The Fed Put and Monetary Policy An Imperfect Knowledge Approach

Adrian Ifrim UAB, BSE & CREi

EUROPEAN ECONOMIC ASSOCIATION ANNUAL CONGRESS

August 23rd, 2022

Should Monetary Policy take into account stock prices?

Motivation

- 1. How do asset price cycles influence the real economy?
- 2. Should central banks include stock prices in their monetary policy strategy?

Should Monetary Policy take into account stock prices?

Motivation

- 1. How do asset price cycles influence the real economy?
- 2. Should central banks include stock prices in their monetary policy strategy?

Current Paradigm:

- monetary policy should NOT take into account stock prices (supply side, Bernanke et. al. (1999,2001))
- result overturn by Winkler (2020, 2021)

There is growing evidence that the Fed reacts *implicitly* to stock prices: The Fed Put (Cieslack & Vissing-Jorgensen (2020))

the stock market does cause Fed actions

There is growing evidence that the Fed reacts *implicitly* to stock prices: The Fed Put (Cieslack & Vissing-Jorgensen (2020))

- the stock market does cause Fed actions
- the main channel the Fed considers is through consumption wealth effects (aggregate demand)

▶ Di Maggio et al. (2020) estimate MPC between 2%-20%

There is growing evidence that the Fed reacts *implicitly* to stock prices: The Fed Put (Cieslack & Vissing-Jorgensen (2020))

- the stock market does cause Fed actions
- the main channel the Fed considers is through consumption wealth effects (aggregate demand)

▶ Di Maggio et al. (2020) estimate MPC between 2%-20%

 Furlanetto *et al.* (2021) brings additional evidence in favour of the Fed Put

There is growing evidence that the Fed reacts *implicitly* to stock prices: The Fed Put (Cieslack & Vissing-Jorgensen (2020))

- the stock market does cause Fed actions
- the main channel the Fed considers is through consumption wealth effects (aggregate demand)
 - ▶ Di Maggio et al. (2020) estimate MPC between 2%-20%
- Furlanetto *et al.* (2021) brings additional evidence in favour of the Fed Put

Most monetary models that study stock price targeting do not

- consider the aggregate demand channel and/or
- have a realistic stock market and expectation dynamics

There is growing evidence that the Fed reacts *implicitly* to stock prices: The Fed Put (Cieslack & Vissing-Jorgensen (2020))

- the stock market does cause Fed actions
- the main channel the Fed considers is through consumption wealth effects (aggregate demand)
 - ▶ Di Maggio et al. (2020) estimate MPC between 2%-20%
- Furlanetto *et al.* (2021) brings additional evidence in favour of the Fed Put

Most monetary models that study stock price targeting do not

- consider the aggregate demand channel and/or
- have a realistic stock market and expectation dynamics

This paper aims at filling this gap

Theoretical framework:

 Decoupling of stock prices from fundamentals due to imperfect information => consumption wealth effect => Aggregate Demand (absent under RE)

Theoretical framework:

- Decoupling of stock prices from fundamentals due to imperfect information => consumption wealth effect => Aggregate Demand (absent under RE)
- ▶ NK model + Financial Market + Imperfect information

Theoretical framework:

- Decoupling of stock prices from fundamentals due to imperfect information => consumption wealth effect => Aggregate Demand (absent under RE)
- ► NK model + Financial Market + Imperfect information

Results

- quantitatively the model replicates the joint behavior of stock prices, business cycle and survey expectations
- monetary policy should take into account stock prices
 - Responding symmetrically is superior to reacting only in busts (FED Put) under non-transparency
 - Transparency is key in eliminating the inefficiencies arising from sentiment driven asset price cycles

Theoretical framework:

- Decoupling of stock prices from fundamentals due to imperfect information => consumption wealth effect => Aggregate Demand (absent under RE)
- ► NK model + Financial Market + Imperfect information

Results

- quantitatively the model replicates the joint behavior of stock prices, business cycle and survey expectations
- monetary policy should take into account stock prices
 - Responding symmetrically is superior to reacting only in busts (FED Put) under non-transparency
 - Transparency is key in eliminating the inefficiencies arising from sentiment driven asset price cycles

Policy Recommendation: announce 12 bp increase in policy rates for every 100% increase in stock prices \longrightarrow 12% reduction in the cost of business cycles

Roadmap

- 1. Wealth Effects in endowment economies \longrightarrow Intuition
- 2. Quantitative model and Estimation
- 3. Monetary Policy and Welfare

Facts

1. Volatility Puzzle

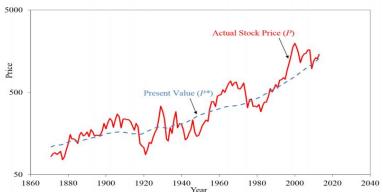


Figure 1. Do Stock Prices Move Too Much to be Justifed by Subsequent Changes in Dividends? (Shiller, 1981) (Updated)

 Stock Price Wealth effects: Case & Shiller (2001,2013), Chodorow-Reich *et al.* (2020), Di Maggio *et al.* (2020): estimates vary 2%-20%

Wealth Effects in Endowment Economies Households

continuum of identical households

agent i solves:

$$\begin{split} \max_{\substack{C_t^i, B_t^i, S_t^i}} & E_0^{\mathscr{P}_i} \sum_{t=0}^{\infty} \delta^t \frac{(C_t^i)^{1-\sigma}}{1-\sigma} \\ s.t. \quad P_t C_t^i + B_t^i + S_t^i Q_t \leq B_{t-1}^i (1+i_{t-1}) + S_{t-1}^i (Q_t + D_t) \\ (1) \end{split}$$
where $D_t \sim \mathcal{N}(\mu, \sigma^2)$ and $i_t = \phi_\pi \pi_t$

FOCs are standard except the expectation operator

• Equilibrium: $\int_0^1 B_t^i di = 0$, $\int_0^1 C_t^i di = C_t = d_t$, $\int_0^1 S_t^i di = 1$.

Rational Expectations (RE)

- under RE agents know the mapping from dividends to prices
- the agent can apply the Law of Iterated Expectations (LIE) to the asset pricing FOC to obtain

$$q_t = E_t \sum_{j=1}^{\infty} \delta^j \left(\frac{C_{t+j}}{C_t}\right)^{-\sigma} d_{t+j}.$$
 (2)

Optimal consumption decision under RE

$$\tilde{C}_{t} = (1-\delta)E_{t}\sum_{j=0}^{\infty}\delta^{j}\tilde{d}_{t+j} - \frac{1}{\sigma}\delta E_{t}\sum_{j=0}^{\infty}\delta^{j}(i_{t+j} - \pi_{t+j+1}).$$
 (3)

RE equilibrium $\pi_t = -rac{\sigma}{\phi_\pi} ilde{m{d}}_t.$ (4)

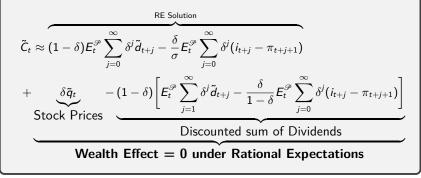
Endowment Economy Imperfect Knowledge

agents

- internally rational (IR)
- identical but they do not know this to be true
- under imperfect knowledge we cannot apply the LIE to obtain equation (2)
- in this environment, the optimality condition for stock prices is of the one-step ahead form

$$q_t = \delta E_t^{\mathscr{P}} \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} (d_{t+1} + q_{t+1}) \right].$$
 (5)

Endowment Economy Imperfect Knowledge


Optimal consumption decision under Imperfect Knowledge & IR

$$\widetilde{C}_{t} \approx \underbrace{(1-\delta)E_{t}^{\mathscr{P}}\sum_{j=0}^{\infty} \delta^{j}\widetilde{d}_{t+j} - \frac{\delta}{\sigma}E_{t}^{\mathscr{P}}\sum_{j=0}^{\infty} \delta^{j}(i_{t+j} - \pi_{t+j+1})}_{F_{t}}$$

under Imperfect Knowledge, the stock price wealth effect arises due to a wedge between actual stock prices and perceived fundamental value

Endowment Economy Imperfect Knowledge

Optimal consumption decision under Imperfect Knowledge & IR

under Imperfect Knowledge, the stock price wealth effect arises due to a wedge between actual stock prices and perceived fundamental value

Imperfect Knowledge: Beliefs

 Coibion & Gorodnichenko (2011, 2015) show that survey expectations depart from RE

Imperfect Knowledge: Beliefs

 Coibion & Gorodnichenko (2011, 2015) show that survey expectations depart from RE

Assume:

Imperfect Knowledge: Beliefs

 Coibion & Gorodnichenko (2011, 2015) show that survey expectations depart from RE

Assume:

• similarly to RE, agents have perfect knowledge about \tilde{d}_t, i_t

Imperfect Knowledge: Beliefs

 Coibion & Gorodnichenko (2011, 2015) show that survey expectations depart from RE

Assume:

- ▶ similarly to RE, agents have perfect knowledge about \tilde{d}_t, i_t
- agents think that inflation and stock prices follow an unobserved component model

$$\begin{aligned} x_t &= \beta_t^x + \epsilon_t \\ \beta_t^x &= \beta_{t-1}^x + \psi_t \end{aligned} \tag{6}$$

where $x = (\tilde{q}, \pi)'$.

Imperfect Knowledge: Beliefs

 Coibion & Gorodnichenko (2011, 2015) show that survey expectations depart from RE

Assume:

- ▶ similarly to RE, agents have perfect knowledge about \tilde{d}_t, i_t
- agents think that inflation and stock prices follow an unobserved component model

$$x_t = \beta_t^{\times} + \epsilon_t$$

$$\beta_t^{\times} = \beta_{t-1}^{\times} + \psi_t$$
(6)

where $x = (\tilde{q}, \pi)'$.

optimal filter:

$$E_t^{\mathscr{P}}(\beta_t^x) = \hat{\beta}_t^x = \hat{\beta}_{t-1}^x + \lambda(x_t - \hat{\beta}_{t-1}^x)$$
(7)

 consistency of these beliefs with survey data will be checked in the quantitative version of the model

Endowment Economy Imperfect Knowledge: Equilibrium

Learning Equilibrium

$$\pi_{t} = \frac{\delta\sigma}{\phi_{\pi}}\hat{\beta}_{t-1}^{q} - \Big[\frac{\sigma}{\phi_{\pi}} - \frac{(1-\sigma)(\delta\phi_{\pi}-1)}{(1-\delta)\phi_{\pi}}\Big]\hat{\beta}_{t-1}^{\pi} - \frac{\sigma}{\phi_{\pi}}\tilde{d}_{t}.$$
(8)

- imperfect knowledge about stock prices influences the equilibrium relation of inflation
- parallel to Eusepi, Preston (2018)

The Model Economic Environment

Limited Asset Market Participation NK model with a stock market + Imperfect Knowledge

Agents

- 1. Households
 - Internally rational; heterogeneous regarding participation in the stock market
- Other agents: Intermediary Firms, Final Good producers, Mutual Fund (owns firms & issue 1 share), Central Bank (Taylor Rule)
- **Beliefs**: agents learn about $z_t = (\tilde{y}_t, \tilde{\pi}_t, \tilde{q}_t, \tilde{d}_t, \tilde{w}_t)'$.
- Shocks: cost push, monetary policy, sentiment shock

► Model Blocks ► Belief Shock

			Learning		RE
	Symbol	Data Moment	Mod	lel	Model
Business Cycle			Moment	<i>t</i> -ratio	
		1.45	1.47	0.00	
Std. dev. of output	$\sigma(y)$	1.45	1.47	-0.39	0.87
Std. dev. of inflation	$\sigma(\pi)$	0.54	0.45	1	0.36
Correlation output/inflation	$\rho_{y,\pi}$	0.29	0.26	0.36	-1
Financial Moments					
Average PD ratio	E (Q/ D)	154	154	-0.38	132
Std. dev. of PD ratio	$\sigma(Q/D)$	63	65	-0.34	9
Auto-correlation of PD ratio	$\rho(Q/D)$	0.99	0.96	0.57	0.85
Std. dev. of equity return (%)	$\sigma(r^e)$	6.02	6.05	0.04	0.55
Std. dev. real risk free rate (%)	$\sigma(r^{f})$	0.72	0.8	0.59	0.11
Non Targeted moments					
volatility ratio stock prices/output	$\sigma(Q)/\sigma(y)$	6.7	5.2	2	0.76
corr. Stock Prices/ output	$\rho(Q, y)$	0.5	0.45	0.53	1
Consumption Wealth Effect	dy/dQ	[0.02-0.2]	0.09		0
Std. dev. Expected Returns(%)	$\sigma(E_t(r_{t,t+4}^e))$	2.56	1.8		0.46
corr. Survey Expect./ PD ratio	$\rho(PD_t, E_t(r_{t,t+4}^e))$	0.74	0.45		-1

 Table 1. Model implied moments
 Parameters

Belief Dynamics

			Learning		RE
	Symbol	Data Moment	Mod	lel	Model
Business Cycle			Moment	<i>t</i> -ratio	
		1.45	1.47	0.00	
Std. dev. of output	$\sigma(y)$	1.45	1.47	-0.39	0.87
Std. dev. of inflation	$\sigma(\pi)$	0.54	0.45	1	0.36
Correlation output/inflation	$\rho_{y,\pi}$	0.29	0.26	0.36	-1
Financial Moments					
Average PD ratio	E (Q/ D)	154	154	-0.38	132
Std. dev. of PD ratio	$\sigma(Q/D)$	63	65	-0.34	9
Auto-correlation of PD ratio	$\rho(Q/D)$	0.99	0.96	0.57	0.85
Std. dev. of equity return (%)	$\sigma(r^e)$	6.02	6.05	0.04	0.55
Std. dev. real risk free rate (%)	$\sigma(r^{f})$	0.72	0.8	0.59	0.11
Non Targeted moments					
volatility ratio stock prices/output	$\sigma(Q)/\sigma(y)$	6.7	5.2	2	0.76
corr. Stock Prices/ output	$\rho(Q, y)$	0.5	0.45	0.53	1
Consumption Wealth Effect	dy/dQ	[0.02-0.2]	0.09		0
Std. dev. Expected Returns(%)	$\sigma(E_t(r_{t,t+4}^e))$	2.56	1.8		0.46
corr. Survey Expect./ PD ratio	$\rho(PD_t, E_t(r_{t,t+4}^e))$	0.74	0.45		-1

 Table 1. Model implied moments
 Parameters

Belief Dynamics

			Learning <u>Model</u>		RE
	Symbol	Data Moment			Model
Business Cycle			Moment	<i>t</i> -ratio	
		4.45	=		
Std. dev. of output	$\sigma(y)$	1.45	1.47	-0.39	0.87
Std. dev. of inflation	$\sigma(\pi)$	0.54	0.45	1	0.36
Correlation output/inflation	$\rho_{y,\pi}$	0.29	0.26	0.36	-1
Financial Moments					
Average PD ratio	E (Q/ D)	154	154	-0.38	132
Std. dev. of PD ratio	$\sigma(Q/D)$	63	65	-0.34	9
Auto-correlation of PD ratio	$\rho(Q/D)$	0.99	0.96	0.57	0.85
Std. dev. of equity return (%)	$\sigma(r^e)$	6.02	6.05	0.04	0.55
Std. dev. real risk free rate (%)	$\sigma(r^{f})$	0.72	0.8	0.59	0.11
Non Targeted moments					
volatility ratio stock prices/output	$\sigma(Q)/\sigma(y)$	6.7	5.2	2	0.76
corr. Stock Prices/ output	$\rho(Q, y)$	0.5	0.45	0.53	1)
Consumption Wealth Effect	dy/dQ	[0.02-0.2]	0.09		0
Std. dev. Expected Returns(%)	$\sigma(E_t(r_{t,t+4}^e))$	2.56	1.8		0.46
corr. Survey Expect./ PD ratio	$\rho(PD_t, E_t(r_{t,t+4}^e))$	0.74	0.45		-1

 Table 1. Model implied moments
 Parameters

meters Belief Dynamics

			Learning		RE
	Symbol	Data Moment	Mod	lel	Model
Business Cycle			Moment	<i>t</i> -ratio	
Ctal days of autout	-()	1 45	1.47	-0.39	0.87
Std. dev. of output	$\sigma(y)$	1.45			
Std. dev. of inflation	$\sigma(\pi)$	0.54	0.45	1	0.36
Correlation output/inflation	$\rho_{y,\pi}$	0.29	0.26	0.36	-1
Financial Moments					
Average PD ratio	E (Q/ D)	154	154	-0.38	132
Std. dev. of PD ratio	$\sigma(Q/D)$	63	65	-0.34	9
Auto-correlation of PD ratio	$\rho(Q/D)$	0.99	0.96	0.57	0.85
Std. dev. of equity return (%)	$\sigma(r^e)$	6.02	6.05	0.04	0.55
Std. dev. real risk free rate (%)	$\sigma(r^{f})$	0.72	0.8	0.59	0.11
Non Targeted moments					
volatility ratio stock prices/output	$\sigma(Q)/\sigma(y)$	6.7	5.2	2	0.76
corr Stock Prices/ output	$\rho(\mathbf{O}, \mathbf{v})$	0.5	0.45	0 53	1
Consumption Wealth Effect	dy/dQ	[0.02-0.2]	0.09		0
Std. dev. Expected Returns(%)	$\sigma(E_t(r_{t,t+4}^e))$	2.56	1.8		0.46
corr. Survey Expect./ PD ratio	$\rho(PD_t, E_t(r_{t,t+4}^e))$	0.74	0.45		-1

 Table 1. Model implied moments
 Parameters

rs Belief Dynamics

			Learning		RE
	Symbol	Data Moment	Model		Model
Business Cycle			Moment	<i>t</i> -ratio	
Std. dev. of output	$\sigma(y)$	1.45	1.47	-0.39	0.87
Std. dev. of inflation	$\sigma(\pi)$	0.54	0.45	1	0.36
Correlation output/inflation	$\rho_{y,\pi}$	0.29	0.26	0.36	-1
Financial Moments					
Average PD ratio	E (Q/ D)	154	154	-0.38	132
Std. dev. of PD ratio	$\sigma(Q/D)$	63	65	-0.34	9
Auto-correlation of PD ratio	$\rho(Q/D)$	0.99	0.96	0.57	0.85
Std. dev. of equity return (%)	$\sigma(r^e)$	6.02	6.05	0.04	0.55
Std. dev. real risk free rate (%)	$\sigma(r^{f})$	0.72	0.8	0.59	0.11
Non Targeted moments				-	-
volatility ratio stock prices/output	$\sigma(Q)/\sigma(y)$	6.7	5.2	2	0.76
corr. Stock Prices/ output	$\rho(Q, y)$	0.5	0.45	0.53	1
Consumption Wealth Effect	dv/dQ	[0.02-0.2]	0.09		0
Std. dev. Expected Returns(%)	$\sigma(E_t(r^e_{t,t+4}))$	2.56	1.8		0.46
corr. Survey Expect./ PD ratio	$\rho(PD_t, E_t(r_{t,t+4}^e))$	0.74	0.45		-1

 Table 1. Model implied moments
 Parameters

meters Belief Dynamics

			Learning		RE
	Symbol	Data Moment	Model		Model
Business Cycle			Moment	<i>t</i> -ratio	
Std. dev. of output	$\sigma(y)$	1.45	1.47	-0.39	0.87
Std. dev. of inflation	$\sigma(\pi)$	0.54	0.45	1	0.36
Correlation output/inflation	$\rho_{y,\pi}$	0.29	0.26	0.36	-1
Financial Moments					
Average PD ratio	E (Q/ D)	154	154	-0.38	132
Std. dev. of PD ratio	$\sigma(Q/D)$	63	65	-0.34	9
Auto-correlation of PD ratio	$\rho(Q/D)$	0.99	0.96	0.57	0.85
Std. dev. of equity return (%)	$\sigma(r^e)$	6.02	6.05	0.04	0.55
Std. dev. real risk free rate (%)	$\sigma(r^{f})$	0.72	0.8	0.59	0.11
Non Targeted moments	·				
volatility ratio stock prices/output	$\sigma(Q)/\sigma(y)$	6.7	5.2	2	0.76
corr. Stock Prices/ output	$\rho(Q, y)$	0.5	0.45	0.53	1
Consumption Wealth Effect	dy/dQ	[0.02-0.2]	0.09		0
Std. dev. Expected Returns(%)	$\sigma(E_t(r^e,\ldots))$	2.56	1.8		0.46
corr. Survey Expect./ PD ratio	$\rho(PD_t, E_t(r^e_{t,t+4}))$	0.74	0.45		-1

 Table 1. Model implied moments
 Parameters

eters Belief Dynamics

Quantitative Performance

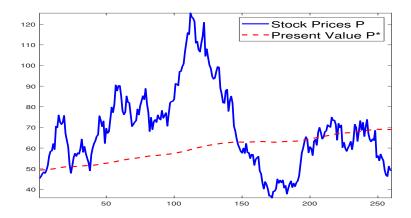


Figure 2. Simulation: Stock Prices vs rational prices

Monetary Policy and Stock Price Interaction

• The Taylor rule: $i_t = \phi_\pi \pi_t + \phi_y \tilde{y}_t + \phi_q \tilde{q}_{t-1}$

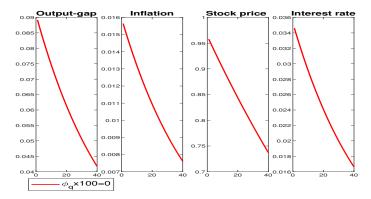


Figure 3. **IRFs to Sentiment Shocks:** the figure presents the IRF to a 1 % *i.i.d* sentiment shock for different reaction coefficients to stock prices. Policy and Wealth effects

Monetary Policy and Stock Price Interaction

• The Taylor rule: $i_t = \phi_\pi \pi_t + \phi_y \tilde{y}_t + \phi_q \tilde{q}_{t-1}$

Monetary Policy and Stock Price Interaction The Taylor rule: $i_t = \phi_{\pi}\pi_t + \phi_y \tilde{y}_t + \phi_q \tilde{q}_{t-1}$

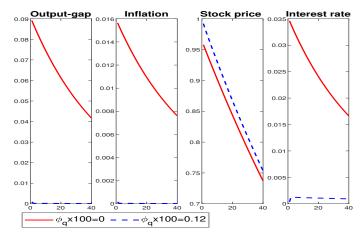


Figure 4. **IRFs to Sentiment Shocks:** the figure presents the IRF to a 1 % *i.i.d* sentiment shock for different reaction coefficients to stock prices. Policy and Wealth effects

Monetary Policy and Stock Price Interaction The Taylor rule: $i_t = \phi_{\pi}\pi_t + \phi_y \tilde{y}_t + \phi_q \tilde{q}_{t-1}$

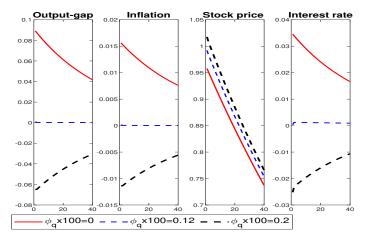


Figure 5. **IRFs to Sentiment Shocks:** the figure presents the IRF to a 1 % *i.i.d* sentiment shock for different reaction coefficients to stock prices. Policy and Wealth effects

Welfare Analysis: Non-Transparency

Central Bank

 $i_t = 1.5 \ \pi_t + 0.125 \ \tilde{y}_t + \phi_q \ \tilde{q}_{t-1} \mathbf{1}_{\tilde{q}_{t-1} < Q^-}$ (Fed put)

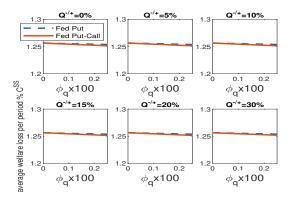
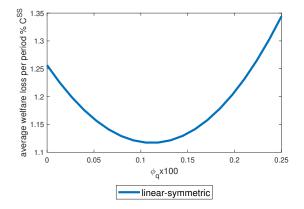
 $i_t = 1.5 \ \pi_t + 0.125 \ \tilde{y}_t + \phi_q \ \tilde{q}_{t-1} (1_{\tilde{q}_{t-1} < Q^-} + 1_{\tilde{q}_{t-1} > Q^+}) \quad (\mathsf{Fed put-call})$

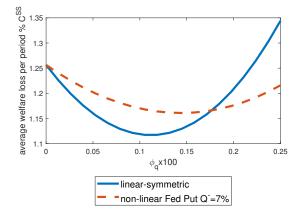
Welfare Analysis: Non-Transparency

Central Bank

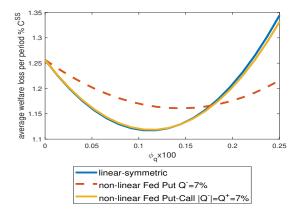
$$\begin{split} i_t &= 1.5 \; \pi_t + 0.125 \; \tilde{y}_t + \phi_q \; \tilde{q}_{t-1} \mathbf{1}_{\tilde{q}_{t-1} < Q^-} \qquad (\text{Fed put}) \\ i_t &= 1.5 \; \pi_t + 0.125 \; \tilde{y}_t + \phi_q \; \tilde{q}_{t-1} (\mathbf{1}_{\tilde{q}_{t-1} < Q^-} + \mathbf{1}_{\tilde{q}_{t-1} > Q^+}) \quad (\text{Fed put-call}) \end{split}$$

agents do not internalize that MP is reacting to stock prices


Figure 6. Welfare loss under Fed Put/Call policies

Welfare Analysis: Transparency


 Reacting symmetrically and transparently to stock prices brings substantial welfare gains: 12% reduction in business cycle costs

Welfare Analysis: Transparency

 Responding only to decreases in stock prices does not eliminate all the inefficiencies from expectation driven cycles

Welfare Analysis: Transparency

 The central bank can respond only to big deviations in stock prices (> 7%)

Conclusions

- Theory of stock price wealth effects arising from imperfect knowledge
- The quantitative model can account for key business cycle, financial statistics and survey data stylized facts
- Different welfare implications of monetary policy rules in RE vs Imperfect Information:
 - reacting to booms and busts driven by animal spirits reduces the cost of business cycles by 12%
 - Transparency from the central bank is crucial in managing the non-fundamental effects of asset price cycles

Policy Recommendation: announce 12 bp increase in policy rates for every 100% increase in stock prices only when deviations exceeds 7%

- agent knows that he/she will be the marginal agent forever OR
- that all agents know that the other agents are identical

- agent knows that he/she will be the marginal agent forever OR
- that all agents know that the other agents are identical
- \blacktriangleright marginal agent: agent with the highest valuation (beliefs: $E^{\mathscr{P}_{mg}}$)

- agent knows that he/she will be the marginal agent forever OR
- that all agents know that the other agents are identical
- \blacktriangleright marginal agent: agent with the highest valuation (beliefs: $E^{\mathscr{P}_{mg}}$)

$$q_t = \delta E_t^{\mathscr{P}_i} \left\{ \left(\frac{C_{t+1}^i}{C_t^i} \right)^{-\sigma} (d_{t+1} + q_{t+1}) \right\}$$

- agent knows that he/she will be the marginal agent forever OR
- that all agents know that the other agents are identical
- ▶ marginal agent: agent with the highest valuation (beliefs: $E^{\mathscr{P}_{mg}}$)

$$q_{t} = \delta E_{t}^{\mathcal{P}_{i}} \left\{ \left(\frac{C_{t+1}^{i}}{C_{t}^{i}} \right)^{-\sigma} (d_{t+1} + q_{t+1}) \right\}$$

= $\delta E_{t}^{\mathcal{P}_{i}} \left\{ \left(\frac{C_{t+1}^{i}}{C_{t}^{i}} \right)^{-\sigma} (d_{t+1} + \delta E_{t+1}^{\mathcal{P}_{mg}} \left\{ \left(\frac{C_{t+2}^{mg}}{C_{t+1}^{mg}} \right)^{-\sigma} (d_{t+2} + q_{t+2}) \right\} \right\}$
(9)

The agent cannot apply LIE to obtain the infinite discounted sum since this will imply

- agent knows that he/she will be the marginal agent forever OR
- that all agents know that the other agents are identical
- \blacktriangleright marginal agent: agent with the highest valuation (beliefs: $E^{\mathscr{P}_{mg}}$)

$$q_{t} = \delta E_{t}^{\mathscr{P}_{i}} \left\{ \left(\frac{C_{t+1}^{i}}{C_{t}^{i}} \right)^{-\sigma} (d_{t+1} + q_{t+1}) \right\}$$

= $\delta E_{t}^{\mathscr{P}_{i}} \left\{ \left(\frac{C_{t+1}^{i}}{C_{t}^{i}} \right)^{-\sigma} (d_{t+1} + \delta E_{t+1}^{\mathscr{P}_{mg}} \left\{ \left(\frac{C_{t+2}^{mg}}{C_{t+1}^{mg}} \right)^{-\sigma} (d_{t+2} + q_{t+2}) \right\} \right\}$
(9)

• there is no reason for $E_t^{\mathscr{P}_i} E_{t+1}^{\mathscr{P}_{mg}} = E_t^{\mathscr{P}_i}$

Consistency of Expectations (cont.)

Intertemporal budget constraint

$$\frac{\mathscr{W}_t^i}{P_t} = E_t^{\mathscr{P}_i} \sum_{j=0}^\infty \delta^j \left(\frac{C_{t+j}^i}{C_t^i}\right)^{-\sigma} C_{t+j}^i + A_t^i.$$
(10)

where

$$A_t^i = \sum_{j=1}^{\infty} \delta^j E_t^{\mathscr{P}} E_{t+1}^{\mathscr{P}} \dots E_{t+j-1}^{\mathscr{P}} \left(\frac{C_{t+j}^i}{C_t^i}\right)^{-\sigma} \frac{\lambda_{t+j}^i}{\prod_{s=0}^j (1+\pi_{t+s})}$$
(11)

Specifically, for j = 1

$$\lambda_{t+1}^{i} = \delta \left[E_{t}^{\mathscr{P}_{mg}} \left(\left(\frac{C_{t+2}^{mg}}{C_{t+1}^{mg}} \right)^{-\sigma} (P_{t+2} + D_{t+2}) \right) - E_{t}^{\mathscr{P}_{i}} \left(\left(\frac{C_{t+2}^{i}}{C_{t+1}^{i}} \right)^{-\sigma} (P_{t+2} + D_{t+2}) \right) \right] S_{t+1}^{i}$$

is the perceived error of agent i with respect to the marginal agent valuation.

Average Marginal Agent (AMA) Assumption: up to a first order approximation $A_t^i \approx 0$ (Go Back)

The Model Model blocks summary

Demand

$$\tilde{c}_{t}^{i} = \Delta_{i} \tilde{\boldsymbol{w}}_{t}^{i} + \Delta_{w} \sum_{j=0}^{\infty} \delta^{j} E_{t}^{\mathscr{P}}(\tilde{w}_{t+j}) - \frac{\delta}{\sigma} \Delta_{r} \sum_{j=0}^{\infty} \delta^{j} E_{t}^{\mathscr{P}}(i_{t+j} - \pi_{t+j+1}).$$
(12)

$$p_t^* = (1 - \delta\theta) \sum_{k=0}^{\infty} (\theta\delta)^k E_t^{\mathscr{P}} \Big\{ \frac{\alpha}{1 - \alpha + \epsilon\alpha} \tilde{y}_{t+k} + \frac{1 - \alpha}{1 - \alpha + \epsilon\alpha} (\tilde{w}_{t+k} + \epsilon_{t+k}^u) + p_{t+k} \Big\}.$$
(13)

Asset Prices

$$\tilde{q}_t = (1-\delta) E_t^{\mathscr{P}}(\tilde{d}_{t+1}) + \delta E_t^{\mathscr{P}}(\tilde{q}_{t+1}) - (i_t - E_t^{\mathscr{P}}(\tilde{\pi}_{t+1}))$$
(14)

Monetary Authority

$$i_t = \phi_\pi \pi_t + \phi_y \tilde{y}_t + \epsilon_t^i \tag{15}$$

The Model

Agents' model

the probability space (Ω, S, P) has typical element ω ∈ Ω, ω = {Y_t, P_t, Q_t, D_t, W_t} which is shared by all agents in the economy.

PLM:

$$z_t = \beta_t + \zeta_t$$

$$\beta_t = \rho \beta_{t-1} + \vartheta_t$$
(16)

where $z_t = (\tilde{y}_t, \tilde{\pi}_t, \tilde{q}_t, \tilde{d}_t, \tilde{w}_t)'$.

• optimal filter for $E^{\mathscr{P}}(\beta_t/g^t) = \hat{\beta}_t$ is the Kalman filter:

$$\hat{\beta}_t = \rho \,\hat{\beta}_{t-1} + \lambda (z_{t-1} - \rho \,\,\hat{\beta}_{t-1}) + \epsilon_t^\beta \tag{17}$$

- Adam, Marcet, Beutel (2017) show that equations of the form (17) replicate well actual survey data
- agents understand how monetary policy is conducted

The Model Sentiment (Belief) Shocks

- agents observe the transitory price component, ζ_t , with a lag
- stock price beliefs updating

$$E_t^{\mathscr{P}}(\tilde{q}_{t+1}) = \rho \, E_{t-1}^{\mathscr{P}}(\tilde{q}_t) + \lambda(\tilde{q}_{t-1} - \rho \, E_{t-1}^{\mathscr{P}}(\tilde{q}_t) \,) + \sigma_{\beta_q} \epsilon_t^{\beta_q}$$

where

 $\epsilon_t^{\beta_q} \sim \mathcal{N}(0,1), i.i.d$ is a sentiment/belief/animal spirits shock Back

Quantitative Performance

Parameters

Calibrated	Symbol	Value
	5	
Discount factor	δ	0.9928
Risk aversion coef.	σ	1
Frisch labor supply elasticity	$\frac{1}{\phi}$	0.75
Elasticity of substitution	ϵ	6
Prob. of not adjusting price	θ	2/3
Share of labor	1 - lpha	0.75
Taylor-rule coef. of inflation	ϕ_{π}	1.5
Taylor-rule coef. of output	ϕ_y	0.5/4
Equity Share Ownership	1 - O	0.47
Estimated		
Std. cost push shock	σ^{u}	0.0013
Std. equity belief shocks	σ^{β_q}	0.0623
Std. MP shocks	σ^{ϵ_i}	0.0007
Autoregressive coef. cost push shock	ρ_u	0.9539
Autoregressive coef. MP shocks	ρ_{β_q}	0.9685
Kalman gain	λ^{\prime}	0.0011
Autoregressive coef. beliefs	ρ	0.99

Table 2. Calibrated/Estimated (SMM) parameters: equity share ownership SCF 1989-2019
Back

Quantitative Performance

Parameters

Calibrated	Symbol	Value
Discount factor	δ	0.9928
Risk aversion coef	σ	1
Frisch labor supply elasticity	$\frac{1}{\phi}$	0.75
Elasticity of substitution	ϕ	6
2	-	-
Prob. of not adjusting price	θ	2/3
Share of labor	1 - lpha	0.75
Taylor-rule coef. of inflation	ϕ_{π}	1.5
Taylor-rule coef of output	ф.,	05/4
Equity Share Ownership	1 - O	0.47
Estimated		
Std. cost push shock	σ^{u}	0.0013
Std. equity belief shocks	σ^{eta_q}	0.0623
Std. MP shocks	σ^{ϵ_i}	0.0007
Autoregressive coef. cost push shock	ρ_u	0.9539
Autoregressive coef. MP shocks	ρ_{β_q}	0.9685
Kalman gain	λ	0.0011
Autoregressive coef. beliefs	ρ	0.99

Table 2. Calibrated/Estimated (SMM) parameters: equity share ownership SCF 1989-2019
Back

Belief Dynamics: $\rho(FR_{t,h}, FE_{t,h})$

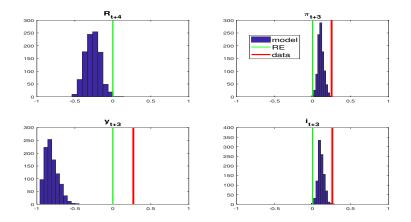


Figure 7. Correlation between FE and Revision in beliefs

Monetary Policy influence on wealth effects

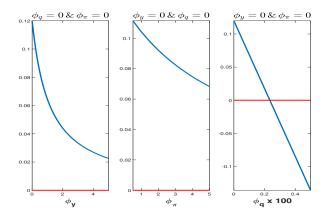


Figure 8. Stock Price Wealth Effects and Monetary Policy

Welfare Maps

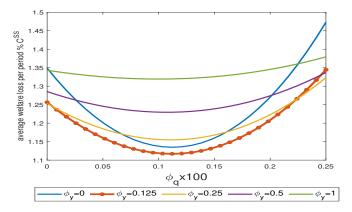


Figure 9. Welfare maps with respect to responses to output-gap and stock prices

