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1
SVAR: up = Boey - Example: Ute| _ bia| |1t
uot by 1 €9t

Identification is about imposing an a priori structure on the interaction and the shocks.

e Traditional approaches assume that the structural shocks are uncorrelated and
impose restrictions on the interaction: Sims (1980), Blanchard and Quah (1989),
or Uhlig (2005).

e More recent approaches require no assumptions on the interaction but impose
more structure on the stochastic properties of the shocks, e.g. independent and
non-Gaussian shocks: Gouriéroux et al. (2017), Lanne et al. (2017).
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Figure 1: Examples of Different Block-Recursive SVAR Models.
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lllustration: Independent shocks and higher-order moment conditions

Bivariate SVAR:

ere| _ | 1 A fure
2t A 1| |2
Moment conditions uncorrelated shocks: E[cise2:] =0

Moment conditions mean independent shocks:
Elef,e2¢] =0 Ele1:e3,] =0 Ele3,22¢] =0 Ele1:e3,] =0
Identification: The SVAR is identified (up to sign and permutation) if all shocks are

mean independent at most one shock is Gaussian, see Lanne and Luoto (2021), or
Keweloh (2021).
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Block-Recursive Non-Gaussian SVAR: Identification

One block (unrestricted):

Uit 1 bz b1z bua| |e1e
we|  |ban 1 bz bog| |2t
U3t bs1 b2 1 b3 |e3t
Ugt ba1 bay bgz 1 €4t

Assumptions to ensure identification:
1. Uncorrelated shocks &;.

2. At most one Gaussian shock per block.
3. Mean independent shocks within
blocks, i.e. E[ejt|e—it] = 0.
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Block-Recursive Non-Gaussian SVAR: Identification

One block (unrestricted): Identifying coskewness conditions:

uie 1 bz b1z bua| |e1: Ele3e0] =0 Ele3e4] =0
upe| _ {ban 1 bas boal |e2: El[e1e3] = 0 Ele1e2] = 0
U3t bsi bz 1 baa| |e3e E[225] = 0 E[224] = 0

Ugt byr bay bsz 1 €4t ) )
Ele1e3] =0 Elesez] =0
Ele3e3] =0 E[e3c4] = 0

Assumptions to ensure identification: ) )
1. Uncorrelated shocks &;. Ele2e3] =0 Elezes] =0

2. At most one Gaussian shock per block.

3. Mean independent shocks within

blocks, i.e. E[eitle_it] = 0.

E[6162€3] =0

Elezeseq] =0

... plus 25 cokurtosis conditions

E[€1€254] =0

Ele1e3e4] =0
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Block-Recursive Non-Gaussian SVAR: Identification

Two blocks (e.g. two countries):

Ui 1 b12 0 0 €1t
ue| b21 1 0 0 E2¢
Uzt bs1 bza 1 baa| |3t
Ugt ba1 bay bgz 1 €4t

Assumptions to ensure identification:
1. Uncorrelated shocks &;.

2. At most one Gaussian shock per block.
3. Mean independent shocks within
blocks, i.e. E[ejt|e—it] = 0.
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Block-Recursive Non-Gaussian SVAR: Identification

Two blocks (e.g. two countries):

Ui 1 b12 0 0 €1t
ue| b21 1 0 0 E2¢
Uzt bs1 bza 1 baa| |3t
Ust byr bar bgz 1 | |e4

Assumptions to ensure identification:
1. Uncorrelated shocks &;.

2. At most one Gaussian shock per block.

3. Mean independent shocks within
blocks, i.e. E[ejt|e—it] = 0.

Identifying coskewness conditions:

Ele2e0] =0 Ele3e4] =0
E[e1€3] =0 Ele3e3] =0

... plus 4 cokurtosis conditions
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Block-Recursive Non-Gaussian SVAR: Identification

Four blocks (recursive):

g 1 0 0 0] [ew
ue|  [br 1 0 O |e2t
use|  |ba1 bz 1 0] |es
Ugt ba1 bax bsz 1] |ear

Assumptions to ensure identification:
1. Uncorrelated shocks &;.

2. At most one Gaussian shock per block.
3. Mean independent shocks within
blocks, i.e. E[ejt|e—it] = 0.
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Recursive Non-Gaussian SVAR: Efficiency

In a recursive SVAR with independent shocks identified by covariance conditions it

holds that:

1. Elejejek] is redundant.
2. E[e2¢)] is redundant for the g-th column of B if q # .
3. E[e?%¢] is redundant for the j-th column of B if and only if

2E[¢]

3 _
WQJJ + Elef]aj =0,

Ele}]ai, = 0, z=j+1,...,i
where a; denote the elements of A= B! and i # j # k.

10/23



Block-Recursive Non-Gaussian SVAR: Data-driven moment selection

Lasso moment selection based on Cheng and Liao (2015):

ENGI [ en(B
go(B)

{B,3}:= argmin en(B) - 5

{B,8}e{B,R"}

+)‘sz 18jl, (1)

where

e B is the set of B matrices satisfying a given block-recursive order,

gn(B) is the sample average of the identifying conditions,

gp(B) is the sample average of the overidentifying conditions,

k is the number of overidentifying moment conditions,

A is a tuning parameter,

wj for j =1,..., k are moment specific weights.
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Block-Recursive Non-Gaussian SVAR: Data-driven moment selection

{B,B}:= argmin en(B
go(B)

{B,8}e{B,R"}

+)\ij 13; (2)

en(8) |
go(B) —

For an overidentifying moment D; use the adaptive weights

wj = —2 with 1 > >0, (3)

with a measure of relevance yi; and a measure of validity ;.

— Allows to select relevant and valid overidentifying moment conditions.
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Summary block-recursive SVAR:

A block-recursive structure appears in many applications, e.g., SVARs with two

countries, SVARs with macroeconomic and financial variables, and proxy VARs.

e Block-recursive restrictions allow to relax the independence and non-Gaussianity
assumptions. The bias and variance of the estimator decreases with the number
of restrictions.

e Overidentifying coskewness and cokurtosis moment conditions can increase the
asymptotic efficiency.

e Relevant and valid overidentifying moment conditions can be selected with Lasso.
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The impact of stock market news shocks on the oil price

Block-recursive SVAR:

qt , Qe—i by 0 0 O €St
4
i b b 0 0 €
yel _ OH—ZA,' Ye—i i 21 D22 Yt
Pt Py Pt—i bs1 b32 b3z bag €Dt
St St—i bar  bap baz bar| [Enews,t

Monthly data from January 1975 to March 2022:
- g+ A log global oil production - pt: log of real oil price
- ¥+ A log industrial production: - s¢1 real stock returns
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The impact of stock market news shocks on the oil price

Figure 2: Blue: Block-recursive SVAR. 90% confidence bands.
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The impact of stock market news shocks on the oil price

Recursive SVAR:

qt qr—i bin O 0 0 €St
24
i b 0 0 €
ye| _ Oé‘i‘ZAi Ye—i n 21 b Yt
Pt = | Pe-i bs1 bz bz O €Dt
St St—i byy  bar bsz ba1| |Enews,t

Kilian and Park (2009)
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The impact of stock market news shocks on the oil price

Figure 3: Red: Recursive SVAR. Blue: Block-recursive SVAR. 90% confidence bands.
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The impact of stock market news shocks on the oil price

Table 1: One year ahead forecast error variance decomposition

Recursive SVAR Block-recursive SVAR
‘ €s gy ED  ENews ‘ €s gy ED  ENews
p| 011 0.1 0.79 0.00 pl 011 01 039 040
s 0.0l 0.03 0.04 0.92 s|10.01 003 035 0.61
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The impact of stock market news shocks on the oil price

Figure 2: Red: Recursive SVAR. Blue: block-recursive SVAR.
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Summary application

e The oil price reacts simultaneously to news shocks. News shocks explain 40% of

the oil price variation compared to 0% in the recursive model.

e Stock returns react simultaneously to oil-specific demand shocks. Oil-specific
demand shocks explain 35% of the variation in stock returns compared to 4% in
the recursive model.

e News shocks retrieved from stock returns were important drivers of the oil price
following the collapse of Lehman Brothers and during the COVID-19 pandemic.
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