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SVAR: ut = B0εt → Example:

[
u1t

u2t

]
=

[
1 b12

b21 1

][
ε1t

ε2t

]

Identification is about imposing an a priori structure on the interaction and the shocks.

� Traditional approaches assume that the structural shocks are uncorrelated and

impose restrictions on the interaction: Sims (1980), Blanchard and Quah (1989),

or Uhlig (2005).

� More recent approaches require no assumptions on the interaction but impose

more structure on the stochastic properties of the shocks, e.g. independent and

non-Gaussian shocks: Gouriéroux et al. (2017), Lanne et al. (2017).
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Figure 1: Examples of Different Block-Recursive SVAR Models.
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Illustration: Independent shocks and higher-order moment conditions

Bivariate SVAR:

[
ε1t

ε2t

]
=

[
1 A12

A21 1

][
u1t

u2t

]

Moment conditions uncorrelated shocks: E [ε1tε2t ] = 0

Moment conditions mean independent shocks:

E [ε21tε2t ] =0 E [ε1tε
2
2t ] =0 E [ε31tε2t ] =0 E [ε1tε

3
2t ] =0

Identification: The SVAR is identified (up to sign and permutation) if all shocks are

mean independent at most one shock is Gaussian, see Lanne and Luoto (2021), or

Keweloh (2021).
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Block-Recursive Non-Gaussian SVAR: Identification

One block (unrestricted):
u1t

u2t

u3t

u4t

 =


1 b12 b13 b14

b21 1 b23 b24

b31 b32 1 b34

b41 b42 b43 1



ε1t

ε2t

ε3t

ε4t



Assumptions to ensure identification:
1. Uncorrelated shocks εt .

2. At most one Gaussian shock per block.

3. Mean independent shocks within

blocks, i.e. E [εit |ε−it ] = 0.

5 / 23



Block-Recursive Non-Gaussian SVAR: Identification

One block (unrestricted):
u1t

u2t

u3t

u4t

 =


1 b12 b13 b14

b21 1 b23 b24

b31 b32 1 b34

b41 b42 b43 1



ε1t

ε2t

ε3t

ε4t



Assumptions to ensure identification:
1. Uncorrelated shocks εt .

2. At most one Gaussian shock per block.

3. Mean independent shocks within

blocks, i.e. E [εit |ε−it ] = 0.

Identifying coskewness conditions:

E [ε21ε2] = 0 E [ε21ε4] = 0

E [ε1ε
2
2] = 0 E [ε1ε

2
4] = 0

E [ε21ε3] = 0 E [ε22ε4] = 0

E [ε1ε
2
3] = 0 E [ε2ε

2
4] = 0

E [ε22ε3] = 0 E [ε23ε4] = 0

E [ε2ε
2
3] = 0 E [ε3ε

2
4] = 0

E [ε1ε2ε3] = 0 E [ε1ε2ε4] = 0

E [ε2ε3ε4] = 0 E [ε1ε3ε4] = 0

... plus 25 cokurtosis conditions
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Block-Recursive Non-Gaussian SVAR: Identification

Two blocks (e.g. two countries):
u1t

u2t

u3t

u4t

 =


1 b12 0 0

b21 1 0 0

b31 b32 1 b34

b41 b42 b43 1



ε1t

ε2t

ε3t

ε4t



Assumptions to ensure identification:
1. Uncorrelated shocks εt .

2. At most one Gaussian shock per block.

3. Mean independent shocks within

blocks, i.e. E [εit |ε−it ] = 0.
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Block-Recursive Non-Gaussian SVAR: Identification

Two blocks (e.g. two countries):
u1t

u2t

u3t

u4t

 =


1 b12 0 0

b21 1 0 0

b31 b32 1 b34

b41 b42 b43 1



ε1t

ε2t

ε3t

ε4t



Assumptions to ensure identification:
1. Uncorrelated shocks εt .

2. At most one Gaussian shock per block.

3. Mean independent shocks within

blocks, i.e. E [εit |ε−it ] = 0.

Identifying coskewness conditions:

E [ε21ε2] = 0 E [ε23ε4] = 0

E [ε1ε
2
2] = 0 E [ε3ε

2
4] = 0

... plus 4 cokurtosis conditions
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Block-Recursive Non-Gaussian SVAR: Identification

Four blocks (recursive):
u1t

u2t

u3t

u4t

 =


1 0 0 0

b21 1 0 0

b31 b32 1 0

b41 b42 b43 1



ε1t

ε2t

ε3t

ε4t



Assumptions to ensure identification:
1. Uncorrelated shocks εt .

2. At most one Gaussian shock per block.

3. Mean independent shocks within

blocks, i.e. E [εit |ε−it ] = 0.
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Recursive Non-Gaussian SVAR: Efficiency

In a recursive SVAR with independent shocks identified by covariance conditions it

holds that:

1. E [εiεjεk ] is redundant.

2. E [ε2i εj ] is redundant for the q-th column of B if q 6= j .

3. E [ε2i εj ] is redundant for the j-th column of B if and only if

2E [ε3j ]

E [ε4j ]− 1
ajj + E [ε3i ]aij = 0,

E [ε3i ]aiz = 0, z = j + 1, . . . , i ,

where aij denote the elements of A = B−1 and i 6= j 6= k.
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Block-Recursive Non-Gaussian SVAR: Data-driven moment selection

Lasso moment selection based on Cheng and Liao (2015):

{B̂, β̂} := arg min
{B,β}∈{B,Rk}

[
gN(B)

gD(B)− β

]′
W

[
gN(B)

gD(B)− β

]
+ λ

k∑
j=1

ωj |βj |, (1)

where

� B is the set of B matrices satisfying a given block-recursive order,

� gN(B) is the sample average of the identifying conditions,

� gD(B) is the sample average of the overidentifying conditions,

� k is the number of overidentifying moment conditions,

� λ is a tuning parameter,

� ωj for j = 1, ..., k are moment specific weights.
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Block-Recursive Non-Gaussian SVAR: Data-driven moment selection

{B̂, β̂} := arg min
{B,β}∈{B,Rk}

[
gN(B)

gD(B)− β

]′
W

[
gN(B)

gD(B)− β

]
+ λ

k∑
j=1

ωj |βj | (2)

For an overidentifying moment Dj use the adaptive weights

ωj =
µr1j
|γj r2 |

, with r1 ≥ r2 ≥ 0, (3)

with a measure of relevance µj and a measure of validity γj .

→ Allows to select relevant and valid overidentifying moment conditions.
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Summary block-recursive SVAR:

� A block-recursive structure appears in many applications, e.g., SVARs with two

countries, SVARs with macroeconomic and financial variables, and proxy VARs.

� Block-recursive restrictions allow to relax the independence and non-Gaussianity

assumptions. The bias and variance of the estimator decreases with the number

of restrictions.

� Overidentifying coskewness and cokurtosis moment conditions can increase the

asymptotic efficiency.

� Relevant and valid overidentifying moment conditions can be selected with Lasso.
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The impact of stock market news shocks on the oil price

Block-recursive SVAR:
qt

yt

pt

st

 = α +
24∑
i=1

Ai


qt−i

yt−i

pt−i

st−i

 +


b11 0 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b41




εS ,t

εY ,t

εD,t

εNews,t

 .
Monthly data from January 1975 to March 2022:

- qt : ∆ log global oil production

- yt : ∆ log industrial production:

- pt : log of real oil price

- st : real stock returns
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The impact of stock market news shocks on the oil price

Figure 2: Blue: Block-recursive SVAR. 90% confidence bands.
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The impact of stock market news shocks on the oil price

Recursive SVAR:
qt

yt

pt

st

 = α +
24∑
i=1

Ai


qt−i

yt−i

pt−i

st−i

 +


b11 0 0 0

b21 b22 0 0

b31 b32 b33 0

b41 b42 b43 b41


︸ ︷︷ ︸

Kilian and Park (2009)


εS ,t

εY ,t

εD,t

εNews,t

 .
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The impact of stock market news shocks on the oil price

Figure 3: Red: Recursive SVAR. Blue: Block-recursive SVAR. 90% confidence bands.
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The impact of stock market news shocks on the oil price

Table 1: One year ahead forecast error variance decomposition

Recursive SVAR Block-recursive SVAR

εS εY εD εNews εS εY εD εNews

p 0.11 0.1 0.79 0.00 p 0.11 0.1 0.39 0.40

s 0.01 0.03 0.04 0.92 s 0.01 0.03 0.35 0.61
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The impact of stock market news shocks on the oil price

Figure 2: Red: Recursive SVAR. Blue: block-recursive SVAR.
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Summary application

� The oil price reacts simultaneously to news shocks. News shocks explain 40% of

the oil price variation compared to 0% in the recursive model.

� Stock returns react simultaneously to oil-specific demand shocks. Oil-specific

demand shocks explain 35% of the variation in stock returns compared to 4% in

the recursive model.

� News shocks retrieved from stock returns were important drivers of the oil price

following the collapse of Lehman Brothers and during the COVID-19 pandemic.
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