Inefficiency of Random Serial Dictatorship under Incomplete Information

Ethem Akyol

TOBB University of Economics and Technology

Introduction

- Several allocation problems: impossible or impractical to use monetary transfers
- Allocating
- students to public schools
- course seats to students,
- offices to faculty members
- tasks to team members,

Introduction

- Allocating n indivisible goods to n agents in the absence of transfers.
- Each agent can get at most one object.
- Incomplete information: Each agent has private information regarding their preferences (cardinal values) over objects.
- Welfare comparison

Introduction

- One of the most popular methods: Random Serial Dictatorship (RSD) (Sometimes referred to as Random Priority)
- An order over agents is randomly determined.
- Following this order, each agent is assigned his favorite object among the available ones.

Introduction

- Incentives: RSD is strategy-proof.
- However, RSD may be inefficient:
- Bogomolnaia and Moulin (2001): Example in which another random allocation is unambiguously better than what RSD induces.
- Manea (2009): Such inefficiency is prevalent in large allocation problems.
- Our main result: Exhibit inefficiency of RSD by finding another method that dominates RSD under incomplete information.

Introduction

- Another method: Random Boston mechanism (RB) (with random tie breaking)—adapted from Boston mechanism known in school-choice literature.
- Each agent reports an ordinal ranking over the objects.
- Rank based: Allocate the object to the agent with the highest ranking for the object (randomly when necessary).

The Random Boston mechanism

- Each agent reports a ranking over objects and the following algorithm is performed:
- Step 1: Each object is allocated to an agent who ranks it as a first choice, randomly if necessary.
- Step 2: Each unassigned object is allocated to an agent who ranks it as a second choice, randomly if necessary.
- Stop when all objects are allocated.

Random Boston Mechanism

- Boston tries to give agents their first choice.
- What if an agent fails to get her first choice?
- Her later choices may already be assigned!
- Risk in ranking an object first if the chance of obtaining is low \Longrightarrow Open to strategic manipulation

$R B$ vs RSD

- RSD has the advantage of strategy-proofness whereas Boston mechanism is manipulable (Abdulkadiroglu and Sonmez (2003)).
- But, how about welfare?

Symmetric Model

- Incomplete information regarding agents' preferences.
- Agents' preferences: Ex-ante uncorrelated.
- Random market

Main Result

n objects, n agents.

Theorem

When n is large enough, every agent, regardless of his preferences, has a strictly higher expected utility under the Random Boston mechanism than that under RSD (under some regularity conditions). This strict dominance hold even in the limit as $n \rightarrow \infty$.

Literature

- Relatively recent studies on welfare comparison of different assignment rules.
- School Choice: Deferred Acceptance (DA) vs Boston:
- Miralles (2009), Abdulkadiroğlu, Che and Yasuda (2011), Troyan (2012) (perfectly correlated preferences)
- Featherstone and Niederle (2016) (experimental, some theoretical results with ex-ante uncorrelated preferences), Akyol (2022) (3 school case, ex-ante uncorrelated preferences)
- Random markets: Pittel (1989), Knuth (1996), Roth and Rothblum(1999), Ehlers (2008), Ashlagi et al. (2017), Ashlagi and Nikzad (2020)
- Che and Tercieux (2018): Pareto efficient mechanisms are asymptotically payoff equivalent in large markets (applies to random markets considered here as well).

Model

- $n \geq 2$ agents, $\left\{i_{1}, \ldots, i_{n}\right\}, n \geq 2$ objects, $\left\{o_{1}, \ldots, o_{n}\right\}$
- Each agent i^{\prime} s valuation vector $\mathbf{v}^{i}=\left(v_{j}^{i}\right)_{j=1}^{n}$ is independently drawn from an exchangeable cumulative distribution function F over

$$
V \subset\left\{\mathbf{v}=\left(v_{j}\right)_{j=1}^{n} \in[\underline{v}, \bar{v}]^{n}: v_{j} \neq v_{k} \text { for any } j \neq k\right\}
$$

- F is invariant under the permutations of its arguments so that $F(\mathbf{v})=F(\mathbf{z})$ whenever \mathbf{z} is a permutation of \mathbf{v}
\Longrightarrow Each agent's ranking over objects is independently and uniformly drawn at random from the set of all possible orders over objects.

Induced Games

- Agents privately observe their types and submit a ranking over objects (may or may not be the true ranking).
- The corresponding mechanism is implemented.

Incentive Properties

- RSD is strategy-proof. (well-known in the literature.)
- In general, truthful reporting may not be an equilibrium under the Boston mechanism.

Symmetry: Truthtelling Equilibrium

Proposition: Truth-telling is a (Bayes-Nash) equilibrium under the Random Boston mechanism in our setting.
(Adapted from Featherstone and Niederle (2016))

Welfare Criteria

- Let $\left(P_{k}^{n}\right)^{X}$ is the interim probability that an agent receives their $k^{t h}$ choice under mechanism X.
- Any agent with type $\mathbf{v}=\left(v_{j}\right)_{j=1}^{n}$, (without loss say, $v_{1}>v_{2}>\ldots>v_{n}$) the interim expected payoff of this agent under mechanism $X \in\{R S D, R B\}$ is just

$$
U^{X}(\mathbf{v})=\sum_{k=1}^{n}\left(P_{k}^{n}\right)^{X} v_{k}
$$

- Mechanism X (strictly) interim dominates mechanism Y if the interim utility of any type of student is (strictly) higher under X than under Y.

Interim Probabilities

Lemma

For any $K \in\{1,2, \ldots\}$, we have

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{K}\left(P_{k}^{n}\right)^{R B}>\lim _{n \rightarrow \infty} \sum_{k=1}^{K}\left(P_{k}^{n}\right)^{R S D}
$$

- As $n \rightarrow \infty,\left(P_{k}^{n}\right)^{R S D} \rightarrow \frac{1}{k(k+1)}:\left(P_{1}^{n}\right)^{R S D} \rightarrow \frac{1}{2},\left(P_{2}^{n}\right)^{R S D} \rightarrow \frac{1}{6}$, $\left(P_{3}^{n}\right)^{R S D} \rightarrow \frac{1}{12}, \ldots \subset$ probRSD
- As $n \rightarrow \infty,\left(P_{1}^{n}\right)^{R B} \rightarrow 1-\frac{1}{e} \approx 0.63212$,
$\left(P_{2}^{n}\right)^{R B} \rightarrow \frac{1}{e}\left(1-\frac{1}{e^{\frac{1}{e}}}\right) \approx 0.11323$,
$\left(P_{3}^{n}\right)^{R B} \rightarrow \frac{1}{e} \frac{1}{e^{\frac{1}{e}}}\left(1-\frac{1}{e^{\frac{1}{e}} e^{\frac{1}{e}}}\right) \approx 0.057247, \ldots$
(By using techniques from "occupancy problems")

Main Result

Let V^{n} be the associated type space with market size n and consider a sequence of allocation problems with type spaces $\left(V^{n}\right)$.
Assumption (A1). (Non-technical statement) There is some $k \geq 1$ such that the (expected) value difference between the $k^{t h}$ choice and the $(k+1)^{t h}$ choice does not vanish even in the limit.

Example

Assume that for any n, V^{n} consists of all the permutations of $\left(1, \frac{1}{2 n}, \frac{1}{3 n}, \ldots, \frac{1}{n^{2}}\right)$.

Example

Assume that for any n, V^{n} consists of all the permutations of $(1,0,0, \ldots, 0)$

Main Result

Consider a sequence of allocation problems represented by $\left(V^{n}, F^{n}\right)$, where each agent's valuation vector is independently drawn from an exchangeable cumulative distribution function F^{n} over V^{n}. Assume also that A 1 holds.

Theorem

For sufficiently large n, the Random Boston mechanism strictly interim dominates the Random Serial Dictatorship mechanism. Furthermore, this strict dominance holds even in the limit.

Example

Example

Assume that for any n, V^{n} consists of all the permutations of $(1,0,0, \ldots, 0)$. For any $\mathbf{v} \in V^{n}$

$$
U^{R S D}(\mathbf{v})=\frac{n+1}{2 n}
$$

and

$$
\begin{aligned}
U^{R B}(\mathbf{v}) & =1-\left(\frac{n-1}{n}\right)^{n} \\
1-\left(\frac{n-1}{n}\right)^{n} & >\frac{n+1}{2 n} \text { for any } n \geq 3
\end{aligned}
$$

and as $n \rightarrow \infty$,

$$
U^{R B}(\mathbf{v}) \rightarrow 1-\frac{1}{e} \approx 0.63212, U^{R S D}(\mathbf{v}) \rightarrow \frac{1}{2}
$$

Conclusion

- In a symmetric setting with private information regarding preferences:
- Random Boston mechanism outperforms RSD in terms of welfare when preferences are ex-ante uncorrelated in a large market.

RSD Probabilities

Assume that there are n objects and n agents. For any $k \in\{1, \ldots, n\}$,

$$
\left(P_{k}^{n}\right)^{R S D}=\left(\frac{n+1}{n}\right) \frac{1}{k(k+1)},
$$

and hence for any $K \in\{1,2, \ldots\}$,

$$
\sum_{k=1}^{K}\left(P_{k}^{n}\right)^{R S D}=\left(\frac{n+1}{n}\right)\left(1-\frac{1}{K+1}\right)
$$

and

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{K}\left(P_{k}^{n}\right)^{R S D}=1-\frac{1}{K+1}
$$

RSD Probabilities

- Random Serial Dictatorship (RSD)

$$
P_{k}^{n}=\frac{(n+1)}{k(k+1) n}
$$

- Recursive formulation:

$$
P_{1}^{n}=\underbrace{\frac{1}{n}}_{\begin{array}{c}
\text { chosen } \\
\text { as first }
\end{array}}+\underbrace{\frac{n-1}{n}}_{\begin{array}{c}
\text { not chosen } \\
\text { as first }
\end{array}}(\underbrace{\frac{n-1}{n}}_{\begin{array}{c}
\text { first pecker's first } \\
\text { choice is different }
\end{array}} P_{1}^{n-1})
$$

and for $k \geq 2$

RSD Probabilities (Continued)

- For $k=1$, we claim

$$
\begin{gathered}
P_{1}^{n}=\frac{(n+1)}{k(k+1) n}=\frac{(n+1)}{2 n} \\
P_{1}^{n}=\frac{1}{n}+\frac{n-1}{n}\left(\frac{n-1}{n} P_{1}^{n-1}\right)
\end{gathered}
$$

- Induction on n. Now, $P_{1}^{1}=1$. If true for $(n-1)$, true for n :

$$
\begin{aligned}
P_{1}^{n} & =\frac{1}{n}+\frac{n-1}{n}\left(\frac{n-1}{n} P_{1}^{n-1}\right) \\
& =\frac{1}{n}+\frac{n-1}{n}\left(\frac{n-1}{n} \frac{n}{2(n-1)}\right) \\
& =\frac{1}{n}+\frac{n-1}{2 n}=\frac{n+1}{2 n}
\end{aligned}
$$

RSD Probabilities (Continued)

- For $k \geq 2$, we claim

$$
\begin{gathered}
P_{k}^{n}=\frac{(n+1)}{k(k+1) n} \\
P_{k}^{n}=\frac{n-1}{n}\left[\frac{k-1}{n} P_{k-1}^{n-1}+\frac{n-k}{n} P_{k}^{n-1}\right]
\end{gathered}
$$

- If true for $(n-1)$, true for n :

$$
\begin{aligned}
P_{k}^{n} & =\frac{n-1}{n}\left[\frac{k-1}{n} P_{k-1}^{n-1}+\frac{n-k}{n} P_{k}^{n-1}\right] \\
& =\frac{n-1}{n}\left[\frac{k-1}{n} \frac{n}{k(k-1)(n-1)}+\frac{n-k}{n} \frac{n}{k(k+1)(n-1)}\right] \\
& =\frac{n-1}{n}\left[\frac{1}{k(n-1)}+\frac{n-k}{k(k+1)(n-1)}\right] \\
& =\frac{(n+1)}{k(k+1) n}
\end{aligned}
$$

RSD Probabilities (Continued)

- For $k=2$, we claim for $n \geq 2$

$$
P_{2}^{n}=\frac{n+1}{6 n}
$$

- Note that $P_{2}^{2}=1-P_{1}^{2}=\frac{1}{4}\left(=\frac{2+1}{6 * 2}\right)$. Hence, by induction, we have the result.
- We next claim that for $n \geq 3$

$$
\begin{aligned}
& \qquad P_{3}^{n}=\frac{n+1}{12 n} \\
& P_{3}^{3}=1-P_{1}^{3}-P_{2}^{3}=1-\frac{2}{3}-\frac{2}{9}=\frac{1}{9}\left(=\frac{3+1}{12 * 3}\right) \text { and again by } \\
& \text { induction, we have the result. }
\end{aligned}
$$

RSD Probabilities (Continued)

- Continuing in this manner, for a general $k \geq 2$, we claim that for all $n \geq k$

$$
P_{k}^{n}=\frac{n+1}{k(k+1) n}
$$

Now,

$$
\begin{aligned}
P_{k}^{k} & =1-\sum_{j=1}^{k-1} P_{j}^{k}=1-\sum_{j=1}^{k-1} \frac{k+1}{j(j+1) k} \\
& =1-\frac{k+1}{k} \sum_{j=1}^{k-1}\left(\frac{1}{j}-\frac{1}{j+1}\right) \\
& =1-\frac{k+1}{k}\left(\frac{k-1}{k}\right)=\frac{1}{k^{2}}\left(=\frac{k+1}{(k+1) * k * k}\right)
\end{aligned}
$$

and hence by induction we have that $P_{k}^{n}=\frac{(n+1)}{k(k+1) n}$

RB Probabilities

- Let $\alpha_{0}=0, \alpha_{1}=1$ and for any $k \in\{1,2, \ldots\}$,

$$
\alpha_{k+1}=\alpha_{k} e^{-\alpha_{k}}
$$

where e is the base of the natural logarithm, and approximately equal to 2.71828 .
Furthermore, for any $k \in\{0,1, \ldots\}$, define

$$
q_{k}=e^{-\alpha_{k}}
$$

- Assume that there are n objects and n agents. For any $K \in\{1,2, \ldots\}$,

$$
\lim _{n \rightarrow \infty}\left(P_{K}^{n}\right)^{R B}=\left(\prod_{k=0}^{K-1} q_{k}\right)\left(1-q_{K}\right)
$$

and

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{K}\left(P_{k}^{n}\right)^{R B}=1-\left(\prod_{k=1}^{K} q_{k}\right)
$$

for any $k \in\{0,1, \ldots\}$.

RB Probabilities (Continued)

- Consider step 1 of RB.
- For any object o_{j}, let $A^{n}(j)$ denote the event that no agent ranks o_{j} as a first choice. Define

$$
I^{n}(j)=\left\{\begin{array}{cc}
1 & \text { if } A^{n}(j) \text { happens } \\
0 & \text { otherwise }
\end{array}\right.
$$

- Let X^{n} denote the number of objects that no agent ranks as a first choice. Hence,

$$
X^{n}=\sum_{j=1}^{n} I^{n}(j)
$$

- Given the ex-ante symmetry of the agents, the probability that an agent is not assigned an object in step 1 is just $E\left(\frac{X^{n}}{n}\right)$ since there are n agents that are ex-ante symmetric, and X^{n} of them are unassigned. Thus, the probability that an agent is assigned an object at step 1 is just $1-E\left(\frac{X^{n}}{n}\right)$.

RB Probabilities (Continued)

- The probability that an agent does not rank o_{j} as a first choice is $1-\frac{1}{n}$. Therefore, we have

$$
E\left[I^{n}(j)\right]=\operatorname{Pr}\left(A^{n}(j)\right)=\left(1-\frac{1}{n}\right)^{n}=\left(\frac{n-1}{n}\right)^{n}
$$

Then, due to the linearity of expectation,

$$
E\left(X^{n}\right)=n\left(\frac{n-1}{n}\right)^{n}
$$

and hence

$$
E\left(\frac{X_{n}}{n}\right)=\frac{1}{n} E\left(X^{n}\right)=\left(\frac{n-1}{n}\right)^{n}
$$

Thus, we have

$$
\left(P_{1}^{n}\right)^{R B}=1-\left(\frac{n-1}{n}\right)^{n}
$$

and as $n \rightarrow \infty$

$$
\left(P_{1}^{n}\right)^{R B} \rightarrow 1-e^{-1}
$$

