Manufacturing Pollution, Environmental Regulation and Trade

Dan Xie School of Economics and Finance Queen Mary University of London

> EEA-ESEM 25 August, 2022

China's trends 2000-2012:

Figure 1. SO_2 emission and real output

Research question:

- What are the main causes of pollution emissions in China?
 - Technology, industry structure, international trade, environmental regulation...
- How big is the contribution of each channel to pollution emission levels?

Research question:

- What are the main causes of pollution emissions in China?
 - Technology, industry structure, international trade, environmental regulation...
- How big is the contribution of each channel to pollution emission levels? What I do:
 - Reduced-form regressions to establish some stylized facts at the firm-level.
 - Decomposition exercises to find inter/intra industry causes of pollution emissions.
 - ► A structural model to quantify contributions of different factors.

Research question:

- What are the main causes of pollution emissions in China?
 - Technology, industry structure, international trade, environmental regulation...
- How big is the contribution of each channel to pollution emission levels? What I do:
 - ▶ Reduced-form regressions to establish some stylized facts at the firm-level.
 - Decomposition exercises to find inter/intra industry causes of pollution emissions.
 - A structural model to quantify contributions of different factors.

Main results:

- Large trading firms pollute more but have lower pollution intensity.
- Within-industry firm heterogeneity explains most of the change in pollution emissions, while industry composition is less important.
- Counterfactual analysis:
 - Environmental regulation ightarrow 50% less emissions
 - Trade liberalization \rightarrow 40% less emissions
 - Demand increase \rightarrow 200% more emissions

literature

Firm-level sources:

- Environmental Statistics Database from the Ministry of Environment Protection
 - 85% of total pollution emissions (SO₂, NO_x, smoke dust, COD, NH₃-N, wastewater)
- Annual Survey of Industrial Enterprises from the National Bureau of Statistics
 - Production information on firms with annual sales above threshold
- Import and export data from the Customs

Firm-level sources:

- Environmental Statistics Database from the Ministry of Environment Protection
 - 85% of total pollution emissions (SO₂, NO_x, smoke dust, COD, NH₃-N, wastewater)
- Annual Survey of Industrial Enterprises from the National Bureau of Statistics
 - Production information on firms with annual sales above threshold
- Import and export data from the Customs
- Integrated by the Economy Prediction System (EPS) 2000-2012 [maps]

Firm-level sources:

- Environmental Statistics Database from the Ministry of Environment Protection
 - 85% of total pollution emissions (SO₂, NO_x, smoke dust, COD, NH₃-N, wastewater)
- Annual Survey of Industrial Enterprises from the National Bureau of Statistics
 - Production information on firms with annual sales above threshold
- Import and export data from the Customs
- Integrated by the Economy Prediction System (EPS) 2000-2012 [maps]

Aggregate data:

- ▶ World Input-Output Dataset (WIOD): Country-industry production and trade data
- China Statistical Yearbooks: Industry and provincial output and emission

Firm-level sources:

- Environmental Statistics Database from the Ministry of Environment Protection
 - 85% of total pollution emissions (SO₂, NO_x, smoke dust, COD, NH₃-N, wastewater)
- Annual Survey of Industrial Enterprises from the National Bureau of Statistics
 - Production information on firms with annual sales above threshold
- Import and export data from the Customs
- ▶ Integrated by the Economy Prediction System (EPS) 2000-2012 [maps]

Aggregate data:

- ▶ World Input-Output Dataset (WIOD): Country-industry production and trade data
- China Statistical Yearbooks: Industry and provincial output and emission

Environmental regulation:

- China's 11th Five-Year-Plan (2006-2010)
 - The first time to set specific SO_2 reduction targets (10%)
 - Each province negotiated with the central government for their share of the burden
 - Linked explicitly to the promotion of local leaders
 - Most provinces achieved or even exceeded their targets

Initial firm-level regressions

 $PollutionOutcome_{it} = \alpha_1 Exporter_{it} + \alpha_2 Importer_{it} + \alpha_3 Sales_{it} + \mu_s + \mu_c + \mu_t + \epsilon_{it}$ (1)

a) (a)	
$\begin{array}{ccc} 2) & (3) \\ O_2 & SO_2int \end{array}$	(4) SO_2int
	-0.217***
007) (0.008)	(0.007)
78* ^{**} -0.831* ^{**}	-0.278* ^{**}
009) (0.010)	(0.009)
8***	-0.502***
001)	(0.001)
8*** 2.506***	6.048***
008) (0.002)	(800.0)
7,539 777,539	777,539
376 0.414	0.545
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1. All firms

Notes: SO_2 is SO_2 emission in kg. SO_2int is SO_2 emission/output value in thousand yuan. SO_2 , SO_2int and *sales* are in logs.

All columns include 4-digit CIC industry, county and year fixed effects.

Standard errors in parentheses. *** p <0.01, ** p <0.05, * p <0.1

Initial firm-level regressions

 $PollutionOutcome_{it} = \beta_1 Export_{it} + \beta_2 Import_{it} + \delta Control_{it} + \mu_s + \mu_c + \mu_t + \epsilon_{it}$ (2)

	(1) SO_2	(2) SO_2int	(3) SO_2int	(4) SO_2int	(5) SO_2int	(6) SO_2int	(7) SO_2int	(8) SO_2int
Export	0.130***	-0.042***	-0.041***	-0.020***	-0.018**	-0.021***	-0.021***	-0.018**
Import	(0.005) 0.045***	(0.005) -0.138***	(0.007) -0.124***	(0.008) -0.099***	(0.008) -0.095***	(0.008) -0.096***	(0.008) -0.096***	(0.008) -0.094***
labor	(0.004)	(0.004)	(0.005) -0.003***	(0.006) 0.004***	(0.006) 0.003**	(0.006) 0.003**	(0.006) 0.003**	(0.006) 0.003**
TFP			(0.001)	(0.001) -0.739***	(0.001) -0.737***	(0.001) -0.741***	(0.001) -0.741***	(0.001) -0.738***
foe				(0.016)	(0.016) -0.401***	(0.016) -0.402***	(0.016) -0.402***	(0.016) -0.402***
continue					(0.047)	(0.047) 0.150***	(0.047)	(0.047)
entry						(0.035)	-0.150***	
$SO_2 cap$							(0.041)	0.015***
Constant	6.702***	2.356***	2.416***	2.098***	2.060***	2.013***	2.163***	(0.005) 0.849*
Observations	(0.072) 51.191	(0.080) 41.696	(0.100) 25.786	(0.109) 18.385	(0.109) 18.385	(0.110) 18.385	(0.112) 18.385	(0.447) 18.385
R^2	0.289	0.388	0.366	0.421	0.423	0.424	0.424	0.423

Table 2. Importing/Exporting firms

Notes: SO_2 is SO₂ emission in kg. SO_2int is SO₂ emission/output value in thousand yuan.

SO₂, SO₂int, Export, Import are in logs.

All columns include 4-digit CIC industry, county and year fixed effects.

Standard errors in parentheses. *** p <0.01, ** p <0.05, * p <0.1

Levinson (2009)

► Total pollution:

$$Z = \sum_{s} z_s = \sum_{s} x_s e_s = X \sum_{s} \kappa_s e_s \tag{3}$$

where total pollution is the sum of sector pollution z_s . x_s is sector output, $e_s = z_s/x_s$ measures pollution intensity and $\kappa_s = x_s/X$ is sector share of total output.

Levinson (2009)

► Total pollution:

$$Z = \sum_{s} z_s = \sum_{s} x_s e_s = X \sum_{s} \kappa_s e_s \tag{3}$$

where total pollution is the sum of sector pollution z_s . x_s is sector output, $e_s = z_s/x_s$ measures pollution intensity and $\kappa_s = x_s/X$ is sector share of total output.

In vector notation:

$$Z = X \kappa' e \tag{4}$$

Levinson (2009)

► Total pollution:

$$Z = \sum_{s} z_s = \sum_{s} x_s e_s = X \sum_{s} \kappa_s e_s \tag{3}$$

where total pollution is the sum of sector pollution z_s . x_s is sector output, $e_s = z_s/x_s$ measures pollution intensity and $\kappa_s = x_s/X$ is sector share of total output.

In vector notation:

$$Z = X \kappa' e \tag{4}$$

Totally differentiating:

$$dZ = \underbrace{\kappa' e dX}_{\text{scale}} + \underbrace{X e' d\kappa}_{\text{composition}} + \underbrace{X \kappa' de}_{\text{technique}}$$
(5)

Figure 2. Industry-level SO₂ emission decomposition

- A structural model with heterogeneous firms and variation across sectors over time to answer these questions (à la Shapiro and Walker, 2018).
- Combines international (Melitz, 2003) and environmental (Copeland and Taylor, 2003) literature.

- A structural model with heterogeneous firms and variation across sectors over time to answer these questions (à la Shapiro and Walker, 2018).
- Combines international (Melitz, 2003) and environmental (Copeland and Taylor, 2003) literature.
- 1. Preferences
 - CES utility across product varieties within a sector \boldsymbol{s}
 - Cobb-Douglas preferences across sectors

- A structural model with heterogeneous firms and variation across sectors over time to answer these questions (à la Shapiro and Walker, 2018).
- Combines international (Melitz, 2003) and environmental (Copeland and Taylor, 2003) literature.
- 1. Preferences
 - CES utility across product varieties within a sector \boldsymbol{s}
 - Cobb-Douglas preferences across sectors
- 2. Firms
 - Monopolistic competition
 - Labor is the only input
 - · Firms pay pollution tax, wage cost and iceberg trade cost
 - Productivity is drawn from a Pareto distribution

- A structural model with heterogeneous firms and variation across sectors over time to answer these questions (à la Shapiro and Walker, 2018).
- Combines international (Melitz, 2003) and environmental (Copeland and Taylor, 2003) literature.
- 1. Preferences
 - CES utility across product varieties within a sector \boldsymbol{s}
 - Cobb-Douglas preferences across sectors
- 2. Firms
 - Monopolistic competition
 - Labor is the only input
 - Firms pay pollution tax, wage cost and iceberg trade cost
 - Productivity is drawn from a Pareto distribution
- 3. Production and pollution (follow Copeland and Taylor, 2003)
 - Firms pay a fraction a of cost on pollution abatement
 - α_s is the Cobb-Douglas share of pollution emissions

Comparative statics

Comparative statics

- ► Key variables (data): def
 - Implicit pollution tax $(\hat{t}_{o,s})$: Environmental regulation graph
 - Cobb-Douglas expenditure share $(\hat{eta}_{d,s})$: Cobb-Douglas consumer preference representation of the state of the s
 - Market competitiveness of China and ROW ($\hat{\Gamma}_{od,s}$): Combines productivity, export trade costs and environmental regulation (graph)

Comparative statics

- ► Key variables (data): def
 - Implicit pollution tax $(\hat{t}_{o,s})$: Environmental regulation graph
 - Cobb-Douglas expenditure share $(\hat{eta}_{d,s})$: Cobb-Douglas consumer preference graph
 - Market competitiveness of China and ROW (Γ̂_{od,s}): Combines productivity, export trade costs and environmental regulation
- Endogenous variables (model):
 - Firm mass $(\hat{M}^e_{o,s})$ and nominal wage (\hat{w}_o)

Comparative statics

- ► Key variables (data): def
 - Implicit pollution tax $(\hat{t}_{o,s})$: Environmental regulation graph
 - Cobb-Douglas expenditure share $(\hat{eta}_{d,s})$: Cobb-Douglas consumer preference representation of the second second
 - Market competitiveness of China and ROW ($\hat{\Gamma}_{od,s}$): Combines productivity, export trade costs and environmental regulation (graph)
- Endogenous variables (model):
 - Firm mass $(\hat{M}^e_{o,s})$ and nominal wage (\hat{w}_o)
- Solve for $\hat{M}_{o,s}^e$ and \hat{w}_o from a system of equations under equilibrium to get each sector's pollution emission between a baseline year and a counterfactual.
- Key parameters: Pollution elasticity α_s, elasticity of substitution σ_s, Pareto shape parameter θ_s.

Counterfactual results

Figure 3. Counterfactual Chinese manufacturing SO₂ pollution emissions

Counterfactual results

Figure 4. Additional counterfactuals (decomposed Chinese expenditure share)

Thank you for your attention!

Literature

- Trade and technology:
 - NAFTA (Gutiérrez and Teshima, 2018)
 - China's entry into WTO (Forslid et al., 2018)
- Environmental regulation:
 - US Clean Air Act (1990) (Shapiro and Walker, 2018) Clean Water Act (1972) (Keiser and Shapiro, 2018)
 - China's 11th Five-Year-Plan (2006-2010) (Shi and Xu, 2018; Wu et al., 2017) and others (He et al., 2020; Tu et al., 2020)

Decomposition:

- Scale, composition and technique effects (e.g. Antweiler et al., 2001; Levinson, 2009)
- Firm-level entry and exit (Melitz and Polanec, 2015)
- Quantitative model:
 - Shapiro and Walker (2018), based on workhorse models from international (Melitz, 2003) and environmental (Copeland and Taylor, 2003) literatures
- Health effects and migration:
 - Bombardini and Li, 2020, Chang et al., 2019, Khanna et al., 2021, etc.

Data coverage

Figure 5. Number of firm-level observations: Pollution

Note: The total firm number between 2000 and 2012 is 245,479.

Data coverage

Figure 6. Number of firm-level observations: Pollution+ASIE

Note: The total firm number between 2000 and 2012 is 130,282.

Data coverage

Figure 7. Number of firm-level observations: Pollution+ASIE+Customs

Note: The total firm number between 2000 and 2012 is 38,336.

Summary statistics

Variable	Obs	Mean	Std. Dev.	Min	Max
Exporter	1,207,342	0.135	0.341	0	1
Importer	1,207,342	0.101	0.301	0	1
Sales	1,165,399	7.301	1.919	2.789	12.454
SO_2	877,406	9.580	1.899	3.738	14.353
SO_2int	854,355	2.360	2.223	-8.641	11.290

Table 3. Summary statistics of all firms

Notes: SO_2 is SO₂ emission (kg). SO_2int is SO₂ emission (kg) per unit of output value (1,000 RMB). SO_2 , SO_2int and Sales are in logs.

Summary statistics

Variable	Obs	Mean	Std. Dev.	Min	Max
SO_2	116,747	9.421	2.224	2.485	15.011
SO_2int	85,124	0.356	2.340	-10.523	9.734
Export	168,672	14.545	2.223	7.746	19.612
Import	125,785	13.606	2.883	5.375	19.891
labor	84,449	8.762	22.830	0.310	80.190
TFP	64,049	0.252	0.960	-11.421	9.241
foe	142,316	0.163	0.369	0	1
continue	195,648	0.674	0.469	0	1
entry	195,648	0.180	0.384	0	1
exit	195,648	0.146	0.353	0	1
$SO_2 cap$	178,747	83.377	44.386	0.200	160.200

 Table 4. Summary statistics of importing/exporting firms

Notes: SO_2 is SO₂ emission (kg). SO_2int is SO₂ emission (kg) per unit of output value (1,000 RMB). SO_2 , SO_2int , *Export* and *Import* are in logs.

Initial firm-level regressions

	(1) SO_2	(2) SO_2	(3) SO_2int	(4) SO_2int	
Exporter	0.016**	-0.018***	-0.092***	-0.018***	
Importer	0.049***	0.018**	-0.042***	0.018**	
Sales	(0.001)	0.323***	(0.000)	-0.677***	
Constant	9.610***	7.273***	2.361***	7.273***	
Observations R^2	(0.001) 829,220 0.810	(0.012) 806,958 0.820	(0.001) 806,958 0.838	(0.012) 806,958 0.872	

Table 5. All firms

Notes: SO_2 is SO_2 emission in kg. SO_2int is SO_2 emission/output value in thousand yuan. SO_2 , SO_2int and *sales* are in logs.

All columns include firm and year fixed effects.

Standard errors in parentheses. *** p <0.01, ** p <0.05, * p <0.1

Initial firm-level regressions

	(1) SO_2	(2) SO ₂	(3) SO_2int	(4) SO_2int	(5) SO_2int	(6) SO_2int
Export	0.045***	0.036*** (0.008)	-0.054*** (0.007)	-0.055*** (0.010)	-0.045*** (0.011)	-0.045*** (0.011)
Import	0.011***	0.004	-0.033***	-0.036***	-0.050***	-0.050***
labor	(0.001)	0.010***	(0.000)	-0.003	-0.006**	-0.006**
TFP		(0.002)		(0.002)	-0.732***	-0.732***
$SO_2 cap$					(0.018)	(0.018) -0.007 (0.011)
Constant	8.433***	8.828***	1.153***	1.472*** (0.153)	1.981^{***}	2.521***
Observations R^2	50,836 0.856	22,357 0.846	37,066 0.834	21,768 0.825	14,531 0.841	14,531 0.841

Table 6. Importing/Exporting firms

Notes: SO_2 is SO₂ emission in kg. SO_2int is SO₂ emission/output value in thousand yuan.

SO₂, SO₂int, Export, Import are in logs.

All columns include firm and year fixed effects.

Standard errors in parentheses. *** p <0.01, ** p <0.05, * p <0.1

Firm-level decomposition

Figure 8. Firm-level SO₂ emission intensity decomposition

Firm-level decomposition

Melitz and Polanec (2015)

Change in pollution intensity:

$$\Delta \iota = \underbrace{\Delta \bar{\iota}_C}_{\text{within-firm}} + \underbrace{\Delta \text{cov}_C}_{\text{continuing firms}} + \underbrace{s_{E2}(\iota_{E2} - \iota_{C2})}_{\text{entering firms}} + \underbrace{s_{X1}(\iota_{C1} - \iota_{X1})}_{\text{exiting firms}}$$
(6)

where $s_{Gt} = \sum_{i \in G} s_{it}$ is the aggregate revenue share of a group G of firms, ι_{Gt} is the group's aggregate (average) emission intensity, $\bar{\iota}_C$ is the unweighted mean firm emission intensity,

 cov_C is the covariance between revenue share and emission intensity.

Key variables for counterfactuals

1. Implicit pollution tax

• Environmental regulation

$$\hat{t}_{o,s} = \frac{\hat{M}_{o,s}^{e} \hat{w}_{o}}{\hat{Z}_{o,s}}$$
(7)

where firm mass $\hat{M}^e_{o,s}$ and nominal wage \hat{w}_o are endogenous variables of the model

Key variables for counterfactuals

- 1. Implicit pollution tax
 - Environmental regulation

$$\hat{t}_{o,s} = \frac{\hat{M}_{o,s}^e \hat{w}_o}{\hat{Z}_{o,s}} \tag{7}$$

where firm mass $\hat{M}^e_{o,s}$ and nominal wage \hat{w}_o are endogenous variables of the model

- 2. Expenditure share
 - Cobb-Douglas preference

$$\hat{\beta}_{d,s} = \frac{\sum_{o} X'_{od,s} / \sum_{o,s} X'_{od,s}}{\sum_{o} X_{od,s} / \sum_{o,s} X_{od,s}}$$
(8)

 $X_{od,s}$: total national value of exports from $o \rightarrow d$

back

Key variables for counterfactuals

- 3. Market competitiveness
 - Combines productivity $(\hat{b}_{o,s})$, exporting trade costs $(\hat{\tau}_{od,s}, \hat{f}_{od,s})$ and environmental regulation $(\hat{t}_{o,s})$

$$\hat{\Gamma}_{od,s} = (1/\hat{b}_{o,s})^{-\theta_s} (\hat{\tau}_{od,s})^{-\theta_s/(1-\alpha_s)} (\hat{f}_{od,s})^{1-\theta_s/(\sigma_s-1)(1-\alpha_s)} (\hat{t}_{o,s})^{-\alpha_s\theta_s/(1-\alpha_s)}$$
(9)

$$=\frac{\lambda_{od,s}}{\hat{M}_{o,s}^{e}\hat{w}_{o}^{-\theta_{s}}}, \ o \neq \mathsf{China}$$
(10)

$$\hat{\Gamma}_{od,s} = (1/\hat{b}_{o,s})^{-\theta_s} (\hat{\tau}_{od,s})^{-\theta_s/(1-\alpha_s)} (\hat{f}_{od,s})^{1-\theta_s/(\sigma_s-1)(1-\alpha_s)}$$
(11)

$$=\hat{t}_{o,s}^{\frac{\alpha_s\theta_s}{1-\alpha_s}}\frac{\hat{\lambda}_{od,s}}{\hat{M}_{o,s}^e\hat{w}_o^{-\theta_s}}, \ o = \mathsf{China}$$
(12)

 $\hat{\lambda}_{od,s}$: share of country d's expenditure in sector s going to country o

back

1. Pollution elasticity α_s

$$q_{od,s} = (z_{od,s})^{\alpha_s} (\varphi l_{od,s})^{1-\alpha_s}$$

Estimate:

$$\ln q_{it} = \alpha \ln z_{it} + (1 - \alpha) \ln(\varphi l_{it}) + \eta_t + \eta_c + \eta_s + \epsilon_{it}$$
(13)

 α : the average 2-digit sector pollution elasticity z_{it} , q_{it} and l_{it} : pollution emission, output and labor employment of firm i η_t , η_c and η_s : year, county and 4-digit CIC industry fixed effects

1. Pollution elasticity α_s

$$q_{od,s} = (z_{od,s})^{\alpha_s} (\varphi l_{od,s})^{1-\alpha_s}$$

Estimate:

$$\ln q_{it} = \alpha \ln z_{it} + (1 - \alpha) \ln(\varphi l_{it}) + \eta_t + \eta_c + \eta_s + \epsilon_{it}$$
(13)

 α : the average 2-digit sector pollution elasticity z_{it} , q_{it} and l_{it} : pollution emission, output and labor employment of firm $i \eta_t$, η_c and η_s : year, county and 4-digit CIC industry fixed effects

- 2. Elasticity of substitution σ_s
 - Implication of the model:

$$w_o L_{o,s}^p = (1 - \alpha_s) \frac{\sigma_s - 1}{\sigma_s} R_{o,s}$$
(14)

- 3. Pareto shape parameter θ_s
 - The distribution of firm sales is Pareto:

$$\Pr(x > X_{i,s}) = (b_{i,s}/X_{i,s})^{\theta_s/(\sigma_s - 1)} \text{ for } X_{i,s} \ge b_{i,s}$$
(15)

- 3. Pareto shape parameter θ_s
 - The distribution of firm sales is Pareto:

$$\Pr(x > X_{i,s}) = (b_{i,s}/X_{i,s})^{\theta_s/(\sigma_s - 1)} \text{ for } X_{i,s} \ge b_{i,s}$$
(15)

• Taking logs gives:

$$\ln(\Pr\{x > X_{i,s}\}) = \gamma_{0,s} + \gamma_{1,s}\ln(X_{i,s}) + \epsilon_{i,s}$$
(16)

where $X_{i,s}$ represents sales

• The Pareto shape parameter $heta_s = \gamma_{1,s}(1-\sigma_s)$

Historical values of key variables (data)

Figure 9. Implicit pollution tax $\hat{t}_{o,s}$

Notes: Dirty industries have pollution elasticity α_s above mean, while clean industries are below average, weighted by baseline output of each industry.

The State Council: SO₂ pollution charges doubled within three years since 2007, from 0.63 yuan per kilogram to 1.26 yuan per kilogram.

Historical values of key variables (data)

Figure 10. Expenditure shares $\hat{\beta}_{d,s}$

Historical values of key variables (model-implied)

Figure 11. Historic values of endogenous variables \hat{w}_o and $\hat{M}_{o,s}^e$

Historical values of key variables (data)

Figure 12. Chinese wages

Historical values of additional counterfactuals

Figure 13. Log sector productivity

Notes: Dirty industries have pollution elasticity α_s above average, while clean industries are below average, unweighted mean.

Historical values of additional counterfactuals

Figure 14. Log firm productivity

Notes: Dirty industries have pollution elasticity α_s above average, while clean industries are below average, unweighted mean.

Historical values of additional counterfactuals

Figure 15. Export tariff

Notes: Dirty industries have pollution elasticity α_s above average, while clean industries are below average, unweighted mean.

Pollution intensity

Figure 16. Counterfactual Chinese manufacturing pollution intensities

Changes in output and pollution

Changes in pollution tax $\hat{t}_{o,s}$ can be written as:

Figure 17. Changes in output and pollution

Note: $\hat{Z}_{o,s}$ drops relatively more than $\hat{R}_{o,s}$ around 2009

Historical values of key variables (data)

Notes: High regulation provinces have above average SO_2 reduction over initial GDP ratio, while low regulation provinces are below average, weighted by baseline output of each province.

CIC code 13-43	(1) Pollution elasticity (α)	(2) Elasticity of substitution (σ)	(3) Pareto shape parameter $(heta)$
16 Manufacture of Tobacco 25 Processing of Petroleum, Coking and Nuclear Fuel	0.0038 0.0789	1.81 22.58	1.41 17.00
Sector mean Standard deviation	0.0190 0.0195	6.41 3.38	7.85 3.79

Table 7. Parameter estimates (example)

details back

Sensitivity analysis

Table 8. Sensitivity analysis

	Foreign competitiveness	Chinese competitiveness	Chinese s expenditure	Chinese environmental	Tariff	Technology/ productivity
			Shares	regulation		
1. Actual change			162.180			
2. Main estimate	124.857	294.114	94.152	49.663	63.566	98.361
3. σ : Feenstra	124.289	292.573	94.124	49.768	73.522	96.444
4. θ: top 25 %	124.400	289.512	94.136	49.800	71.307	95.794
5. θ: top 50 %	124.250	289.732	94.120	49.916	72.071	93.669
6. α: × 0.5	124.443	285.016	94.139	50.323	71.442	97.976
7. α: × 2	125.592	343.825	94.181	44.728	75.549	99.519
8. Partial equilibrium	100.000	100.000	100.000	50.815	100.000	100.000

Counterfactuals of other pollutants

Figure 19. Counterfactuals of other pollutants

Counterfactual policies

Figure 20. Counterfactual SO₂ emissions of alternative pollution policies

Counterfactual policies

Figure 21. Counterfactual SO₂ emissions of alternative tariffs