Of Shrimps and Men: Innovation, Competition and Product Diversity

Amanda De Pirro¹ Renaud Foucart¹

¹Lancaster University, United Kingdom

EEA-ESEM, 24th August 2022

A classic view of innovation

- Innovation gives a temporary advantage to the innovator, until laggards eventually catch up (Aghion et al., 2005)
- Intuition: innovation is a way to temporarily escape competition
- Led to a large literature on Innovation Vs Competition (see recent review by Griffith and Van Reenen, 2021)

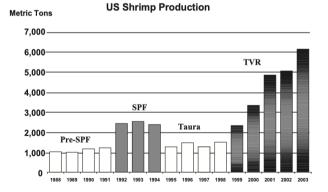
This paper

What if the "catch up" phase is more competitive than before the innovation?

- First paper to show that innovation can be detrimental to the innovator's profit due to the choice of product variety
- ▶ We illustrate the theory by using the US shrimp industry case

How Innovation Killed the American Shrimp: before innovation

Large-scale shrimp aquaculture began developing in 1970 based on local species: L. Vannamei (US) Vs P. Monodon (Asia)


Figure 2: Asia

The US innovation

- Different varieties, same problem: mass mortality due to periodical outbreaks
- High volatility in production
- INNOVATION: in 1998, the US developed a technology able to protect Vannamei shrimps against the major diseases (TVR)

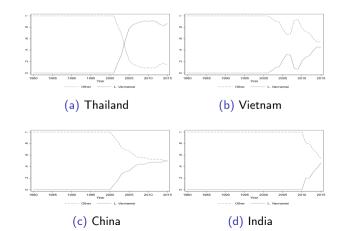

The gains from innovation

Figure 3: US Shrimps production (source: Wyban, 2009)

The innovation catch-up

Increasing availability of TVR broodstocks of *L. Vannamei*: Asian countries switch their production to the US variety

How Innovation Killed the American Shrimp: after innovation

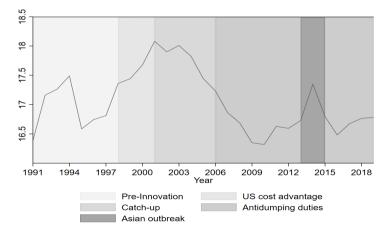

Figure 4: United States

Figure 5: Asia

....but cheaper

What about the US profits?

Figure 6: Aggregate US industry profit (1991-2019)

Goal of the theory

- 1. Show that in a market in which producers compete in quantity (Cournot) and can choose a variety...
- 2. an innovation (cost reduction) can lead to lower product diversity ...
- 3. ... and lower profit in the catch up phase

Some related results

- Innovator is in a "pesky little brother" relationship with laggard (Besen and Farrell, 1994)
- Vives (2008): more substitutability leads to more efforts to innovate
- Cournot Paradox (Seade, 1985; Amir et al., 2017)
- Braess Paradox (Braess, 1968; Braess et al., 2005)

Setup

- **•** Two representative firms, Home (h) and Foreign (f), produce shrimps
- Two kind of shrimps available, the white legs shrimps "Vannamei" (v) and the tiger shrimps "Monodon" (m)
- Each of the firms can produce only one variety, and chooses a quantity
- ▶ If *h* and *f* produce the same variety: Cournot competition
- ▶ If they choose different varieties: differentiated Cournot competition (Singh, 1984)

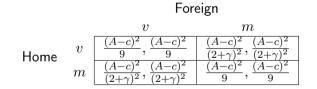
Setup

Inverse demand for firm $i \in \{h, f\}$ is given by

$$p_i^k = A - q_i^k - g(k, l)q_j^l,\tag{1}$$

- ▶ with $k, l \in \{v, m\}$ the chosen variety of each firm
- For $k \neq l$, $g = \gamma \in (0, 1)$ characterizes the level of substitution between both types of shrimps à la Singh (1984)
- For k = l, g = 1 (standard Cournot)

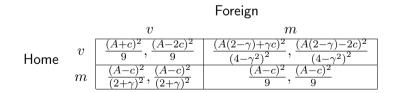
The three phases of innovation


- 1. Pre-innovation: both firms produce at constant marginal cost $c_i^k = c > 0$ for all $k \in \{v, m\}$
- 2. Innovation: innovator h can produce variety v at marginal cost $c_h^v = 0$ (other costs remain c)
- 3. Catch up: both firms can produce variety v at marginal cost $c_i^v = 0$ for all $i \in \{h, f\}$ (cost for the other variety m remains c)

Interpretation: c is a measure of how important the innovation is

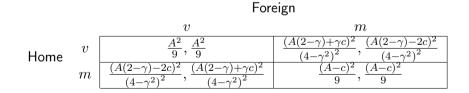
Pre-innovation phase profit

Lemma


The Pre-innovation phase has two Nash equilibria in pure strategy, in which both firms choose different varieties.

Innovation phase profit

Lemma


The innovation phase has either one or two Nash equilibria in pure strategy. For $c \leq \frac{A(1-\gamma)}{\gamma+5} = \tilde{c}$, the two equilibria are similar to the pre-innovation phase, both firms choose different varieties. For $c > \tilde{c}$, in the unique equilibrium the innovator h produces the variety v in which it has a cost advantage, the other firm f produces the other variety m.

Catch-up phase profit

Lemma

The catch up phase has either one or two Nash equilibria in pure strategy. For $c \leq \frac{1}{6}A(2-\gamma)(1-\gamma) = \overline{c}$, the two equilibria are similar to the pre-innovation phase, both firms choose different varieties. For $c > \overline{c}$, in the unique equilibrium both firms produce variety v.

Proposition: The innovation curse

- 1. For $c > \overline{c}$, both firms produce variety v in the catch-up phase, while both produce different varieties in the pre-innovation phase
- 2. For $c < \frac{1}{3}A(1-\gamma) = c^*$, the catch-up phase profit when both firms produce variety v is strictly lower than the pre-innovation profit when both produce different varieties, for both firms
- 3. As $\tilde{c} < \bar{c} < c^*$ there always exists a $c \in (\bar{c}, c^*)$ such that innovation leads to lower profit in the catch up phase than pre-innovation

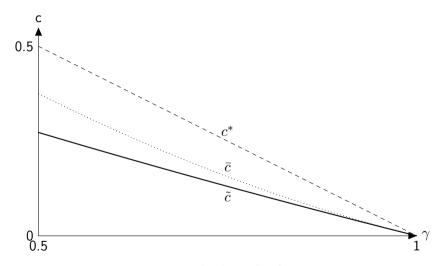


Figure 7: Critical values of c, for A = 3.

Main message

► A cautionary tale for innovation as a means of escaping competition

- ► Related issues:
 - External validity
 - Political equilibrium