Easy Money: The Inefficient Supply of Inside Liquidity

Alessio Galluzzi¹ August 22nd 2022 EEA-ESEM 2022

¹The University of Sydney

This Paper

- Inside liquidity dominates modern markets
- Privately issued liabilities can dry up quickly
- Model with
 - Fiat currency
 - Privately issued liabilities that are occasionally defaulted upon

Results:

- Monetary policy controls aggregate liquidity
- Yet, there is inefficient issuance of liquidity
- Liquidity requirements cannot restore efficiency
- Capital requirements are not effective either

Related Literature

- New Monetarist: Lagos, Wright (2005), Lagos and Rocheteau (2008), Gu et al. (2013), Gu, Mattesini and Wright (2016), Geromichalos and Herrenbrueck (2016), Andolfatto, Berentsen and Waller (2016)
- Demand for liquidity: Eisfeldt (2006), Adrian and Shin (2009), Krishnamurthy and Vissing-Jørgensen (2012), Carlson et al. (2014), Bigio (2015), Bianchi and Bigio (2016), Arseneau, Rappoport and Vardoulakis (2017), Benigno and Robatto (2019), Piazzesi and Schneider (2018)
- Excessive Credit and Lack of Safe Assets: Caballero (2006), Lorenzoni (2008), Caballero and Farhi (2017), Moreira and Savov (2017)

Model

Equilibrium

Welfare

Liquidity and Capital Requirements

Timing and Agents

- Time *t* = 0, 1, 2
- Agents:
 - Representative Household
 - Intermediaries
- Production technologies:
 - Safe: A_1 at t = 1 and A_2 at t = 2
 - Risky: at t = 1 only

$$\mathcal{A}_1' = egin{cases} \mathcal{A}_h & ext{with probability } 1-\pi \\ 0 & ext{with probability } \pi \end{cases}$$

Refer to the A_h realization as the high state

Assets

- Capital K
 - Fixed supply \bar{K} held by intermediaries
 - Productivity A_t
 - Output $Y_t = A_t \overline{K}$, non storable
 - Full depreciation at t = 1 if used in the risky technology
 - Otherwise, full depreciation at t = 2
- Fiat currency M_t
 - Issuer: central bank in amount $ar{M}$
 - Holder: household
- Short term liabilities B_t and equity N_t
 - Issuers: intermediaries
 - Holder: household

• Maximize expected utility

 $E\left[\log c_1 + \beta c_2\right]$

- Portfolio choice:
 - Fiat currency M: safe and liquid
 - Safe liabilities B^c: safe and liquid
 - Risky liabilities B^s: risky and occasionally illiquid
 - Equity N^c: illiquid

Household's Constraints

• t = 0 portfolio allocation

$$M^h + B^s + B^c + N^c = Q_0 \bar{K} + \bar{M}$$

• *t* = 1 cash-in-advance constraint

$$p_1 c_1 \leq M^h + (1 + r^c) B^c + (1 - \mathbb{I}) (1 + r^s) B^s$$

- Household also gets an additional endowment \bar{Y} of consumption
- *t* = 2 final budget constraint

$$p_2c_2 = W_1 + (1 + r^n) N^c - p_2 T_2$$

Where

$$W_{1} = M + (1 + r_{t-1}^{c}) B^{c} + (1 - \mathbb{I}) (1 + r_{t-1}^{s}) B^{s} - p_{1}c_{1}$$

- Unit measure
- Free entry
- Raise liabilities or equity to acquire capital
- Choice between:
 - 1. Commercial banking
 - Operate the safe technology
 - Offer safe liabilities
 - Raise equity
 - 2. Shadow banking
 - Operate the risky technology
 - Offer risky liabilities
 - No equity

• Budget constraint

$$(1+\tau) Q_0 K^c = B^c + N^c$$

- Safe technology operating cost $\tau \geq 0$
- Safe liabilities constraint

$$p_1 A_1 K^c \ge (1+r^c) B^c$$

• Expected profits at t = 0

$$\Pi^{c} = (p_{1}A_{1} + \beta p_{2}A_{2}) K^{c} - (1 + r^{c}) B^{c} - (1 + r^{n}) N^{c}$$

- Buy capital and issue liabilities, but no equity
- No regulatory cost
- Full default if the technology is unproductive
 - Default is mechanic, not strategic
- Because of limited liability

$$p_1 A_1^r K_t^s \ge (1+r^s) B^s$$

• Expected profits

$$E\left[\Pi^{s}\right] = E\left[p_{1}A_{1}^{r}\right]K^{s} - E\left[\left(1 + r_{t}^{s}\right)\right]b_{t}^{s}$$

Closing the Model

• Intermediaries choose

$$E\left[\Pi\right] = \max\left\{\Pi^{c}, E\left[\Pi^{s}\right]\right\}$$

• Monetary policy

$$ar{M} = p_2 T_2$$
 s.t. $p_2 = (1+\mu) \, p_1$

• Market clearing

$$c_1 = \bar{Y} + A_1 K^c + A_1^r K^s$$

$$c_2 = A_2 K^c - T_2$$

$$\bar{K} = (1 + \tau) K^c + K^s$$

$$M^h = \bar{M}$$

Model

Equilibrium

Welfare

Liquidity and Capital Requirements

Optimal Consumption

- κ : multiplier for the t = 1 cash in advance constraint
- Optimal morning consumption

$$c_1 = \frac{1+\mu}{(1+\mu)\,\kappa p_1 + \beta}$$

• First best if and only if the morning constraint is not binding

$$\kappa = 0 \iff c_1 = \frac{1+\mu}{\beta}$$

- Call $\kappa = 0$ full liquidity satiation
- Welfare ultimately depends on real liquidity across states

Monetary Policy Controls Aggregate Liquidity

- Take the money demand Euler equation
- The average t = 1 multiplier is

$$E[\kappa] = \bar{\kappa} = \lambda - \frac{\beta}{(1+\mu) p_1}$$

Where λ is the multiplier of the t = 0 portfolio constraint

• That is

$$E\left[u'\left(c_{1}
ight)
ight]= ext{constant}$$

- Where the constant value is the opportunity cost of liquidity
- Monetary policy determines the aggregate liquidity allocation

Competitive Equilibrium

- Both bankers operate
- Liquidity is close to full satiation in the high state

$$c_1^h o rac{1+\mu}{eta}$$

- Large difference between t = 1 consumption in the two states
- Price level $p_1 = \bar{M}/\bar{Y}$
- Conditions for existence:
 - The risky technology needs to have a large enough upside
 - Large A_h and/or small π

Model

Equilibrium

Welfare

Liquidity and Capital Requirements

- Planner creates liquidity accounting for the production technologies
 - Allocate capital sectors
 - Loss from safe technology cost $\boldsymbol{\tau}$
- Objective: maximize household's expected utility
 - Given the household's demand functions
 - Given asset creation constraints
- The expected marginal value of liquidity must satisfy

 $E\left[u'\left(c_{1}
ight)
ight]=constant$

Inefficient Supply of Liquidity

- Take inflation μ as given
- Main forces:
 - Equalize consumption across states from risk aversion
 - Consumption loss from regulatory cost $\boldsymbol{\tau}$
 - Inflation cost of holding currency from μ
- Risk aversion is the strongest force
- Planner equalizes t = 1 consumption across states
- The competitive equilibrium is inefficient

Illustration

Welfare ➤ Safe K ĸ Welfare with regulatory costs

Model

Equilibrium

Welfare

Liquidity and Capital Requirements

- Policy to mitigate the effects or the likelihood of default
- Liquidity requirements to cover short term obligations
- Basel III and the liquidity coverage ratio (LCR)
 - Level 1: cash, some government bonds
 - Level 2: GSE securities, investment grade debt
- In this model, force intermediaries to hold fiat currency

$$\frac{M^c}{B^c} \geq \delta^c \text{ and } \frac{M^s}{B^s} \geq \delta^s$$

Effects on Efficiency

- Efficient equilibrium: only the commercial banks operate
- The requirement is binding for both intermediaries
- Cannot implement the planner's solution:
 - If $\delta^{c},\ \delta^{s}$ are small, the inefficient equilibrium exists
 - If $\delta^{c},\;\delta^{s}$ are large, no equilibrium exists
- Intuition:
 - Money simply held by another agent
 - No significant shift in capital allocation
 - The cost of holding money can be too large for the intermediaries

- Policy to mitigate the likelihood of default
- Basel III:
 - Common Tier 1 capital greater than 4.5%
 - Tier 1 capital over risk weighted assets greater than 6%
- In the model, hold a minimum fraction of capital as equity

$$\frac{N^c}{QK^c} \geq \gamma^c \text{ and } \frac{N^s}{QK^s} \geq \gamma^s$$

• Holding equity = invest that K in the safe technology

Effects on Efficiency

- Efficient equilibrium: only the commercial banks operate
- Capital requirement is binding only for the shadow banks
- Improve on efficiency without achieving the planner's solution
- Intuition:
 - Holding equity is an additional cost for the shadow banks
 - Compensated by the lower return they offer on the risky securities
- Combination of policies may be necessary for efficiency

- Monetary policy indirectly governs aggregate liquidity
- Yet, there is inefficient issuance of liquidity
 - Too little liquidity in crises
- Liquidity requirements cannot implement the planner's solution
- Capital requirements are also insufficient