Tackling the gender gap in mathematics with active learning methodologies

Daniela Piazzalunga ${ }^{a}$
with M.L. Di Tommaso ${ }^{b}$, D. Contini ${ }^{b}$, D. De Rosa ${ }^{c}$
F. Ferrara ${ }^{b}$, O. Robutti ${ }^{b}$
${ }^{a}$ University of Trento
${ }^{b}$ University of Torino
${ }^{c}$ Italian Ministry of Economy and Finance

August 22, 2022
European Economic Association Congress

Gender gap in mathematics across countries
Italy one of the countries with the highest gap

PISA 2018 (grade 9)
Boys' - girls' results (Positive value indicate boys advantage)

The role of teaching practices

- Existing research focuses on the role of teachers' and parents' stereotypes, beliefs, and expectations
- Surprisingly, to the best of our knowledge, no empirical study addressing the effect of math teaching practices on the gender gap with rigorous evaluation studies
- Group-work and mathematical discussion, investigative work and cognitive activation strategies seem to improve girls performances

Boaler 2002a, 2002b; Boaler 2009, Zohar \& Sela 2003

- Correlation studies, prone to endogeneity issues

Italian context

- The gap is particularly large in Italy
- Causes difficult to establish, out of the scope of our work
- Possible reasons:
- more gender stereotypes/less gender equal society?
- more traditional teaching (teacher-centred instruction)? Anecdotal evidence and TALIS results

Research question and our project

Could properly designed teaching practices help reduce the gender gap in mathematics?

1. Implement a teaching practice (math lab) at an early stage of schooling, in Italy, potentially capable of reducing gender differences
2. Conduct a Randomized Controlled Trial to evaluate the impact of the lab

> Trail registered in the AER RCT Registry (AEARCTR-0003651)

The RCT: treatment delivery

- Third grade pupils (8 years old)
- Treatment at the class level
- 5 laboratory meetings of 3 hours each, 5 consecutive weeks, during school time
School year: 33 weeks; Math: about 6 hours pw
- All students take part to the activities (including student with disabilities or special needs)
- Children in the control group follow the usual curriculum
- Treatment delivered by 4 tutors, trained in math education (Master or Ph.D.)
- Teachers present with the role of observers

The RCT: invitation and criteria

- Primary schools of Torino province (180 primary schools)
- Schools participate voluntarily with at least two classes: one randomized to treatment and one to the control group
- The two classes should
- different math teachers, to avoid spillover effects
- not involved in other math laboratories in the same school year
- 50 classes, 25 schools, approx. 1000 pupils
- Random selection of the 25 participating schools and of the 2 participating classes per school

Timeline

Call for participation in the RCT	Randomization schools/classes	Pilot	Trial registration	RCT
March June Oct-Dec December Jan-May 2018 2018 2018 2018 2019				

The math lab

Active learning - need for students to construct their own understanding Fundamental elements

- Doing instead of 'listening'
- Problem solving
- Small-group and peer work
- Sharing and comparison of ideas, arguing
- Mistakes as opportunities for learning
- Use of tools and materials
- Role of the teacher: orchestrate class activities

Characteristics that could help girls.
Focus on Numeracy

Outcomes

- Children's math outcomes (Pre-test and Post-test scores)
- Designed by math scholars participating to the project
- Similar to national standardized assessments (INVALSI)
- 20 items
- Children's attitudes towards math (after the post-test)

Model

$$
Y_{i k s}=\beta_{0}+\beta_{1} T_{k s}+\beta_{2} X_{i k s}+\beta_{3} Y_{0 i k s}+\gamma_{s}+\epsilon_{i k s}
$$

Y and Y_{0} standardized (Pre and post-test designed by the team)
Control variables:

- math pre-test score Y_{0}
- individual and school characteristics X gender, age, migratory background, parental education, fulltime, class size
- School fixed effects γ_{s}

SE clustered at the class level

Balance, attrition, and compliance

Math gender gap in the pre-test

Pre-test scores

Balance:
confirmed on most characteristics and on the pre-test

Balance after attrition - individual level

	Controls	Treated	Diff
Pre-test score	10.77	10.86	
Girl	0.50	0.51	
Special needs	0.14	0.15	
Parents low educ.	0.67	0.74	$* *$
Parents high educ.	0.33	0.26	$* *$
Native child	0.88	0.85	$*$
By gender			
Pre-test score (F)	10.36	10.23	
Pre-test score (M)	11.19	11.50	
${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$			

Compliance and attendance

- Perfect compliance
- Very large attendance rate

Share of labs attended	Children	Boys	Girls
0%	0.0%	0.0%	0.8%
$\geq 50 \%$	99.3%	100.0%	98.6%
$\geq 70 \%$	95.8%	97.2%	94.5%
$\geq 80 \%$	94.2%	95.8%	92.7%
100%	73.8%	75.9%	71.7%

Results

Main results:

the intervention improves girls' achievements

	Post-test scores			Post-test scores with additional controls		
Variable	Overall	Girls	Boys	Overall	Girls	Boys
Treatment	0.076^{*}	$0.152^{* * *}$	-0.028	$0.083^{* *}$	$0.142^{* *}$	-0.009
	(0.030)	(0.053)	(0.045)	(0.033)	(0.055)	(0.046)
Pre-test	$0.763^{* * *}$	$0.744^{* * *}$	$0.784^{* * *}$	$0.739^{* * *}$	$0.737^{* * *}$	$0.748^{* * *}$
	(0.023)	(0.037)	(0.024)	(0.025)	(0.035)	$0.033)$
Constant	0.007	$-0.132^{* *}$	0.048	0.163	-0.194	0.290
	(0.040)	(0.058)	(0.045)	(0.157)	(0.225)	(0.249)
R-sq.	0.592	0.572	0.601	0.616	0.603	0.641
Obs.	888	448	440	888	448	440
Pre-test	X	X	X	X	X	X
School FE	X	X	X	X	X	X
Add. contr.				X	X	X
$* * * p<0.011^{* *}$	$p 0.05^{*}$	<0.1				

${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$.
Standardized test scores. S.E. clustered at the class level.

Heterogeneous effects by initial math level I

	Girls	Boys
Treatment	$0.155^{* * *}$	-0.013
	(0.053)	(0.048)
Pre-test scores	$0.679^{* * *}$	$0.735^{* * *}$
Treatment*pre-test	(0.049)	(0.041)
	0.127^{*}	0.028
Constant	$-0.064)$	(0.058)
	(0.224)	$(0.292$
Observations	448	440
R-squared	0.611	0.656
School FE	X	X
Add. Contr.	X	X
$* * * p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$		

Heterogeneous effects by initial math level II

Additional heterogeneity

Larger effect for girls with low educated parents

	Parents'	
	Girls	Boys
Treatment	$0.182^{* *}$	-0.075
	(0.072)	(0.068)
Treatment ${ }^{*}$ high educ. par.	-0.099	0.119
	(0.133)	(0.148)
Obs.	448	440
R-sq.	0.604	0.643
Pre-test scores	X	X
School FE	X	X
Add. controls	X	X
${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$		

Exploring possible mechanisms

1. Does the treatment improve math competences only for some types of questions (multiple choice vs. open answer, different dimensions)?

- No, overall improvement (in Numbers)

2. Does the treatment improve children's attitudes towards math?

- No
- Questions \rightarrow Results
- Positive impact on skills not mediated by attitudes

3. Does the treatment reduce item non-response?

- Yes, but slightly and with same magnitude for boys and girls
- \rightarrow Positive impact on the probability of answering
- but the main impact is the direct impact on math competences

Limited external validity

	Classes		
Variable	Experimental	Piedmont	Italy
Invalsi score in Italian	0.393	0.067	0.000
Invalsi score in Math	0.559	0.023	0.000
Invalsi score Italian Female	0.389	0.113	0.017
Invalsi score Italian Male	0.407	0.021	-0.044
Invalsi score Math Female	0.439	-0.052	-0.070
Invalsi score Math Male	0.681	0.086	0.029
Gender Gap Math	-0.241	-0.139	-0.099
Kindergarden attendance	42.00	32.72	38.09
Mother tertiary education	31.61	22.28	24.23
Father tertiary education	22.01	16.20	16.39

Conclusions

- The program improves girls' math skills (+0.14 s.d.)
- The effect is large and policy-relevant
- One full year of primary school attendance: +0.89 s.d.
- Similar interventions, lasting 12 weeks: $+0.25-0.33$ s.d.

Bloom et al. 2008; Slavin and Lake 2008; Pellegrini et al. 2018

- No benefit no harm for boys
- Math gender gap (0.21 s.d. before) reduced by $\mathbf{4 0 . 1} \mathbf{- 4 7 . 5 \%}$
- Girls with high pre-test scores benefit the most
- Properly designed teaching practices have the potential to reduce the gender gap in math in primary school

Thank you
 daniela.piazzalunga@unitn.it

Appendix

The story of the forest trolls

The story of the town to be enlarged

[^0]
Balance - class level

	Control Classes	Treated Classes	Diff
Size of class	21.0	20.8	
Pre-test score (mean)	10.8	10.7	
Pre-test score (s.d.)	4.3	4.2	
Permanent contract teachers \%	100.0	92.0	
Teaching experience (years)	21.4	22.6	
Teaching math in class (years)	2.8	2.4	$*$

${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$

Attrition

		Both	Girls	Boys
Post-test	Overall	0.054	0.052	0.056
	Control	0.055	0.049	0.061
	Treated	0.054	0.056	0.051
	Difference (T-C)	0.001	0.006	-0.009
	Overall	0.149	0.153	0.138
	Control	0.124	0.125	0.123
	Treated	0.167	0.179	0.155
	Difference (T-C)	$0.043^{* *}$	0.053^{*}	0.037

[^1]
Children's attitudes

- 5 questions to record attitudes towards math (after the post-test)

1. Do you like math?
2. Are you good at math?
3. Are you afraid of making mistakes when you do math?
4. Are you relaxed when you do math?
5. Are you afraid of not finishing in time when you do math exercises in class?

- Likert-scale answers

	Attitudes (1)	Attitudes (2)
Girls	-0.750^{*}	$-0.831^{* *}$
Treatment effect on boys	(0.388)	(0.375)
	-0.474	-0.477
Treatment effect on girls	$-0.301)$	(0.298)
	(0.358)	-0.486
	882	882
Observations	0.053	0.072
R-squared	Y	Y
School FE	N	Y
Additional controls		

Treatment effect on item-non response

Number of blank items			
	Overall	Boys	Girls
Treatment	$-0.146^{* *}$	-0.142^{*}	-0.137^{*}
	(0.061)	(0.077)	(0.072)
Gender	0.008		
	(0.054)		
N. of blank items at pre-test	$0.138^{* * *}$	$0.146^{* *}$	$0.115^{* * *}$
	(0.041)	(0.057)	(0.039)
Observations	888	448	440
R-squared	0.159	0.191	0.212
Pre-test score	Y	Y	Y
School FE	Y	Y	Y
Additional Controls	Y	Y	Y

Issues and Limitations

Limitations

- Short intervention and short term effects. Longer term effects?
- Limited external validity
- What would happen with scaling up of the intervention?
- Teachers instead of experts in math education
- In other areas of the country the GGM is smaller
- In other contexts where girls (and boys) are less performing \rightarrow smaller effect?

But scaling up implies longer intervention (possibly 'business as usual')

Additional issues: Internal validity

1. Assessments made by developers of the program
"They could be unfair to control groups because they are aligned with the content taught in the treatment but not in the control group"

$$
\text { Pellegrini et al. } 2018
$$

'Ex-ante' line of defence:

- Test: same conceptual framework of Invalsi tests
- Developed with collaboration of teachers not involved in trial
- Focus on numeracy (standard curriculum in grade 3)
- Teachers typically work on all domains during the year.

Treatment classes not overexposed to numeracy

- Qualitative questionnaires to teachers confirm

Additional issues: Internal validity

1. Assessments made by developers of the program
"They could be unfair to control groups because they are aligned with the content taught in the treatment but not in the control group"

Slavin et al 2018

Ex-post:

- No effect on boys
- If there was an over-exposure to the content of the test, it would be on both M and F

Additional issues - black box?

2. Treatment:

Active learning methodologies \& 'gender gap awareness' (tutors)

- Pro (policy/involved children)
larger effect of teaching practices + awareness
- Cons (research)

Difficult (impossible?) to unpack the effects

- Cons (policy)

Cost-effectiveness?
Only information package could be cheaper and easier to implement

[^0]: Riciclò, sindaco di Contamille, vuole ingrandire la sua città. Per fare questo deve costruire un plastico con il progetto della zona nuova di Contamille. II plastico sard̀ molto grande e sarà fatto di tappi, cannucce e bottoni. Riciclò ha bisogno di molti aiutanti per realizzario.
 "Da solo non posso farcela. Ragazzi: ho bisogno del vostro aiuto! Raccogliete tappi di
 plastica, cannucce e bottoni. Cercate questi oggetti attorno a voi per i prossimi 3 minuti

[^1]: ${ }^{* *} p<0.05 ;^{*} p<0.10$

