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A thought experiment

A decision maker doubles the monitoring capacity

=⇒ The policy intervention induced less detected fraud

Is it a success in terms of fraud deterrence?

Less detection implies either less fraud or fraudsters are frauding
differently (See Riley (2005))

Examples: Cyber security, border control, doping, tax evasion, money
laundering, etc.

To which extent can we reduce misbehavior in these environments?
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Contribution:

This paper contributes to understanding the effect of monitoring policies
on:

Short term incentives to fraud:

By studying the impact on fraud
decisions

Long term incentives to invest: By studying their effect on
technology adoption

Contribution to the reputation literature: The state can be manipulated
by both players
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The model
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Preview of the model
One attacker (player A)

One defender (player D)

Discrete time and infinite horizon

The defender’s has an endogenous ability to detect attacks θt

The attacker chooses:

An attack intensity at
Investments in hiding technologies αt

The defender can invest in a detection technology δt
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The monitoring ability θt
6
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Attacker invests Attacker invests

? ?

Defender invests Defender invests

6 6

The monitoring ability as a function of time and investments

At each time t ≥ 0:
Attacker chooses investment αt ∈ {0, 1}. Investment costs FA

Defender chooses investment δt ∈ {0, 1}, Investment costs FD

The defender can only detect ongoing attacker (θt = 1) if she invested
last State
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The intensity of attacks

At each time t, the attacker chooses an attack intensity at ∈ R+

A policy π is (λπ(a), uDπ (a, θ), uAπ (a, θ)) such that:

Detection arrives at a rate θtλπ(at)

The defender earns expected flow payoffs: uDπ (at , θt)

The attacker earns expected flow payoffs: uAπ (at , θt)

Example of a class of policies: Choice of monitoring rates m and
punishment P : π = (ma,−a, u(a)− θmaP)
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The timing for each t ≥ 0
Stage 0 (Belief updating): The state is inherited from the past, and the defender
updates her belief about it,

Stage 1 (Investments): Both players simultaneously make investment decisions,

Stage 2 (Technology outcome): θt is determined and observed by the attacker,

Stage 3 (Attack): The attacker chooses an intensity of attack at ,

Stage 4 (Outcome): The outcome of detection is publicly observed, and stage
payoffs are realized.

Focus on Markov perfect equilibria that depend on the defender’s beliefs ρ and the
attacker’s private information about the state θt Equilibrium
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Results
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Types of equilibria

Any equilibrium is:

An entente equilibrium if the cost of developing hiding technologies
is high relative to short-term gains from being undetectable

Otherwise, the equilibrium is either an arms race or a complete
hiding equilibrium
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The equilibrium

Lemma 1: I equilibrium intensity of attacks is myopic
a∗(θ) = argmaxau

A
π (a, θ)
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The equilibrium
If uAπ (a∗(0), 0)− uAπ (a∗(1), 1)>(1− e−r∆)FA and FD<FD∗, an arms race
equilibrium exists.

Any such an equilibrium is characterized by an initial belief ρ0 ∈ (0, 1)
and a stopping belief ρ∗ such that:
(i) The investment by the attacker α0 ∈ (0, 1) is :

α(ρ) =


0 ∀ρ ∈ (ρ∗, ρ0)

1− ρ0 if ρ ≤ ρ∗

1− ρ0
ρ if ρ ≥ ρ0

(ii) The investment strategy by the defender:

δ(ρ) =

{
1 if ρ ≤ ρ∗

0 otherwise
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The equilibrium
If uAπ (a∗(0), 0)− uAπ (a∗(1), 1)>(1− e−r∆)FA and FD<FD∗, an arms race
equilibrium exists.

Any such an equilibrium is characterized by an initial belief ρ0 ∈ (0, 1)
and a stopping belief ρ∗ such that:

(iii) An equilibrium length of the cycle:

tA = 1
r ln(1 + rFA

uAπ (a∗(0),0)−uAπ (a∗(1),1)−rFA )

(iv) The stopping belief ρ∗(ρ0) is reached at time tD such that:

r +
X

ρ0
=
λπ(a∗(1))(1− e−rt

D

) + X
ρ0(1−ρ0)

eλπ(a∗(1))tD − 1

(v) The initial belief ρ0 is such that t∗ = tA = tD
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and a stopping belief ρ∗ such that:

(iii) An equilibrium length of the cycle:

tA = 1
r ln(1 + rFA

uAπ (a∗(0),0)−uAπ (a∗(1),1)−rFA )

(iv) The stopping belief ρ∗(ρ0) is reached at time tD such that:

r +
X

ρ0
=
λπ(a∗(1))(1− e−rt

D

) + X
ρ0(1−ρ0)

eλπ(a∗(1))tD − 1
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Dynamics of beliefs under an arms race policy
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Effect of policy intervention
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Effect of raising penalties

Consider the illustrative example:

Detection arrives at a rate λπ = am

The attacker’s expected flow payoffs: UA
π (a, θ) = u(a)− θamP

The defender earns expected flow payoffs UD
π (a, θ) = −a
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Effect of raising penalties

Higher penalties lead to:

A deterrence effect: Less intense detectable attacks

An increase in per-period gains from being undetectable
=⇒ Shorter technology cycles

More investments by the attacker in equilibrium

Trade-off: More deterrence of detectable attacks versus less investments
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Effect of more informative policies

Consider the illustrative example:

Detection arrives at a rate am

The attacker’s expected flow payoffs: (u(a)− θamP)

The defender earns expected flow payoffs: −a
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Effect of more informative policies

Consider two policies π and π′ such that mP = m′P ′ with m>m′. These
policies:

Lead to the same per-period gains from being undetectable

Same short-term payoff functions

The policy π leads to:
1 A more aggressive investment strategy by the defender
2 Less investments in hiding technologies in equilibrium
3 Less intense attacks on average
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Conclusion
I study monitoring game with endogenous ability to detect
misbehavior

I show that high deterrence increases incentives to invest in hiding
technologies and leads to an arms race

Empirical predictions: 1 2

1 A technological response to harsher policies(Bustos et. al. (2022))

2 Investments increase as a function of penalties

3 Fraud can increase after harsher policies

4 Investments are made by bigger attackers
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Thank you
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The monitor’s ability

Define ti the date of last investment by player i

Then θt = 1tD>tA
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Equilibrium notion

A deterministic Markov policy for the defender is:

σD :[0, 1]× {0, 1}
ρ→ δD

A deterministic Markov policy for the attacker is:

σA :[0, 1]× {0, 1} → {0, 1} × [0, ā]× {0, 1}
ρ× θ → α× a
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Example of a failing policy:
Border control (Riley, 2005): Higher monitoring intensities in the
US-Mexican border lead to:

Small impact on drug smuggling

Displacement to unguarded parts of the border

Adoption of better hiding technologies: Submarines, lightplanes,
mules etc.

Monitoring policies impact technology adoption

Evaluating policies based on detected fraud can be misleading in the
short run
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The arms race equilibrium:
If uAπ (a∗(0), 0)− uAπ (a∗(1), 1)>(1− e−r∆)FA and FD<FD∗, an arms race
equilibrium exists.
Any such an equilibrium is characterized by an initial belief ρ0 ∈ (0, 1)
and a stopping belief ρ∗ such that:
(i) The investment by the attacker α0 ∈ (0, 1) is :

α(ρ) =


0 ∀ρ ∈ (ρ∗, ρ0)

1− ρ0 if ρ ≤ ρ∗

1− ρ0
ρ if ρ ≥ ρ0

(ii) The investment strategy by the defender:

δ(ρ) =

{
1 if ρ ≤ ρ∗

0 otherwise
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The arms race equilibrium:

(iii) An equilibrium length of the cycle:

tA = 1
r ln(1 + rFA

uAπ (a∗(0),0)−uAπ (a∗(1),1)−rFA )

(iv) The stopping belief ρ∗(ρ0) is reached at time tD such that:

r +
X

ρ0
=
λπ(a∗(1))(1− e−rt

D

) + X
ρ0(1−ρ0)

eλπ(a∗(1))tD − 1

(v) The initial belief ρ0 is such that t∗ = tA = tD
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Empirical application

Steps of a cyber attack:

Phase 1: The intrusion phase (Affected by S)

Phase 2: Exploitation phase (Affected by m)

Policy: Increase in investments in cybersecurity under the Biden
administration
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Empirical application

Security programs detect patterns of code

New malwares are often a modification of old ones (A mutation)

Avtest institute registers and classifies (450 000 daily) new malwares

The new policy should lead to:

No change for some types of malwares

An increase in the frequency at which other ones are created
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