Fear of Hiking? Monetary Policy and Sovereign Risk

Martin Wolf ¹ & Leopold Zessner-Spitzenberg ²

¹University of St. Gallen and CEPR

²Humboldt University of Berlin

EEA Meeting August, 2022

Motivation

Two developments in the euro area

- 1. Public debt has reached new highs in euro area countries
- 2. Since 2008, ECB key interest rates are low

The joint observation of high debt and low interest rates has sparked a debate about fiscal-monetary interaction in the euro area

Narrative: the ECB is keeping rates low to shield sovereigns from rising borrowing costs to prevent a debt crisis.

This paper

How does the short-term rate set by the central bank affect public borrowing and sovereign default risk?

Answer this question in a Eaton and Gersovitz (1981) style model of a small member of a monetary union

- ► Local government issues defaultable debt to investors inside the monetary union
- Sticky wages imply monetary policy has real effects (Arellano et al., 2020; Bianchi and Mondragon, 2022)

Results

Main insight: The effects of a rate hike flip when debt/GDP is above a critical threshold level

- ► Low debt/GDP: debt levels and default risk decline
- ► High debt/GDP: debt levels and default risk rise (Fear of Hiking)

In a nutshell

- ► Analytical decomposition: substitution vs income effect
- Calibration to Italy: in the fear of hiking zone
- Policy implications

2. Model.

Overview

Eaton-Gersovitz style model

- ► Small country in a monetary union
- ► Households, firms, domestic government
- Nominal friction: downward wage rigidity
- ▶ Risk-neutral foreign lenders within the monetary union
- Central bank sets the short-term rate

Presentation: wage rigidity binding, relative prices fixed, no inflation

Domestic households details

Households consume bundle C_t of domestic and foreign goods

- ▶ Intertemporal elasticity of substitution $1/\sigma$
- ▶ Home bias 1γ
- ▶ No access to financial markets (hand to mouth)
- Consume labor income W_tL_t and government transfer (primary deficit) T_t

$$C_t = W_t L_t + T_t$$

Domestic production

Firms

- competitive, linear technology, no profits
- ightharpoonup downward rigid wages $W_t > 1$

Wage rigidity binds, domestic output is determined by

- ightharpoonup domestic demand $(1-\gamma)C_t$
- \triangleright (exogenous) foreign demand X_t

$$Y_t = (1 - \gamma)C_t + X_t$$

Domestic government

Government chooses transfer T_t , debt B_t and default δ_t to maximize household utility.

The budget constraint is

$$\tilde{\mu}B_{t-1} + T_t = q_t(B_t - (1-\mu)B_{t-1}).$$

- \triangleright B_t is the amount of long-term debt, q_t the bond price
- lacksquare μ is the fraction of maturing debt, $ilde{\mu}=\mu+\iota$ (normalization)
- Standard setup (Chatterjee and Eyigungor, 2012)

Default entails utility cost, plus the economy is excluded from financial markets for a random number of periods.

Rest of the union

Debt is purchased by risk-neutral foreign lenders. The price of debt is

$$q_t = \frac{\mathbb{E}_t(1 - \delta_{t+1})(\tilde{\mu} + (1 - \mu)q_{t+1})}{1 + i_t},$$

where $\delta_{t+1} = 1$ default indicator.

Investors' outside option is i_t , the policy rate set by the central bank.

 \Rightarrow main exercise: study effect of i_t on sovereign borrowing decision and default risk

3. Threshold for debt/GDP.

Income and substitution effect

Define $\tilde{q}(B_t,s_t)=q(B_t,i,s_t)(1+i)$, then we can write government Euler equation for B_t as

$$\begin{split} \frac{U'(C(1+i))}{\gamma} \left(\tilde{q}(B_t, s_t) + \frac{\partial \tilde{q}(B_t, s_t)}{\partial B_t} (B_t - (1-\mu)B_{t-1}) \right) \\ + \beta (1+i) \frac{\partial}{\partial B_t} \mathbb{E}V(B_t, i_{t+1}, s_{t+1}) = 0. \end{split}$$

where V is the continuation value.

Two competing effects

- 1. Substitution effect implies that B_t falls in i
- 2. Income effect implies that B_t rises in i

Threshold for debt to GDP graphical illustration

Proposition

Consider a temporary change in i. Define the threshold \mathcal{T}

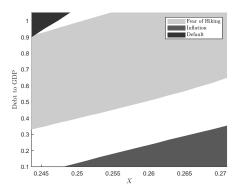
$$\mathcal{T}_t = rac{\gamma}{ ilde{\mu}\sigma} \left(1 + \left(rac{\sigma}{\gamma} - 1
ight) rac{T_t}{Y_t}
ight).$$

Then $\partial B_t/\partial i > 0$ if and only if $B_t/Y_t > \mathcal{T}_t$

Effects of monetary policy flip at high levels of public debt

- \blacktriangleright Threshold shaped by three key parameters: σ , $\tilde{\mu}$ and γ
- \triangleright Depends on business cycle through primary deficit / GDP ratio T_t
- $\Rightarrow B_t$ also captures future default risk

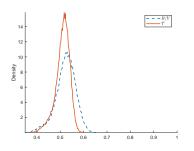
4. Quantitative analysis.

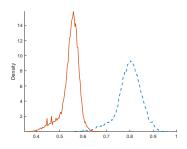

The Fear of Hiking zone Calibration table

Results from a yearly calibration to Italy

Statistic	Value
$mean(\mathcal{T})$	0.5116
$mean(\mathbb{1}_{\mathcal{I}})$	0.7056
$corr(\mathbb{1}_{\mathcal{I}}, Y)$	-0.6781

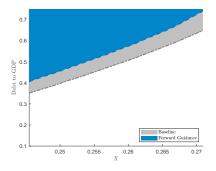
Indicator $\mathbb{1}_{\mathcal{I}}$ for the Fear of Hiking zone. Hence, 71% of the time in Fear of Hiking zone, more likely to visit the Fear of Hiking zone in a recession (correlation -0.68)


The Fear of Hiking zone



- ► At higher debt levels, the economy is more likely to be in the fear of hiking zone
- ▶ In good times, the government runs a surplus ⇒ the fear of hiking zone is smaller

5. Policy implications.


Policy implication #1: Decline in long rates

- ▶ Decline in long rates modeled as a cut in ι , from 2% to 0%
- Economy becomes more likely to be in Fear of Hiking zone
- ➤ Too low for too long and limited ammunition (Boissay et al., 2021; Mian et al., 2021)

Policy implication #2: Forward guidance

(Credible) announcements about future interest rate increases reduce the Fear of Hiking zone

- ▶ Announcements change B/Y and T, hence 1_{I}
- Needs to be traded off against direct effects of forward guidance, for instance, impact on sovereign risk

5. Conclusion.

Summary and conclusion

Monetary policy's impact on public debt flows and sovereign default risk in a currency union may be highly state dependent, depending in particular on current debt/GDP of member countries

Quantify the threshold and policy implications

Households back

Households' utility is

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\sigma}}{1-\sigma},$$

with consumption basket

$$C_t = \zeta C_{h,t}^{1-\gamma} C_{f,t}^{\gamma},$$

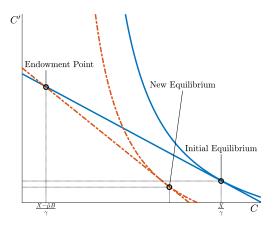
where $\zeta \equiv (1-\gamma)^{-(1-\gamma)}\gamma^{-\gamma}$. Here, $C_{h,t}$ are domestic and $C_{f,t}$ are imported goods. Budget constraint

$$P_{h,t}C_{h,t} + P_{f,t}C_{f,t} = W_tL_t + P_{h,t}T_t$$

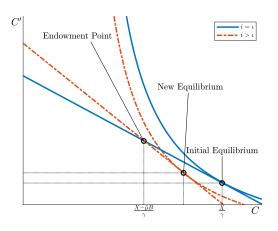
where W_tL_t is income, T_t are government transfers (primary deficit). Households have no access to financial markets.

Optimality conditions

Households supply $\bar{L}=1$ inelastically. Due to wage rigidities described below, may supply $L_t<1$ in equilibrium.


Optimal expenditure

$$C_{h,t} = (1 - \gamma) \frac{P_t}{P_{h,t}} C_t \tag{1}$$


$$C_{f,t} = \gamma \frac{P_t}{P_{f,t}} C_t, \tag{2}$$

with cost-minimizing price index $P_t = P_{h,t}^{1-\gamma} P_{f,t}^{\gamma}$.

Two-period consumption model: low B

Two-period consumption model: high B

Calibration table (53ck)

Parameter	Value	Target	Data	Model
L	0.02	Risk free rate	-	-
σ	4	EIS	-	-
γ	0.27	Home bias	-	-
ζ	0.27	Elasticity	-	-
μ	0.14	Debt maturity	-	-
p	0.18	Exclusion period	-	-
β	0.945	$mean(B_t/Y_t)$	0.499	0.529
μ_X	0.257	$mean(1-L_t)$	0.094	0.088
σ_{X}	0.022	$std(Y_t)$	0.023	0.021
ρ_X	0.65	$corr(Y_t, Y_{t-1})$	0.640	0.610
$s_{ ilde{\zeta}}$	0.66	$mean(spread_t)$	0.014	0.014
$\tilde{L_0}$	2.262	$corr(X_t - C_{f,t}, Y_t)$	-0.170	-0.140
L_1	20	$std(\mathit{spread}_t)$	0.011	0.006