for the asset’s dividend and yt for its price

▶ Muth’s (1961) RE: the forecast error (ηt = yt − Et−1 yt) cannot be predictable

Et−1(ηt) = 0

▶ The RE requirement is generally not enough to pin down a unique solution as any
forecast error of the following form satisfies Et−1(ηt) = 0

ηt = bεt + ζt
▶ Free parameter b
▶ Sunspot disturbance ζt ∼ N(0, σ2

ζ), ζt , εt uncorrelated



Why Usual FIRE Model Fails?

▶ The forward-looking asset-pricing equation:

yt = θEtyt+1 + εt , εt ∼ N(0, σ2)

where θ ∈ (0, 1], with εt standing for the asset’s dividend and yt for its price

▶ Under Full information: ht = {εt , εt−1, . . .}, there exists a continuum of
equilibria satisfying RE Derivation

yt = (1− b)yBt + byFt

where b ∈ R is arbitrary scalar to serve equilibrium selection

yBt ≡ −
∞∑
j=1

1

θj
εt−j︸ ︷︷ ︸

backward-looking eq.

and yFt ≡
∞∑
j=0

θj Et εt+j = εt︸ ︷︷ ︸
forward-looking eq.



Why Usual FIRE Model Fails?

Full Information: Stability condition ⇒ b = 1 ⇒ a unique solution yt = yFt .

▶ Histories do not matter for current price

yt = yFt = εt

▶ Histories do not matter for price expectations (assume Et εt+j = 0,∀j)

Et yt+1 = (b − 1)
∞∑
i=1

(
1

bθ

)i

yt+1−i
by b=1
=== 0

What’s next: Small perturbations in memory assumption



Multiplicity under Limited Memory

Decay Memory: agents naively lose memory of past structural shocks at rate λ < θ

▶ The period t information set of an agent

It = {εt , λεt−1, λ
2εt−2, . . .}

▶ With decay memory, stability condition cannot pin down a unique solution
Derivation

yt = (1− b)

−
∞∑
j=1

(
λ

θ

)j

εt−j


︸ ︷︷ ︸

bounded backward-looking eq.

+b
∞∑
j=0

θjEtεt+j

▶ FIRE corresponds to λ = 1
▶ b is not constrained by stability condition, and thus can take any value

▶ ⇒ Multiplicity of bounded equilibrium



Time-varying Expectation Formation Process

▶ With decay memory, past observations matter for expectation formation

E∗
t yt+1 = (b − 1)

∞∑
i=1

(
1

θb

)i

λi−1yt+1−i

▶ The closer the observation is, the greater its weight

▶ b defines how agents form their expectations. How to choose b?

▶ A sunspot shock to expectation parameter bt

bt = bt−1 + ξt

with ξt ∼ i.i.d N(0, σ2b) being the sunspot shock
▶ The sunspot shock captures the fact that how agents combine past data to form

their expectations can change over time

Updating of Expectations



Limited Memory and Time-varying Expectation Formation Process

The solution: is randomising among different admissible equilibria

yt = (1− bt)

−
∞∑
j=1

(
λ

θ

)j

εt−j


︸ ︷︷ ︸

bounded backward-looking eq.

+bt

∞∑
j=0

θjEtεt+j︸ ︷︷ ︸
forward-looking eq.

with
bt = bt−1 + ξt ξt ∼ i.i.d N(0, σ2b)

Multiplicative sunspot ⇒ time-varying parameter solution
⇒ endogenous stochastic volatility



An Economic Model for Asset Markets

Basic Setup: Incorporate limited memory and time-varying expectation in the Bansal
and Yaron (2004) long-run risk model

▶ Representative agent with Epstein-Zin preferences

Vt = [(1− β)C
1−1/ψ
t + β(Et V

1−γ
t+1 )

1−1/ψ
1−γ ]

1
1−1/ψ

γ: coefficient of risk aversion; ψ: intertemporal elasticity of substitution

▶ The asset pricing equation for any asset i

Et [δ
θG

− θ
ψ

c,t+1R
−(1−θ)
a,t+1 Ri ,t+1] = 1

where θ = 1−γ
1−1/ψ ; gc,t+1 = log(Ct+1/Ct); Ra,t+1 denotes the unobservable return on an

asset that delivers aggregate consumption as its dividends each period



An Economic Model for Asset Markets

▶ Long-run risk in consumption/dividend process

xt+1 = ρxt + φeσet+1

gc,t+1 = µ+ xt + σηt+1

gd ,t+1 = µd + ϕxt + φdσut+1

where shocks et+1, ut+1, ηt+1 ∼ i.i.d N(0, 1) and independent to each other

▶ Do not impose stochastic volatility as a priori

▶ Expectation parameter bt = bt−1 + ξt , where ξt ∼ i.i.d N(0, σ2b) is uncorrelated
with all other shocks



Solving the Model

Follows Bansal and Yaron (2004), the solution method involves two steps:

1. Solve the model using the approximation proposed by Campbell and Shiller

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd ,t+1

▶ where zm,t ≡ log(Pt/Dt) is the log PD ratio and κ1,m = exp(z̄m)/(1 + exp(z̄m)) < 1

2. Assume relevant state variable for deriving the solution for zm,t are the history of
persistent component {xt , λxt−1, λ

2xt−2, . . .}, then apply the undetermined
coefficient method Solve the Model



Price-dividend Ratio

The solution for log PD ratio takes form

zm,t = bt

(
A0,m +

ϕ− 1
ψ

1− κ1,mρ
xt

)
︸ ︷︷ ︸

fundamental eq., zREm,t

+(1− bt)

A0,m −
∞∑
j=1

(
λ

κ1,m

)j (
ϕ− 1

ψ

)
xt−j


︸ ︷︷ ︸

bounded backward-looking eq.

Three key implications:

1. Log PD ratio can deviate from fundamental values (coincide with bt ̸= 1).

- Usual RE solution coincides with bt = 1
- Weak correlation between log PD ratio and consumption growth



Price-dividend Ratio

2. Persistent under-and overvaluations of asset prices
▶ Define ẑ as the deviation from the usual RE solution, i.e.,

ẑm,t = zm,t − zREm,t

▶ Then for bt ̸= 1:

ẑm,t+1 =
λ

κ1,m

bt+1 − 1

bt − 1
ẑm,t + (bt+1 − 1)

(
ϕ− 1

ψ

)
1

1− κ1,mρ
φeσet+1

+ (1− λ) (bt+1 − 1)

(
ϕ− 1

ψ

)
1

1− κ1,mρ
ρxt︸ ︷︷ ︸

Due to memory loss, approach to zero as λ → 1

.

▶ ẑm,t+1 positively depends on the deviation in the last period when bt and bt+1 on
the same side relative to 1



Price-dividend Ratio

3. Stochastic volatility arises endogenously
▶ The conditional variance of the log PD ratio (assume ρ = 0 for simplicity):

Vart(zm,t+1) =

(
zm,t − zREm,t

bt − 1

)2

σ2
b +

(
ϕ− 1

ψ

)2

(btφeσ)
2, for bt ̸= 1

Vart(zm,t+1) =

(
ϕ− 1

ψ

)2

φ2
eσ

2, for bt = 1

▶ zm,t − zREm,t ↑ ⇒ Vart(zm,t+1) ↑, price volatility increases in a bubbly market
▶ bt induces time-variation in how σ2 feed into price-dividend volatility



Equity Premium

The equity premium is

Et(rm,t+1 − rf ,t) = ϑe,tσ
2 + ϑξ,tσ

2
b − 0.5Vart(rm,t+1),

with

ϑe,t = (1− θ)

(
1− 1

ψ

)
κ1bt

1− κ1ρ

(
ϕ− 1

ψ

)
κ1,mbt

1− κm,1ρ
φ2
eσ

2,

ϑξ,t =
ϑe,t

b2tφ
2
eσ

2

(1− κ1ρ)
∞∑
j=1

(
λ

κ1
)jxt−j + xt

(1− κm,1)
∞∑
j=1

(
λ

κ1,m
)jxt−j + xt


Vart(rm,t+1) = (βm,u + βm,e,t+1)

2σ2 + β2m,ξ,t+1σ
2
b

▶ One process for expectation formation affects both the slope and intercept of
the equation for the equity premium



Quantitative Analysis

▶ Data
▶ Sample period: 1929 to 2019
▶ Real S&P 500 stock returns and dividends from Robert Shiller’s website
▶ Nominal return to one-month Treasury bills from CRSP
▶ Consumption data is from Barro and Ursua (2012) and was extended to 2019 using

data from BEA
▶ All nominal terms deflated by CPI
▶ Agents make decisions on a monthly basis. We compute moments at an annual

frequency

▶ We estimate the parameters of our model using the Simulated Method of
Moments SMMdetails



Parameter estimates

Table 1: Parameter Values

Parameter Estimated value Parameter Estimated value

γ 3.9015 µ 0.0016

(0.1551) (0.0001)

δ 0.9961 ϕ 2.5344

(0.0003) (0.1851)

ψ 1.1148 φd 6.2188

(0.0085) (0.5413)

ρ 0.9915 σb 0.0245

(0.0020) (0.0051)

φe 0.0788 λ 0.9419

(0.0121) (0.0016)

σ 0.0040

(0.0002)



Quantitative Model Performance
U.S. Data Decay Memory BY (with stochastic vol)

Data Std. Model Model

Moment Dev. Moment t-Stat. Moment t-Stat.

Mean stock return Ers 7.79 1.83 6.27 0.83 5.31 1.43

Mean bond return E
rb

0.45 0.49 1.05 -1.20 -1.16 2.11

Mean PD ratio EPD 31.42 1.43 34.80 -1.91 35.60 -0.71

Mean dividend growth E∆D/D 1.74 1.12 2.56 -0.73 3.20 -1.82

Std. dev. stock return σrs 18.71 0.94 19.26 -0.56 14.64 2.23

Std. dev. PD ratio σPD 16.07 2.05 17.91 -0.69 3.24 3.42

Std. dev. Dividend Growth σ∆D/D 10.67 1.60 11.08 -0.25 12.76 -0.79

Std. dev. bond return σ
rb

3.76 0.43 3.28 1.46 1.25 3.59

Autocorrel. PD ratio ρPD,−1 0.91 0.12 0.80 0.74 0.17 7.66

Mean consumption growth E∆C/C 2.01 0.32 2.00 0.03 2.50 -1.44

Std. dev. consumption growth σ∆C/C 2.93 0.32 2.93 0.88 2.70 0.42

Autocorrel. consumption growth ρ∆C/C,−1 0.61 0.12 0.62 0.00 0.14 0.31

Autocorrel. dividend growth ρ∆D/D,−1 0.24 0.37 0.79 -0.08 0.03 0.45

Corr. corr∆C/C,∆D/D 0.47 0.13 0.50 -0.25 0.18 1.96

Predictability βPD -0.0110 0.0003 - 0.0090 -0.70 -0.0145 0.9524

Predictability R2 0.1327 0.086 0.0756 0.66 0.0348 1.0622

Contemporaneous correlation between 0.03 0.11 0.24 -1.88 0.14 -0.95

stock return and consumption growth

Correlation between stock return -0.13 0.27 0.10 -0.45 0.14 -0.95

and one-period lag consumption growth

Test statistic ŴN 7.7713 558

p-value of ŴN 16.93% 0%



Simulated Price-Dividend Ratio

The simulated time series can generate booms and busts as observed in the data

Figure 3: Simulated PD ratio using the estimated model
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PD Negatively Predicts Actual Excess Returns

Regress real excess returns on equity over holding periods of one, three, and five years
on the lagged price-dividend ratio, that is

rs,t+n − rf ,t = c1n + c2n log(PDt) + ut,n

▶ PD negatively predicts actual excess market returns

Table 2: Predictability of excess returns

Slope coefficient R2

Data Decay Memory Data Decay Memory
c21 -0.0022 -0.0019 R2

1 0.0391 0.0235
(0.0010) (-0.36) (0.0375) (0.42)

c23 -0.0062 -0.0054 R2
3 0.0890 0.0553

(0.0025) (-0.34) (0.0872) (0.52)
c25 -0.0110 -0.0090 R2

5 0.1327 0.0756
(0.0034) (-0.58) (0.0872) (0.66)



PD Positively Predicts Expected Excess Returns

How do survey return expectations relate to cycles in asset prices?

Êtrs,t+1 − rf ,t = β0 + βt log(PDt) + εt

▶ PD positively predicts expected excess market returns

Table 3: Survey Return Expectations and PD ratio

Data Moment Model

Estimate (SE) Mean 5% 95%

log(PDt) 0.0269 (0.009) 0.0240 0.0112 0.0368

R2 0.08 0.22

Data source: UBS/Gallup Survey.



Comparison of Alternative Models

▶ Comparison with the long-run risk model in Bansal and Yaron (2004):
▶ BY: an exogenous AR(1) process for stochastic volatility:

σ2
t+1 = σ2 + ν1(σ

2
t − σ2) + σwwt+1

▶ This paper: endogenous stochastic volatility and time-varying equity premium
▶ The quantitative performance of our model outperforms BY.

▶ Comparison with the learning model in Adam et al. (2016):
▶ Learning model: Simple version of Lucas (1978) model, CRRA investors learn about

price behaviour from past price observations
▶ This paper: replicates a host of asset pricing moments without generating strong

correlation between consumption and price



Conclusion

▶ We propose a novel mechanism for asset pricing models based on two features:
(i) limited memory; (ii) time-varying expectations.

▶ Time-varying equity premium and stochastic volatility arise endogenously
▶ The model quantitatively replicates a host of asset-pricing features ...

- Including equity premium, excessive volatility, persistence of price-dividend ratio,
predictability of excess returns and the consumption correlation puzzle.

▶ ... as well as the positive correlation between PD ratio and return expectation



The Mapping from Past Observation to Expectations is Time-varying

Figure 4: Actual and fitted expected excess return
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Derivation

Consider the following expectational difference equation

yt = θEt yt+1 + ϵt , ϵt ∼ i.i.d. N(0, σ2ϵ )

Muth (1961) original formulation states that the RE solution should be a function of
all the past, present and expected future structural shocks

∞∑
j=1

ujεt−j+bεt +
∞∑
j=1

cj Et εt+j =

θEt(
∞∑
j=1

ujεt+1−j + bεt+1 +
∞∑
j=1

cj Et+1 εt+1+j) + εt

where uj , cj and b are coefficients to be determined.



Derivation

∞∑
j=1

ujεt−j+bεt +
∞∑
j=1

cj Et εt+j =

θEt(
∞∑
j=1

ujεt+1−j + bεt+1 +
∞∑
j=1

cj Et+1 εt+1+j) + εt

Equal coefficients of εt−j gives the expression for u’s:

εt : b = θu1 + 1 ⇒ u1 =
1

θ
(b − 1);

εt−1 : u1 = θu2 ⇒ u2 =
1

θ
u1;

...

εt−T : uT = θuT+1 ⇒ uT+1 =
1

θ
uT ;

...

Back



Derivation

∞∑
j=1

ujεt−j+bεt +
∞∑
j=1

cj Et εt+j =

θEt(
∞∑
j=1

ujεt+1−j + bεt+1 +
∞∑
j=1

cj Et+1 εt+1+j) + εt

and solve for c ’s:

εt+1 : c1 = θb

εt+2 : c2 = θc1
...

εt+T : cT = θcT−1

...

Back



Derivation under Decay Memory

Under decay memory, assume the solution has the following form

yt =
∞∑
j=1

uj ,tλ
jεt−j + btεt +

∞∑
j=1

cj ,t Et εt+j

At time t, the information set of the agent is given by It = {εt , λεt−1, λ
2εt−2, . . .}.

Based on this information set, she forms her expectations

Et yt+1 =E(yt+1|It) = E(yt+1|εt , λεt−1, λ
2εt−2, . . .)

=Et

( ∞∑
j=1

uj ,t+1λ
j−1εt+1−j + bt+1εt+1 +

∞∑
j=1

cj ,t+1 Et+1 εt+1+j

)



Derivation under Decay Memory

Substitute for yt and Et yt+1 in the expectational difference equation,

∞∑
j=1

uj ,tλ
jεt−j + btεt +

∞∑
j=1

cj ,t Et εt+j =

θEt(
∞∑
j=1

uj ,t+1λ
j−1εt+1−j + bt+1εt+1 +

∞∑
j=1

cj ,t+1 Et+1 εt+1+j) + εt



Derivation under Decay Memory

Equal coefficients to find an expression for the u’s:

εt : bt = θEt u1,t+1 + 1 ⇒ Et u1,t+1 =
1

θ
(bt − 1);

εt−1 : λu1,t = θλEt u2,t+1 ⇒ Et u2,t+1 =
1

θ
u1,t ;

...

and for the c ’s:

εt+1 : c1,t = θEt bt+1

εt+2 : c2,t = θEt c1,t+1

...



Derivation under Decay Memory

For constant bt = b, the coefficient for εt−j , ∀j is uj = (b − 1)
(
λ
θ

)j
, and the coeffi-

cient for Et εt+j , ∀j is cj = bθj .

yt = (b − 1)
∞∑
j=1

(
λ

θ
)jεt−j + bεt + b

∞∑
j=1

θjEtεt+j

For bt = bt−1 + σbξt follows a random walk process, the solution is

yt = (bt − 1)
∞∑
j=1

(
λ

θ
)jεt−j + btεt + bt

∞∑
j=1

θjEtεt+j

Back



How Price Expectations are Updated?
The expectation in the decay memory case with time-varying bt is

Ētyt+1 = (bt − 1)
∞∑
i=1

(
λi−1

θi
∏i−1

j=0 bt−j

)
yt+1−i ,

▶ It can be written recursively as

E∗
t yt+1 =

1

θ

[
νt
νt−1

λĒt−1yt + νt
(
yt − λĒt−1yt

)]
where νt =

bt−1
bt

is the gain parameter.

▶ This expression reminds the updating implied by constant gain learning, employed
by Adam et al. (2016) and Nagel and Xu (2021)

Ētyt+1 = Ēt−1yt + ν
(
yt − Ēt−1yt

)
,

where ν is the gain parameter.
Back



Solving the Model
▶ Follows Campbell and Shiller (1988), the (approximated) log return on the wealth

portfolio can by written as

rm,t+1 = κ0 + κ1zm,t+1 − zm,t + gd ,t+1

where zt ≡ log(Pt/Dt) is the log PD ratio and κ1,m = exp(z̄m)/(1 + exp(z̄m))

▶ Assume relevant state variable for deriving the solution for zm,t are the history of
persistent component {xt , λxt−1, λ

2xt−2}, then

zm,t = A0,m,t +

(
ϕ− 1

ψ

) ∞∑
j=1

uj ,tλ
jxt−j + btxt +

∞∑
j=1

cj ,tEtxt+j


▶ Plug the approximation into the (log form) Euler equation

Et

[
exp

(
θ log(δ)− θ

ψ
gc,t+1 + θra,t+1

)]
= 1



Solving the Model

▶ Guess and verify gives the equilibrium solution for log(Pt/Dt) ≡ zm,t :

zm,t = A0,m,t + (ϕ− 1

ψ
)

[ ∞∑
j=1

(
λ

κ1,m
)j(bt − 1)xt−j + btxt + bt

∞∑
j=1

(κ1,mρ)
jxt

]

▶ κ1,m < 1, determines the strength of extrapolation. Model



Estimated parameters

▶ The parameter vector θ, includes the 11 parameters:
▶ γ: coefficient of relative risk aversion;
▶ ψ: elasticity of intertemporal substitution;
▶ δ: rate of time preference;
▶ µ: drift in the log consumption growth and log dividend growth;
▶ ρ: persistence of expected growth rate process;
▶ σ: volatility of innovation;
▶ φe : captures the volatility of the persistent component;
▶ ϕ: calibrate the correlation between consumption and dividend;
▶ φd : captures the volatility of dividend;
▶ σb: the volatility of innovation in expectation formation process;
▶ λ: the decay rate of memory



Moments of interests

▶ Moments of interests:
▶ Consumption growth: mean, standard deviations, and first-order autocorrelation.
▶ Dividend growth: mean, standard deviations, and first-order autocorrelation.
▶ Correlation between growth rate of dividends and growth rate of consumption.
▶ Real stock returns: mean and standard deviations.
▶ Price-dividend ratio: mean, standard deviations, and persistence.
▶ Risk free rate: mean, standard deviations.
▶ Excess return predictability: coefficient c2 and R2 in the regression

rs,t,t+n − rf ,t,t+n = c1n + c2n log(PDt) + ut,n

▶ Correlation between stock returns and consumption growth.
▶ Correlation between stock returns and one-period lagged consumption growth.



Which Moments to Match?

▶ Including all the moments listed above may violate the non-singularity of the
covariance matrix and result in the estimation to vary greatly with small changes
in the model or testing procedure
▶ see Adda and Cooper (2003) and Davidson et al. (2004)

▶ We compute the variability of each statistic that cannot be explained by a linear
combination of the remaining statistics, similarly to the R2 coefficient of
regression of each statistic on all the other statistics

▶ Test suggests to exclude the coefficient of the excess return regression and the
autocorrelation of consumption growth SMM
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