Pareto-improving tax reforms and the Earned Income Tax Credit

Felix Bierbrauer¹ Pierre Boyer² Emanuel Hansen^{3,1}

¹ University of Cologne
 ² CREST-École polytechnique
 ³ I MU Munich

ESEM conference August 2022

Introduction

- Starting point:
 - Take an income tax-transfer system in place.
 - Is there a tax reform that makes every citizen better off?
 - If yes: Which tax reform does the job?
- We provide
 - empirically applicable Pareto conditions,
 - ▶ a test for whether any specific reform is Pareto-improving,
 - a measure of the size of inefficiencies,
 - ▶ a tool to identify the "best" Pareto-improving reform.
- We apply these tools to study the 1975 EITC introduction in the US.

What we do

- Generic formal framework:
 - Static utility-maximizing choice of earnings.
 - Budget set defined by some non-linear tax schedule.
 - ► Tax reforms vary the marginal tax in *m* income brackets (flexibly located).
- **Perturbation approach:** Identify small Pareto-improving reforms.
- Necessary and sufficient conditions for Pareto efficiency.
- Test function for historical tax reforms.
- Application to 1975 EITC introduction in the US.

Figure

What we find

• Two is more than one:

If the tax system cannot be Pareto-improved by a one-bracket reform, then there can still be Pareto-improving two-bracket reforms.

What we find

• Two is more than one:

If the tax system cannot be Pareto-improved by a one-bracket reform, then there can still be Pareto-improving two-bracket reforms.

• Two is enough:

If the tax system cannot be Pareto-improved by one-bracket or two-bracket reforms, then there is no Pareto-improving reform at all.

What we find

• Two is more than one:

If the tax system cannot be Pareto-improved by a one-bracket reform, then there can still be Pareto-improving two-bracket reforms.

• Two is enough:

If the tax system cannot be Pareto-improved by one-bracket or two-bracket reforms, then there is no Pareto-improving reform at all.

Express results using revenue function y → R(y): revenue gain from a small one-bracket reform at income level y > 0.

• Application:

- ▶ 1974 pre-EITC tax system was Pareto-inefficient.
- ▶ 1975 EITC introduction was not Pareto-improving (but close to).
- Best reform was a larger version of the EITC reform.

Model

- Continuum of individuals.
- Utility function $u: (c, y, \theta) \mapsto u(c, y, \theta)$, continuously differentiable in c.
- Atomless distribution of individual characteristics θ ∈ Θ ⊂ ℝⁿ, single-crossing condition.
- Simplest case: Diamond (1998)

$$u(c, y, \theta) = c - \frac{1}{1 + \frac{1}{\varepsilon}} \left(\frac{y}{\theta}\right)^{1 + \frac{1}{\varepsilon}}$$

• Below: Fixed and variable effort costs as in Jacquet et al. (2002)

$$u(c, y, heta_1, heta_2) = c - rac{1}{1 + rac{1}{arepsilon}} \left(rac{y}{ heta_1}
ight)^{1 + rac{1}{arepsilon}} - heta_2 \; \mathbb{1}_{y > 0}$$

Tax reforms

- Status quo budget set: $C_0(y) = c_0 + y T_0(y)$, where
 - $T_0: y \mapsto T_0(y)$ is continuous tax schedule with $T_0(0) = 0$,
 - c_0 is base transfer to non-working agents.
- Reform introduces new tax function $T_1 = T_0 + \tau h$, where
 - τ is magnitude of reform,
 - $h: y \mapsto h(y)$ is direction of reform.
- Revenue gain used to increase base transfer, $c_1 = c_0 + R(\tau, h)$.

Pareto-improving tax reforms

- Denote by $v(\tau, h, \theta)$ the indirect utility of type θ after tax reform (τ, h) .
- By envelope theorem, the utility effect of a small reform is

$$\frac{d}{d\tau} v(0,h,\theta) = u_{c0}(\theta) \left[R_{\tau}(0,h) - h(y_0(\theta)) \right]$$

• Small reform is Pareto-improving if

$$R_{ au}(0,h)>\max_{y\in y_0(heta)}h(y)\;.$$

Tax reforms with one bracket

• Consider a reform (τ, h) that varies T'(y) by τ in one interval $(y_k, y_k + \ell)$.

- Saez (2001) perturbation: $\tau \rightarrow 0, \ \ell \rightarrow 0$
- Denote marginal revenue gain by R(y_k) ⇒ Revenue function
 (Note: R differs across models, contains mechanical and behavioral effects)

Theorem 1

If \mathcal{T}_0 is a Pareto-efficient tax system, then the revenue function $y\mapsto \mathcal{R}(y)$ is

- bounded from below by 0,
- bounded from above by 1,
- on non-increasing.

Theorem 1

If \mathcal{T}_0 is a Pareto-efficient tax system, then the revenue function $y\mapsto \mathcal{R}(y)$ is

- bounded from below by 0,
- bounded from above by 1,
- on non-increasing.
- If $\mathcal{R}(y_k) < 0$, a one-bracket tax cut at income y_k is self-financing.

Theorem 1

If \mathcal{T}_0 is a Pareto-efficient tax system, then the revenue function $y\mapsto \mathcal{R}(y)$ is

- bounded from below by 0,
- bounded from above by 1,
- on non-increasing.
- If $\mathcal{R}(y_k) < 0$, a one-bracket tax cut at income y_k is self-financing.
- If R(y_k) > 1, a one-bracket tax increase at income y_k raises enough revenue to compensate the direct losers.

Theorem 1

If \mathcal{T}_0 is a Pareto-efficient tax system, then the revenue function $y\mapsto \mathcal{R}(y)$ is

- bounded from below by 0,
- bounded from above by 1,
- non-increasing.
- If $\mathcal{R}(y_k) < 0$, a one-bracket tax cut at income y_k is self-financing.
- If R(y_k) > 1, a one-bracket tax increase at income y_k raises enough revenue to compensate the direct losers.
- If $\mathcal{R}(y_1) < \mathcal{R}(y_2)$, a two-bracket tax cut between incomes y_1 and $y_2 > y_2$ is self-financing.

 \Rightarrow Two is more than one!

• Tax cut at y_1 leads to revenue loss $-\mathcal{R}(y_1)$.

- Tax cut at y_1 leads to revenue loss $-\mathcal{R}(y_1)$.
- Tax increase at y_2 leads to revenue gain $\mathcal{R}(y_2)$.

- Tax cut at y_1 leads to revenue loss $-\mathcal{R}(y_1)$.
- Tax increase at y_2 leads to revenue gain $\mathcal{R}(y_2)$.

 \Rightarrow If $\mathcal{R}(y_1) < \mathcal{R}(y_2)$: Two-bracket tax cut is self-financing!

• What about reforms with three, four, five etc. brackets?

- What about reforms with three, four, five etc. brackets?
- Can we find sufficient conditions for Pareto efficiency?

- What about reforms with three, four, five etc. brackets?
- Can we find sufficient conditions for Pareto efficiency?

Theorem 2

- If the revenue function $y \mapsto \mathcal{R}(y)$ is
 - bounded from below by 0,
 - bounded from above by 1 and
 - non-increasing,

then there is no small Pareto-improving reform with $m \in \mathbb{R}$ brackets.

- What about reforms with three, four, five etc. brackets?
- Can we find sufficient conditions for Pareto efficiency?

Theorem 2

- If the revenue function $y \mapsto \mathcal{R}(y)$ is
 - bounded from below by 0,
 - bounded from above by 1 and
 - non-increasing,

then there is no small Pareto-improving reform with $m \in \mathbb{R}$ brackets.

```
\Rightarrow By Theorem 2: Two is enough.
```


Sufficient-statistics formula

- Model with labor supply responses at intensive and extensive margins, no income effects.
- Jacquet, Lehmann, Van der Linden (2013): Revenue effect $\mathcal{R}(y)$ is

$$\begin{aligned} \mathcal{R}(y) &= 1 - F_y(y_k) - \varepsilon_0(y) \, y_k \, f_y(y_k) \, \frac{T_0'(y_k)}{1 - T_0'(y_k)} \\ &- \int_{y_k}^{\infty} f_y(y_k) \, \pi_0(y) \, \frac{T_0(y)}{y - T_0(y)} \, dy \end{aligned}$$

- F_y, f_y : cdf/pdf of income distribution
- $\varepsilon_0(y), \pi_0(y)$: Intensive- and extensive-margin elasticities
- $T_0(y), T'_0(y)$: Participation tax, marginal tax

1974 EITC introduction: Background

- 1975 EITC introduction was response to increased welfare dependency and a widely discussed "poverty trap".
- EITC provided pro-work incentives
- Phased in at marginal rate of -10% from 0 to 4,000 USD.
- Phased out at marginal rate of +10% from 4,000 to 8,000 USD.
- Initially, the EITC was restricted to taxpayers with dependent children.

 \Rightarrow Calibrate test function $\mathcal{R}(y)$ for single parents and childless singles

Calibration

- Data on tax schedule and welfare programs (AFDC, SNAP) for 1974.
- Taxes and transfers varied by family size \Rightarrow Focus on families with two kids.
- US income distributions: March CPS 1975.
- Benchmark assumptions on behavioral responses:
 - intensive-margin elasticity 0.33;
 - average extensive-margin elasticities 0.58 (single parents) and 0.25 (childless singles).

1974 Tax-Transfer Schedules

- Solid blue lines: Effective marginal tax rate $T'_0(y)$
- Dashed red lines: Participation tax rate $T_0(y)/y$

Pareto test of 1974 tax-transfer system

1975 tax system

Pareto test of 1974 tax-transfer system

• Childless singles (teal): Minor inefficiencies around 3,000 USD!

1975 tax system

Pareto test of 1974 tax-transfer system

• Single parents (blue): Substantial inefficiencies in EITC range!

Pareto test: Sensitivity analysis

- In alternative scenarios, we consider
 - smaller or larger participation elasticities,
 - smaller or larger intensive elasticities,
 - heterogeneous elasticities,
 - income effects at both margins,
 - estimates of F_{y} based on other samples or PSID data,
 - assets tests for AFDC and SNAP,
 - other representations of tax-transfer schedule,
 - tax-transfer schedules for other US states,
 - single parents with 1, 2, or 3 children

 \Rightarrow Robust finding: 1974 tax-transfer system was Pareto-inefficient

Conclusion

- We provide necessary and sufficient conditions for Pareto-efficiency of income taxes.
- Key lesson: Two-bracket reforms deserve particular attention.
- Two-bracket reforms can make every one better off, even if no one-bracket reform can.
- If there are no Pareto-improving reforms with one and two brackets, then there is no Pareto improvement at all.
- Sufficient-statistics formulas allow to identify Pareto-improving reforms.
- Application: 1975 EITC introduction was two-bracket tax cut that tackled inefficiency.
- Pareto test should be first step in the analysis of tax systems.

Pareto-improving tax reforms and the Earned Income Tax Credit

Felix Bierbrauer¹ Pierre Boyer² Emanuel Hansen^{3,1}

¹ University of Cologne
 ² CREST-École polytechnique
 ³ LMU Munich

ESEM conference August 2022

• 1975 EITC reform Pareto-improving if

$$-\int_{0}^{4000}\mathcal{R}(y)dy+\int_{4000}^{8000}\mathcal{R}(y)dy\geq 0\;.$$

• 1975 EITC reform Pareto-improving if

$$-\int_{0}^{4000} \mathcal{R}(y) dy + \int_{4000}^{8000} \mathcal{R}(y) dy \geq 0 \; .$$

• 1975 EITC reform Pareto-improving if

$$-\int_{0}^{4000} \mathcal{R}(y) dy + \int_{4000}^{8000} \mathcal{R}(y) dy \geq 0 \; .$$

• 1975 EITC reform Pareto-improving if

$$-\int_{0}^{4000} \mathcal{R}(y) dy + \int_{4000}^{8000} \mathcal{R}(y) dy \geq 0 \; .$$

 \Rightarrow Result: Not Pareto-improving for benchmark scenario.
Evaluation of 1975 EITC reform

• 1975 EITC reform Pareto-improving if

$$-\int_{0}^{4000} \mathcal{R}(y) dy + \int_{4000}^{8000} \mathcal{R}(y) dy \geq 0 \; .$$

 \Rightarrow Result: Pareto-improving if $\bar{\pi} > 0.84$.

Evaluation of 1975 EITC reform

• 1975 EITC reform Pareto-improving if

$$-\int_{0}^{4000} \mathcal{R}(y) dy + \int_{4000}^{8000} \mathcal{R}(y) dy \geq 0 \; .$$

 \Rightarrow Result: Pareto-improving for single parents with one child.

Evaluation of 1975 EITC reform

• 1975 EITC reform Pareto-improving if

$$-\int_{0}^{4000} \mathcal{R}(y) dy + \int_{4000}^{8000} \mathcal{R}(y) dy \geq 0 \; .$$

 \Rightarrow Result: Pareto-improving for single parents in Illinois.

• Revenue-maximizing tax cut: Larger EITC with

phase-in between 1, 250 and 5, 750 USD, and

• Revenue-maximizing tax cut: Larger EITC with

- phase-in between 1,250 and 5,750 USD, and
- phase-out between 5,750 and 10,250 USD.

• Revenue-maximizing tax cut: Larger EITC with

- phase-in between 1,250 and 5,750 USD, and
- phase-out between 5,750 and 10,250 USD.

 \Rightarrow Revenue gain per family: 12.6 USD (vs. < 0.01 USD for childless singles).

• Revenue-maximizing tax cut: Larger EITC with

- phase-in between 1,250 and 5,750 USD, and
- phase-out between 5,750 and 10,250 USD.

 \Rightarrow Revenue gain per family: 12.6 USD (1974) \approx 71.1 USD (2021).

• Was the 1975 post-EITC income tax Pareto-efficient?

- Was the 1975 post-EITC income tax Pareto-efficient?
 - No, even more inefficient!

- Was the 1975 post-EITC income tax Pareto-efficient?
 - No, even more inefficient!
- Optimal subsequent reforms?

- Was the 1975 post-EITC income tax Pareto-efficient?
 - No, even more inefficient!
- Optimal subsequent reforms?
 - ▶ Two-bracket tax cut between 2,500 and 9,500 USD.
 - ▶ 1979 EITC expansion between 4,000 and 10,000 USD.

 \Rightarrow 1979 reform was a self-financing tax cut!

- Was the 1975 post-EITC income tax Pareto-efficient?
 - No, even more inefficient!
- Optimal subsequent reforms?
 - ▶ Two-bracket tax cut between 2,500 and 9,500 USD.
 - ▶ 1979 EITC expansion between 4,000 and 10,000 USD.

 \Rightarrow 1979 reform was a self-financing tax cut!

• Conditioning of EITC schedules on family size?

- Was the 1975 post-EITC income tax Pareto-efficient?
 - No, even more inefficient!
- Optimal subsequent reforms?
 - Two-bracket tax cut between 2,500 and 9,500 USD.
 - ▶ 1979 EITC expansion between 4,000 and 10,000 USD.

 \Rightarrow 1979 reform was a self-financing tax cut!

- Conditioning of EITC schedules on family size?
 - Size of inefficiency increasing in family size.
 - Conditional tax cuts can raise 25% more revenue than unconditional tax cut.
 - ▶ 1991/2009 reforms: Larger EITC for families with 2/3+ children.

Concluding Remarks

Conclusion

- We provide necessary and sufficient conditions for Pareto-efficiency of income taxes.
- Key lesson: Two-bracket reforms deserve particular attention.
- Two-bracket reforms can make every one better off, even if no one-bracket reform can.
- If there are no Pareto-improving reforms with one and two brackets, then there is no Pareto improvement at all.
- Sufficient-statistics formulas allow to identify Pareto-improving reforms.
- Application: 1975 EITC introduction was two-bracket tax cut that tackled inefficiency.
- Pareto test should be first step in the analysis of tax systems.

Pareto-improving tax reforms and the Earned Income Tax Credit

Felix Bierbrauer¹ Pierre Boyer² Emanuel Hansen^{3,1}

¹ University of Cologne
² CREST-École polytechnique
³ LMU Munich

ESEM conference August 2022 Figure: Tax reform with one bracket

Figure: Tax reform with one bracket

Figure: Tax reform with two brackets

Figure: Tax reform with two brackets

Intro

• Pareto-efficient taxation: Werning (2006).

- Pareto-efficient taxation: Werning (2006).
 - Pareto-improving reforms are self-financing tax cuts.

- Pareto-efficient taxation: Werning (2006).
 - Pareto-improving reforms are self-financing tax cuts.
 - Focus on simple reform such that

$$T_1(y) = \begin{cases} T_0(y_k) - \varepsilon & \text{for } y = y_k \\ T_0(y) & \text{for } y \neq y_k \end{cases}$$

- Pareto-efficient taxation: Werning (2006).
 - Pareto-improving reforms are self-financing tax cuts.
 - Focus on simple reform such that

$$T_1(y) = \begin{cases} T_0(y_k) - \varepsilon & \text{for } y = y_k , \\ T_0(y) & \text{for } y \neq y_k . \end{cases}$$

Simple reform detects some Pareto-improvements, but misses others.

- Pareto-efficient taxation: Werning (2006).
 - Pareto-improving reforms are self-financing tax cuts.
 - Focus on simple reform such that

$$T_1(y) = \begin{cases} T_0(y_k) - \varepsilon & \text{for } y = y_k , \\ T_0(y) & \text{for } y \neq y_k . \end{cases}$$

- Simple reform detects some Pareto-improvements, but misses others.
- \Rightarrow We provide sufficient conditions and results for *all* non-linear reforms!

 Inverse optimum approach: Bourguignon & Spadaro (2012), Jacobs, Jongens & Zoutman (2017).

- Inverse optimum approach: Bourguignon & Spadaro (2012), Jacobs, Jongens & Zoutman (2017).
- Main idea:
 - ► Interpret actual tax *T* as optimal within some model.
 - Revert FOCs to infer implicit welfare weights $g : y \mapsto g(y)$.
 - Assume that SOC holds.

- Inverse optimum approach: Bourguignon & Spadaro (2012), Jacobs, Jongens & Zoutman (2017).
- Main idea:
 - ► Interpret actual tax *T* as optimal within some model.
 - Revert FOCs to infer implicit welfare weights $g : y \mapsto g(y)$.
 - Assume that SOC holds.
- Requires set of regularity conditions.
- Relation: If procedure gives negative weight $g(y_k) < 0$, then T is Pareto-inefficient.

- Inverse optimum approach: Bourguignon & Spadaro (2012), Jacobs, Jongens & Zoutman (2017).
- Main idea:
 - ► Interpret actual tax *T* as optimal within some model.
 - Revert FOCs to infer implicit welfare weights $g : y \mapsto g(y)$.
 - Assume that SOC holds.
- Requires set of regularity conditions.
- Relation: If procedure gives negative weight $g(y_k) < 0$, then T is Pareto-inefficient.
- No general results on how to tackle inefficiencies.

- Inverse optimum approach: Bourguignon & Spadaro (2012), Jacobs, Jongens & Zoutman (2017).
- Main idea:
 - ► Interpret actual tax *T* as optimal within some model.
 - Revert FOCs to infer implicit welfare weights $g : y \mapsto g(y)$.
 - Assume that SOC holds.
- Requires set of regularity conditions.
- Relation: If procedure gives negative weight $g(y_k) < 0$, then T is Pareto-inefficient.
- No general results on how to tackle inefficiencies.

 \Rightarrow We provide direct Pareto test, and show which reforms help!

 \Rightarrow Case 1: T_0 is Pareto-efficient!

 \Rightarrow Case 2: One-bracket tax increase is Pareto-improving!

 \Rightarrow Case 3: One-bracket tax cut is Pareto-improving!

 \Rightarrow Case 4: Two-bracket tax cut is Pareto-improving!

Intuition: Why is two enough?

• Consider reform with tax cut $au_1 < 0$ in lowest bracket 1

• Consider reform with tax cut $au_1 < 0$ in lowest bracket 1

• Revenue loss, cut in base transfers \Rightarrow Agents below y_1 lose.

• Consider reform with tax cut $au_1 < 0$ in lowest bracket 1

- Revenue loss, cut in base transfers \Rightarrow Agents below y_1 lose.
- Balancing budget requires tax increase $\tau_2 > 0$ at higher income y_2 .

• Consider reform with tax cut $au_1 < 0$ in lowest bracket 1

- Revenue loss, cut in base transfers \Rightarrow Agents below y_1 lose.
- Balancing budget requires tax increase τ₂ > 0 at higher income y₂.
- With $\mathcal{R}(y)$ decreasing, we need $\tau_2 > -\tau_1$.

• Consider reform with tax cut $au_1 < 0$ in lowest bracket 1

- Revenue loss, cut in base transfers \Rightarrow Agents below y_1 lose.
- Balancing budget requires tax increase $\tau_2 > 0$ at higher income y_2 .
- With $\mathcal{R}(y)$ decreasing, we need $\tau_2 > -\tau_1$.
 - \Rightarrow Agents above bracket 2 lose.
 - \Rightarrow Compensation requires further tax increase.

• Consider reform with tax increase $au_1 > 0$ in lowest bracket

• Consider reform with tax increase $au_1 > 0$ in lowest bracket

• Revenue gain, but agents above y_1 lose.

• Consider reform with tax increase $\tau_1 > 0$ in lowest bracket

- Revenue gain, but agents above y_1 lose.
- Compensation requires to raise taxes at higher income $y_2 > y_1$.

• Consider reform with tax increase $\tau_1 > 0$ in lowest bracket

- Revenue gain, but agents above y_1 lose.
- Compensation requires to raise taxes at higher income $y_2 > y_1$.
 - \Rightarrow Agents above y_2 lose even more.
 - \Rightarrow Biggest loser cannot be compensated.

- Assume that
 - $y_{min} \coloneqq \min_{\Theta} y^*(\theta) > 0$, and
 - $y_{max} \coloneqq \max_{\Theta} y^*(\theta) < \bar{y}$

- Assume that
 - $y_{min} \coloneqq \min_{\Theta} y^*(\theta) > 0$, and
 - $y_{max} \coloneqq \max_{\Theta} y^*(\theta) < \bar{y}$
- Then, we can show that

•
$$\mathcal{R}(y) = 1$$
 for all $y \in [0, y_{min})$, and
• $\mathcal{R}(y) = 0$ for all $y \in (y_{max}, \overline{y}]$

- Assume that
 - $y_{min} \coloneqq \min_{\Theta} y^*(\theta) > 0$, and
 - $y_{max} \coloneqq \max_{\Theta} y^*(\theta) < \bar{y}$
- Then, we can show that
 - $\mathcal{R}(y) = 1$ for all $y \in [0, y_{min})$, and
 - $\mathcal{R}(y) = 0$ for all $y \in (y_{max}, \overline{y}]$

Corollary

Let $0 < y_{min} < y_{max} < \bar{y}$. If the revenue function $(y) \mapsto \mathcal{R}(y)$ is monotonically decreasing on $[0, \bar{y}]$, then there is no small Pareto-improving tax reform.

- Assume that
 - $y_{min} \coloneqq \min_{\Theta} y^*(\theta) > 0$, and
 - $y_{max} \coloneqq \max_{\Theta} y^*(\theta) < \bar{y}$
- Then, we can show that
 - $\mathcal{R}(y) = 1$ for all $y \in [0, y_{min})$, and
 - $\mathcal{R}(y) = 0$ for all $y \in (y_{max}, \overline{y}]$

Corollary

Let $0 < y_{min} < y_{max} < \bar{y}$. If the revenue function $(y) \mapsto \mathcal{R}(y)$ is monotonically decreasing on $[0, \bar{y}]$, then there is no small Pareto-improving tax reform.

- Hence, we can focus on two-bracket tax cuts only.
- In some cases, two-bracket reforms are equivalent to one-bracket reforms: No agent is affected by one of the brackets.

• Revenue-maximizing reform: Two-bracket tax cut!

- Revenue-maximizing reform: Two-bracket tax cut!
- Maximum revenue gain:

$$R(\tau, h^*) \approx \tau a \left[\int_{\frac{y_s + y_t}{2}}^{y_t} \mathcal{R}(y) dy - \int_{y_s}^{\frac{y_s + y_t}{2}} \mathcal{R}(y) dy \right]$$

- Revenue-maximizing reform: Two-bracket tax cut!
- Maximum revenue gain:

$$R(\tau, h^*) \approx \tau a \left[\int_{\frac{y_s + y_t}{2}}^{y_t} \mathcal{R}(y) dy - \int_{y_s}^{\frac{y_s + y_t}{2}} \mathcal{R}(y) dy \right]$$

1974 Tax-Transfer Schedules

- Solid blue lines: Effective marginal tax rate $T'_0(y)$
- Dashed red lines: Participation tax rate $T_0(y)/y$

• Brown: No extensive-margin responses $\pi = 0$

• Teal: Less intensive-margin responses $\varepsilon = 0.1$

• Black: No intensive-margin responses $\varepsilon = 0$

 \bullet Dashed teal: Elasticity ε increasing with income

• Orange: With income effects, MPE = 0.3

• Brown: Smoothed tax schedule

Pareto test of 1975 tax-transfer system

• 1974: Potential revenue gain 12.6 USD per family

Pareto test of 1975 tax-transfer system

• 1975: Potential revenue gain 21.8 USD per family

Pareto test of 1975 tax-transfer system

• 1979: EITC expansion between 4k and 10k USD.

Single parents with 1 child

- Optimal tax cut between 2,000 and 7,000 USD.
- Revenue gain 6.4 USD per family.

Single parents with 2 children

- Tax cut between 1,200 and 10,200 USD.
- Revenue gain 13.5 USD per family.

Single parents with 3 children

- Optimal tax cut between 1,300 and 13,200 USD.
- Revenue gain 18.5 USD per family.

Unconditional reform for all single parents:

- Optimal tax cut between 2,200 and 11,000 USD.
- Revenue gain about 20% lower than for best conditional reforms.

Current US tax-transfer system

• Minor inefficiency around 15,000 USD

Relation to inverse optimum approach

• Assume social objective can be captured by marginal welfare weights $g: y \mapsto g(y)$.

Relation to inverse optimum approach

- Assume social objective can be captured by marginal welfare weights g : y → g(y).
- Consider small two-bracket tax cut between incomes y_1 and $y_2 > y_1$.
- Welfare effect of reform is zero if and only if

$$E[g(y) | y \in (y_1, y_2)] = \frac{\mathcal{R}(y_1) - \mathcal{R}(y_2)}{F(y_2) - F(y_1)}$$
.

Relation to inverse optimum approach

- Assume social objective can be captured by marginal welfare weights $g: y \mapsto g(y)$.
- Consider small two-bracket tax cut between incomes y_1 and $y_2 > y_1$.
- Welfare effect of reform is zero if and only if

$$E[g(y) | y \in (y_1, y_2)] = \frac{\mathcal{R}(y_1) - \mathcal{R}(y_2)}{F(y_2) - F(y_1)}$$

• For $\mathcal{R}(y_1) < \mathcal{R}(y_2)$: Welfare effect of zero requires that $E\left[g(y) \mid y \in (y_1, y_2)
ight] < 0$.

Relation to inverse optimum approach II

- Consider small one-bracket tax cut at income y_k.
- For $\mathcal{R}(y_k) < 0$: Welfare effect of zero requires that

 $E\left[g(y)\mid y>y_k\right]<0\;.$
Relation to inverse optimum approach II

- Consider small one-bracket tax cut at income y_k .
- For $\mathcal{R}(y_k) < 0$: Welfare effect of zero requires that

 $E\left[g(y)\mid y>y_k\right]<0\;.$

- Consider small one-bracket tax increase at income y_k .
- For $\mathcal{R}(y_k) > 1$, welfare effect of zero requires that

 $E\left[g(y) \mid y < y_k\right] < 0 \; .$

Other states: New York

Other states: Texas

Other states: Pennsylvania

Other states: Illinois

