Block-Recursive Non-Gaussian SVAR: Identification, Efficiency, and Moment Selection

Sascha Keweloh¹ Stephan Hetzenecker²

ESEM 2022, August 2022

¹TU Dortmund University

²University Duisburg-Essen

SVAR:
$$u_t = B_0 \varepsilon_t \rightarrow \text{Example:} \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix} = \begin{bmatrix} 1 & b_{12} \\ b_{21} & 1 \end{bmatrix} \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}$$

Identification is about imposing an a priori structure on the interaction and the shocks.

- Traditional approaches assume that the structural shocks are uncorrelated and impose restrictions on the interaction: Sims (1980), Blanchard and Quah (1989), or Uhlig (2005).
- More recent approaches require no assumptions on the interaction but impose more structure on the stochastic properties of the shocks, e.g. independent and non-Gaussian shocks: Gouriéroux et al. (2017), Lanne et al. (2017).

Figure 1: Examples of Different Block-Recursive SVAR Models.

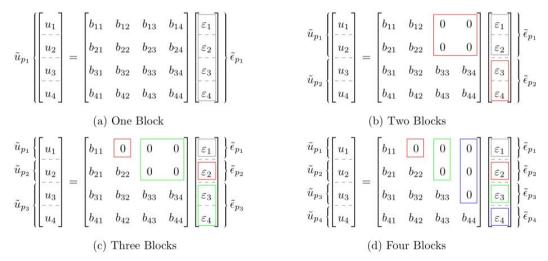


Illustration: Independent shocks and higher-order moment conditions

Bivariate SVAR:
$$\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} = \begin{bmatrix} 1 & A_{12} \\ A_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

Moment conditions uncorrelated shocks: $E[\varepsilon_{1t}\varepsilon_{2t}] = 0$

Moment conditions mean independent shocks:

$$E[\varepsilon_{1t}^2\varepsilon_{2t}] = 0$$
 $E[\varepsilon_{1t}\varepsilon_{2t}^2] = 0$ $E[\varepsilon_{1t}^3\varepsilon_{2t}] = 0$ $E[\varepsilon_{1t}\varepsilon_{2t}^3] = 0$

Identification: The SVAR is identified (up to sign and permutation) if all shocks are mean independent at most one shock is Gaussian, see Lanne and Luoto (2021), or Keweloh (2021).

One block (unrestricted):

$\begin{bmatrix} u_{1t} \end{bmatrix}$		1	b_{12}	b_{13}	b_{14}	ε_{1t}
<i>u</i> _{2t}	=	<i>b</i> ₂₁	1	b ₂₃	b ₂₄	ε_{2t}
u _{2t} u _{3t}		b ₃₁		1	b_{34}	ε_{3t}
$\left\lfloor u_{4t} \right\rfloor$		b_{41}	<i>b</i> ₄₂	<i>b</i> 43	1]	$[\varepsilon_{4t}]$

Assumptions to ensure identification:

- 1. Uncorrelated shocks ε_t .
- 2. At most one Gaussian shock per block.
- 3. Mean independent shocks within

One block (unrestricted):

$\begin{bmatrix} u_{1t} \end{bmatrix}$		$\lceil 1 \rangle$	b_{12}	b_{13}	b_{14}	$\left[\varepsilon_{1t}\right]$
$ u_{2t} $	=	b ₂₁	1		b ₂₄	ε_{2t}
u _{2t} u _{3t}		b ₃₁	b ₃₂	1	b ₃₄	ε_{3t}
$\left\lfloor u_{4t} \right\rfloor$		b_{41}	<i>b</i> ₄₂	<i>b</i> 43	1]	$[\varepsilon_{4t}]$

Assumptions to ensure identification:

- 1. Uncorrelated shocks ε_t .
- 2. At most one Gaussian shock per block.
- 3. Mean independent shocks within

blocks, i.e. $E[\varepsilon_{it}|\varepsilon_{-it}] = 0.$

Identifying coskewness conditions:

$$E[\varepsilon_1^2 \varepsilon_2] = 0 \qquad E[\varepsilon_1^2 \varepsilon_4] = 0$$
$$E[\varepsilon_1 \varepsilon_2^2] = 0 \qquad E[\varepsilon_1 \varepsilon_4^2] = 0$$
$$E[\varepsilon_1 \varepsilon_3^2] = 0 \qquad E[\varepsilon_2^2 \varepsilon_4] = 0$$
$$E[\varepsilon_1 \varepsilon_3^2] = 0 \qquad E[\varepsilon_2 \varepsilon_4^2] = 0$$
$$E[\varepsilon_2^2 \varepsilon_3] = 0 \qquad E[\varepsilon_3^2 \varepsilon_4] = 0$$
$$E[\varepsilon_2 \varepsilon_3^2] = 0 \qquad E[\varepsilon_3 \varepsilon_4^2] = 0$$
$$E[\varepsilon_1 \varepsilon_2 \varepsilon_3] = 0 \qquad E[\varepsilon_1 \varepsilon_2 \varepsilon_4] = 0$$
$$E[\varepsilon_1 \varepsilon_2 \varepsilon_4] = 0 \qquad E[\varepsilon_1 \varepsilon_3 \varepsilon_4] = 0$$

... plus 25 cokurtosis conditions

Two blocks (e.g. two countries):

$\begin{bmatrix} u_{1t} \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix}$	b_{12}	0	0]	$\left[\varepsilon_{1t}\right]$
$\left u_{2t} \right _{-}$	_ b ₂₁	1	0	0	ε_{2t}
$ u_{3t} ^{-}$	b_{31}	b_{32}	1	b ₃₄	ε_{3t}
$\left\lfloor u_{4t} \right\rfloor$	b_{41}	b_{42}	b ₄₃	1]	$[\varepsilon_{4t}]$

Assumptions to ensure identification:

- 1. Uncorrelated shocks ε_t .
- 2. At most one Gaussian shock per block.
- 3. Mean independent shocks within

Two blocks (e.g. two countries):

$\begin{bmatrix} u_{1t} \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix}$	b_{12}	0	0]	$\left[\varepsilon_{1t}\right]$
u _{2t}	b ₂₁	1	0	0	ε_{2t}
$\left u_{3t} \right ^{-}$	b ₃₁	<i>b</i> ₃₂	1	<i>b</i> ₃₄	ε_{3t}
$\left\lfloor u_{4t} \right\rfloor$	b_{41}	<i>b</i> ₄₂	b ₄₃	$1 \rfloor$	$[\varepsilon_{4t}]$

Identifying coskewness conditions:

$$E[\varepsilon_1^2 \varepsilon_2] = 0 \qquad E[\varepsilon_3^2 \varepsilon_4] = 0$$
$$E[\varepsilon_1 \varepsilon_2^2] = 0 \qquad E[\varepsilon_3 \varepsilon_4^2] = 0$$

... plus 4 cokurtosis conditions

Assumptions to ensure identification:

- 1. Uncorrelated shocks ε_t .
- 2. At most one Gaussian shock per block.
- 3. Mean independent shocks within

Four blocks (recursive):

$$\begin{bmatrix} u_{1t} \\ u_{2t} \\ u_{3t} \\ u_{4t} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ b_{21} & 1 & 0 & 0 \\ b_{31} & b_{32} & 1 & 0 \\ b_{41} & b_{42} & b_{43} & 1 \end{bmatrix} \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \\ \varepsilon_{4t} \end{bmatrix}$$

Assumptions to ensure identification:

- 1. Uncorrelated shocks ε_t .
- 2. At most one Gaussian shock per block.
- 3. Mean independent shocks within

In a <u>recursive SVAR</u> with <u>independent shocks</u> identified by covariance conditions it holds that:

- 1. $E[\varepsilon_i \varepsilon_j \varepsilon_k]$ is redundant.
- 2. $E[\varepsilon_i^2 \varepsilon_j]$ is redundant for the *q*-th column of *B* if $q \neq j$.
- 3. $E[\varepsilon_i^2 \varepsilon_j]$ is redundant for the *j*-th column of *B* if and only if

$$\begin{aligned} \frac{2E[\epsilon_j^3]}{E[\epsilon_j^4] - 1} a_{jj} + E[\epsilon_i^3] a_{ij} &= 0, \\ E[\epsilon_i^3] a_{iz} &= 0, \end{aligned} \qquad z = j + 1, \dots, i, \end{aligned}$$

where a_{ij} denote the elements of $A = B^{-1}$ and $i \neq j \neq k$.

Block-Recursive Non-Gaussian SVAR: Data-driven moment selection

Lasso moment selection based on Cheng and Liao (2015):

$$\{\widehat{B},\widehat{\beta}\} := \arg\min_{\{B,\beta\}\in\{\mathbb{B},\mathbb{R}^k\}} \begin{bmatrix} g_{\mathsf{N}}(B) \\ g_{\mathsf{D}}(B) - \beta \end{bmatrix}' W \begin{bmatrix} g_{\mathsf{N}}(B) \\ g_{\mathsf{D}}(B) - \beta \end{bmatrix} + \lambda \sum_{j=1}^k \omega_j \ |\beta_j|, \qquad (1)$$

where

- \mathbb{B} is the set of B matrices satisfying a given block-recursive order,
- $g_{N}(B)$ is the sample average of the identifying conditions,
- $g_{\mathbf{D}}(B)$ is the sample average of the overidentifying conditions,
- k is the number of overidentifying moment conditions,
- λ is a tuning parameter,

•
$$\omega_j$$
 for $j = 1, ..., k$ are moment specific weights.

$$\{\widehat{B},\widehat{\beta}\} := \underset{\{B,\beta\}\in\{\mathbb{B},\mathbb{R}^k\}}{\arg\min} \begin{bmatrix} g_{\mathsf{N}}(B) \\ g_{\mathsf{D}}(B) - \beta \end{bmatrix}' W \begin{bmatrix} g_{\mathsf{N}}(B) \\ g_{\mathsf{D}}(B) - \beta \end{bmatrix} + \lambda \sum_{j=1}^k \omega_j |\beta_j|$$
(2)

For an overidentifying moment D_i use the adaptive weights

$$\omega_j = \frac{\mu_j^{r_1}}{|\gamma_j^{r_2}|}, \quad \text{with } r_1 \ge r_2 \ge 0, \tag{3}$$

with a measure of relevance μ_i and a measure of validity γ_i .

 \rightarrow Allows to select relevant and valid overidentifying moment conditions.

- A block-recursive structure appears in many applications, e.g., SVARs with two countries, SVARs with macroeconomic and financial variables, and proxy VARs.
- Block-recursive restrictions allow to relax the independence and non-Gaussianity assumptions. The bias and variance of the estimator decreases with the number of restrictions.
- Overidentifying coskewness and cokurtosis moment conditions can increase the asymptotic efficiency.
- Relevant and valid overidentifying moment conditions can be selected with Lasso.

Block-recursive SVAR:

$$\begin{bmatrix} q_t \\ y_t \\ p_t \\ s_t \end{bmatrix} = \alpha + \sum_{i=1}^{24} A_i \begin{bmatrix} q_{t-i} \\ y_{t-i} \\ p_{t-i} \\ s_{t-i} \end{bmatrix} + \begin{bmatrix} b_{11} & 0 & 0 & 0 \\ b_{21} & b_{22} & 0 & 0 \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{41} \end{bmatrix} \begin{bmatrix} \varepsilon_{S,t} \\ \varepsilon_{Y,t} \\ \varepsilon_{D,t} \\ \varepsilon_{News,t} \end{bmatrix}$$

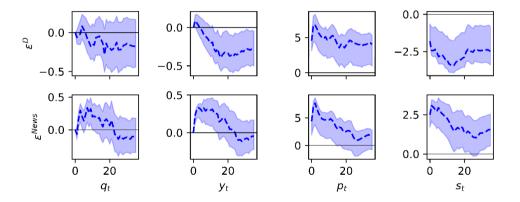
Monthly data from January 1975 to March 2022:

- q_t : Δ log global oil production
- y_t : Δ log industrial production:

- p_t : log of real oil price
- s_t : real stock returns

.

Figure 2: Blue: Block-recursive SVAR. 90% confidence bands.



Recursive SVAR:

$$\begin{bmatrix} q_t \\ y_t \\ p_t \\ s_t \end{bmatrix} = \alpha + \sum_{i=1}^{24} A_i \begin{bmatrix} q_{t-i} \\ y_{t-i} \\ p_{t-i} \\ s_{t-i} \end{bmatrix} + \underbrace{\begin{bmatrix} b_{11} & 0 & 0 & 0 \\ b_{21} & b_{22} & 0 & 0 \\ b_{31} & b_{32} & b_{33} & 0 \\ b_{41} & b_{42} & b_{43} & b_{41} \end{bmatrix}}_{\text{Kilian and Park (2009)}} \begin{bmatrix} \varepsilon_{S,t} \\ \varepsilon_{Y,t} \\ \varepsilon_{D,t} \\ \varepsilon_{News,t} \end{bmatrix}$$

.

Figure 3: Red: Recursive SVAR. Blue: Block-recursive SVAR. 90% confidence bands.

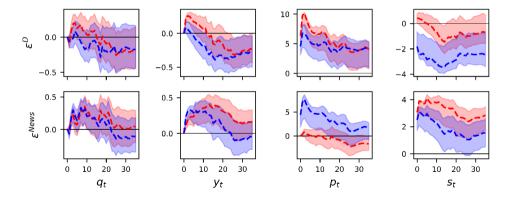
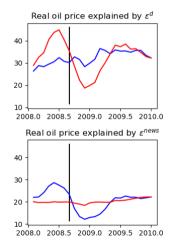


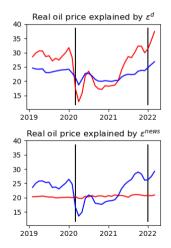
Table 1: One year ahead forecast error variance decomposition

Recursive SVAR					Block-recursive SVAR				
				$\varepsilon_{\mathit{News}}$					$\varepsilon_{\it News}$
р	0.11	0.1	0.79	0.00	p	0.11	0.1	0.39	0.40
S	0.01	0.03	0.79 0.04	0.92	S	0.01	0.03	0.35	0.40 0.61

The impact of stock market news shocks on the oil price

Figure 2: Red: Recursive SVAR. Blue: block-recursive SVAR.





- The oil price reacts simultaneously to news shocks. News shocks explain 40% of the oil price variation compared to 0% in the recursive model.
- Stock returns react simultaneously to oil-specific demand shocks. Oil-specific demand shocks explain 35% of the variation in stock returns compared to 4% in the recursive model.
- News shocks retrieved from stock returns were important drivers of the oil price following the collapse of Lehman Brothers and during the COVID-19 pandemic.

References

Blanchard, O. J. and D. Quah (1989). The Dynamic Effects of Aggregate Demand and Supply Disturbances. <u>The American Economic Review</u> <u>79</u>(4), 655–673.

Cheng, X. and Z. Liao (2015). Select the Valid and Relevant Moments: An Information-Based LASSO for GMM with Many Moments. Journal of Econometrics 186(2), 443–464.

Gouriéroux, C., A. Monfort, and J.-P. Renne (2017). Statistical Inference for Independent Component Analysis: Application to Structural VAR Models. <u>Journal</u> of Econometrics 196(1), 111–126.

References ii

Keweloh, S. A. (2021). A Generalized Method of Moments Estimator for Structural Vector Autoregressions Based on Higher Moments. <u>Journal of Business & Economic</u> Statistics 39(3), 772–782.

- Kilian, L. and C. Park (2009). The Impact of Oil Price Shocks on the US Stock Market. International Economic Review 50(4), 1267–1287.
- Lanne, M. and J. Luoto (2021). GMM Estimation of Non-Gaussian Structural Vector Autoregression. Journal of Business & Economic Statistics 39(1), 69–81.
- Lanne, M., M. Meitz, and P. Saikkonen (2017). Identification and Estimation of Non-Gaussian Structural Vector Autoregressions. <u>Journal of Econometrics</u> <u>196</u>(2), 288–304.
- Sims, C. A. (1980). Macroeconomics and Reality. <u>Econometrica: Journal of the</u> <u>Econometric Society</u>, 1–48.

Uhlig, H. (2005). What are the Effects of Monetary Policy on Output? Results from an Agnostic Identification Procedure. Journal of Monetary Economics 52(2), 381–419.