| Research Question | Context | Empirical Strategy |  | Appendix |
|-------------------|---------|--------------------|--|----------|
|                   |         |                    |  |          |

# School Competition and Classroom Segregation

Angela Crema

2022 EEA-ESEM Congress August 25, 2022

School Competition and Classroom Segregation

| Research Question<br>●00 | Context<br>000 |  | <b>Appendix</b> 000000000000000000000000000000000000 |
|--------------------------|----------------|--|------------------------------------------------------|
| Motivation               |                |  |                                                      |

- Competition in education markets: "a tide that lifts all boats" (Hoxby, 2003)
  - Promise extends to minority students in TPS: charter schools tend to locate in disadvantaged areas (Singleton, 2019)
- Implicit assumption: households solely value school characteristics that raise their children's test scores
- Evidence that share of white peers drives schools choice (Abdulkadiroglu et al., 2021; Hastings et al., 2009)
- TPS will racially segregate students across classrooms, which disproportionately harms non-whites

| Research Question<br>○●○ | Context<br>000 |  | <b>Appendi</b> x<br>000000000000000000000000000000000000 |
|--------------------------|----------------|--|----------------------------------------------------------|
| This Paper               |                |  |                                                          |

- What is the effect of charter openings on racial segregation across classrooms at Traditional Public Schools (TPS)?
- Exploit almost 100 charter openings in North Carolina from 1997 to 2015 to compare classroom segregation in nearby TPS to those further away, pre- and post-opening
- Combine charter school openings with data on within-school segregation across classrooms from North Carolina Education Research Data Center (NCERDC)

| Research Question<br>00● | Context<br>000 |  | <b>Appendi</b> x<br>000000000000000000000000000000000000 |
|--------------------------|----------------|--|----------------------------------------------------------|
| Result Previe            |                |  |                                                          |

- Charter opening increases TPS classroom segregation significantly
- Increase occurs upon opening announcement
- No significant change in ability segregation (conditional on race), teacher value-added, or class size
- Fraction of white TPS students with Gifted and Talented status rises at expense of non-whites
- ▶ Racial test score gap increases by 10%

NC Charter Sector Has Been Growing Rapidly



| Research Question | Context | Empirical Strategy |  | Appendix |
|-------------------|---------|--------------------|--|----------|
|                   | 000     |                    |  |          |

#### **Concentrated In Urban Areas**



First wave openings (1997-2005)
 Second wave openings (2012-2015)

| Research Question | Context<br>00● |  | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|--|--------------------------------------------------|
|                   |                |  |                                                  |

### **TPS Fear White-Skimming From Charter Schools**

- Charter schools in NC successfully "white-skim" from neighborhoods
  - School decisions: location, curriculum, required parental involvement, advertising, ...
  - State legislature: charters allowed to forego free transportation, meals, and after school programs
- TPS school leaders have firmly and openly opposed charter expansion in NC

| Research Question | Context<br>000 | Empirical Strategy<br>●0 |  | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|--------------------------|--|--------------------------------------------------|
|                   |                |                          |  |                                                  |

### Treated And Control Schools

- Sample: TPS that experience at least one charter opening within 10 miles between 1997 and 2015
- TPS s treated in year y if closer than 5 miles to year y charter opening, control otherwise
  - Schools compete spatially due to parents' distaste for distance



| Research Question | Context<br>000 | Empirical Strategy<br>○● |  | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|--------------------------|--|--------------------------------------------------|
| Event Study       |                |                          |  |                                                  |

► Estimate

$$D_{st} = \alpha + \sum_{k=-3}^{-2} \beta_k \mathbf{1}[\tau_t = k] \mathbf{1}[treated_s = 1] + \sum_{k=0}^{+2} \gamma_k \mathbf{1}[\tau_t = k] \mathbf{1}[treated_s = 1] + \delta X_{st} + \phi_s + \phi_t + \epsilon_{st}$$
(1)

- D index of dissimilarity (white-nonwhite) for Math index
- au time relative to charter opening
- X school size and share of white students
- $\phi_s$  school fixed effects;  $\phi_t$  year fixed effects

Deal with heterogeneous timing of treatment Method

**Racial Segregation Increases Upon Charter Opening** 





| Research Question | Context<br>000 | Results<br>0●0000 | <b>Appendix</b> 000000000000000000000000000000000000 |
|-------------------|----------------|-------------------|------------------------------------------------------|
| Result Is         |                |                   |                                                      |

- Not driven by change in student body composition
  - Pre-announced entries (Figlio and Hart, 2014; Gilraine et al., 2021)
  - Grades that entrants commit to open in near future
- Not dependent on treatment threshold
  - Robust to specification with continuous distance See
- Robust to dissimilarity index corrected for small unit bias See
- ▶ Robust to  $log(\frac{D}{1-D})$  transformation of dependent variable See

| Research Question | Context<br>000 | Results<br>00●000 | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|-------------------|--------------------------------------------------|
|                   |                |                   |                                                  |

Segregation Increases Upon Opening Announcement



| Research Question | Context<br>000 | Results<br>000●00 | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|-------------------|--------------------------------------------------|
| Result Is         |                |                   |                                                  |

- ► Larger in urban areas See
- Larger in non-white areas See
- Larger at desegregated TPS See

| Research Question | Context<br>000 | Results<br>0000●0 | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|-------------------|--------------------------------------------------|
|                   |                |                   |                                                  |

No Evidence That Other Inputs Are Reallocated

- ► High-ability peers (conditional on race) Measure Results
- ► Teacher value-added VA estimation Results
- Class size Results
- Share of white students with Gifted and Talented status increases by 6% Results Event Study

| Research Question | Context | Empirical Strategy | Results | Appendix |
|-------------------|---------|--------------------|---------|----------|
|                   |         |                    | 000000  |          |
|                   |         |                    |         |          |

Test Score Inequality Widens Upon Charter Entry

| (1)     | (2)                                                                                 |
|---------|-------------------------------------------------------------------------------------|
| P90-P10 | Racial Gap                                                                          |
| 0.057** | 0.050***                                                                            |
| (0.026) | (0.018)                                                                             |
| Y       | Y                                                                                   |
| Y       | Y                                                                                   |
| Y       | Y                                                                                   |
| Y       | Y                                                                                   |
| 3,588   | 3,588                                                                               |
| 0.454   | 0.678                                                                               |
| 2.328   | 0.491                                                                               |
|         | (1)<br>P90-P10<br>0.057**<br>(0.026)<br>Y<br>Y<br>Y<br>Y<br>3,588<br>0.454<br>2.328 |

| Research Question | Context<br>000 |  | Conclusions<br>●○ | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|--|-------------------|--------------------------------------------------|
| Conclusions       |                |  |                   |                                                  |

- Exploit almost 100 charter openings in North Carolina and rich student-level administrative data
- Show that charter entry significantly increases classroom segregation by race at TPS nearby
- Provide suggestive evidence that TPS respond to competition by optimally embedding white households' preferences and segregating white students
- This response leaves non-white students behind
- ▶ Future work: what if gifted programs / tracking are banned?

| Research Question | Context | Empirical Strategy |        | Conclusions | Appendix                                |
|-------------------|---------|--------------------|--------|-------------|-----------------------------------------|
| 000               | 000     | 00                 | 000000 | 00          | 000000000000000000000000000000000000000 |

# Thank you!

# For comments or questions, please email me at: ac7335@nyu.edu

Dealing With Heterogeneous Timing Of Treatment

- Under treatment effect heterogeneity, event study estimate for one relative-time period is contaminated by causal effects of other periods (Abraham and Sun, 2021)
- Mechanically ensure that no previously-treated units enter as controls (Cenzig et al., 2019)
  - ▶ For each treatment cohort C<sub>c</sub>, get all treated units, plus all units not treated by year c + 2
  - For each cohort-specific data set, keep only observations from year c − 3 to c + 2
  - Stack cohort-specific data sets in relative time
  - Run standard specification with interactions between cohort identifier and fixed effects, controls, clusters

Measure Cross-Classroom Racial Segregation

Compute racial segregation by school-grade-course-time as

$$D_{sgct} = \frac{1}{2} \sum_{d} \left| \frac{w_{sgctd}}{W_{sgct}} - \frac{nw_{sgctd}}{NW_{sgct}} \right|$$
(2)

with d course section (division); w and nw (W and NW) number of white and non-white students enrolled by section (course)

- D = 0 (1) means that no (all) non-white students should change section to obtain even distribution within course (Duncan and Duncan, 1955)
- Compute D<sub>sy</sub> averaging across courses within grade, and then across grades

| Research Question | Context | Empirical Strategy |        |    | Appendix                                |
|-------------------|---------|--------------------|--------|----|-----------------------------------------|
| 000               | 000     | 00                 | 000000 | 00 | 000000000000000000000000000000000000000 |

**Classroom Segregation Increases Upon Charter Entry** 

|                                   | (1)           | (2)               | (3)               |
|-----------------------------------|---------------|-------------------|-------------------|
| VARIABLES                         | All entries   | 1997-2005 entries | 2012-2015 entries |
|                                   |               |                   |                   |
| Within 5 miles $\times$ Post      | $0.015^{***}$ | $0.017^{***}$     | $0.012^{**}$      |
|                                   | (0.004)       | (0.005)           | (0.005)           |
| School size                       | Y             | Y                 | Y                 |
| School white share                | Y             | Y                 | Y                 |
| School-by-cohort FE               | Y             | Y                 | Y                 |
| Year-by-cohort FE                 | Y             | Y                 | Y                 |
| Observations                      | 23,622        | 18,096            | 5,526             |
| R-squared                         | 0.790         | 0.802             | 0.731             |
| Mean dependent variable pre-entry | 0.204         | 0.198             | 0.224             |

| Research Question | Context | Empirical Strategy |  | Appendix                                |
|-------------------|---------|--------------------|--|-----------------------------------------|
|                   |         |                    |  | 000000000000000000000000000000000000000 |
|                   |         |                    |  |                                         |

Classroom Segregation Increases Upon Charter Entry



| Research Question | Context<br>000 |  | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|--|--------------------------------------------------|
|                   |                |  |                                                  |

### Main Result Not Dependent On Treatment Threshold



Indicators for time to charter opening are interacted with continuous measure of treatment  $\tilde{d} = 15 - d$ , d being TPS-charter physical distance.  $\tilde{d}$  can range from 0 (no entry within 15 miles) to 15 (charter and TPS locations overlap). Sample is restricted to TPS that experience entry closer than 15 miles over time window.



- Problem: when units contain few individuals, indices based on minority shares in units are upward biased
- Two main approaches:
  - Correct naive indices subtracting measure of bias (Cortese et al., 1976; Carrington and Troske, 1997; Allen et al., 2015)
  - Use inequality index based on distribution of unobserved probabilities (parametric: Rathelot, 2012; non-parametric: D'Haultfoeuille and Rathelot, 2017)
- Use first approach to maintain sufficient variability in index



- ▶ Follow approach proposed by Carrington and Troske (1997)
- Define D\* expected dissimilarity index implied by random allocation of population with minority share p to n units, each of size s

$$\lim_{n \to \infty} D^*(s, p, n) = \sum_{m=0}^{s} \frac{1}{2} B(m; s, p) \left| \frac{(s-m)}{s(1-p)} - \frac{m}{sp} \right|$$
(3)

with B binomial density function

Dealing With Small Unit Bias (Cont'd)

$$\hat{D} = \begin{cases} \frac{D - D^*}{1 - D^*} & D \ge D^* \\ \frac{D - D^*}{D^*} & D < D^* \end{cases}$$
(4)

Varies from -1 (maximum evenness) to 1 (maximum unevenness); 0 means that the sample is equivalent to random allocation 
 Research Question
 Context
 Empirical Strategy
 Results
 Conclusions
 Appendix

 000
 000
 00
 000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Main Result Robust To Small Unit Bias Concerns



| Research Question | Context | Empirical Strategy |        |    | Appendix                                |
|-------------------|---------|--------------------|--------|----|-----------------------------------------|
| 000               | 000     | 00                 | 000000 | 00 | 000000000000000000000000000000000000000 |

**Result Not Driven By Misspecification** 



|         |    | ategy Results | Conclusion | is Appendix                             |
|---------|----|---------------|------------|-----------------------------------------|
| 000 000 | 00 | 000000        | 00         | 000000000000000000000000000000000000000 |

## **Treatment Effect Rather Constant**





Treatment Effect Larger In Non-White Areas



| Research Question | Context | Empirical Strategy |  | Appendix                                |
|-------------------|---------|--------------------|--|-----------------------------------------|
|                   |         |                    |  | 000000000000000000000000000000000000000 |
|                   |         |                    |  |                                         |

Treatment Effect Larger At Desegregated Schools



| Research Question | Context | Empirical Strategy |  | Appendix                                |
|-------------------|---------|--------------------|--|-----------------------------------------|
|                   |         |                    |  | 000000000000000000000000000000000000000 |
|                   |         |                    |  |                                         |

Ordinal Information Theory Index

$$I = \sum_{m=1}^{M} \frac{t_m}{T\nu} (\nu - \nu_m)$$
 (5)

- m denotes section
- ▶ *t<sub>m</sub>* is number of students in section *m*
- T is number of students in course

$$\nu = \frac{1}{K-1} \sum_{j=1}^{K-1} - [c_j \log_2 c_j + (1-c_j) \log_2 (1-c_j)] \quad (6)$$

- K number of ordered categories (quartiles)
- c<sub>k</sub> cumulative proportion of students in decile k or lower

| Research Question | Context<br>000 |     |  | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|-----|--|--------------------------------------------------|
| Value Added       | Estimat        | ion |  |                                                  |

- Estimate value added for each (Math) teacher using Parametric Empirical Bayes estimator
- Import estimates into student panel via teacher identifier
- Define student *i* treated (control) in year *y* if she attends a treated (control) TPS in year *y*
- Estimate student-level event study specification with school FE and average value added by (i, y) as outcome variable

Value Added Estimation (Cont'd)

► Test scores given by

$$A_{ijy}^* = \beta X_{ijy} + \alpha_{jt} + \epsilon_{ijy}, \quad i = 1, 2, ..., n_{jy}$$
(7)

### i student, j teacher, y year

- A<sup>\*</sup><sub>iiv</sub> student i's test score in year y
- X<sub>ijy</sub> lagged test scores, student demographics, teacher experience, etc.
- *α<sub>jy</sub>* teacher-year fixed effect
- n<sub>jy</sub> class size
- $\epsilon_{ijy} \sim \mathcal{N}(0, \epsilon_{\epsilon}^2)$  student-specific error term



▶ Retrieve estimates for teacher-year fixed effects  $\alpha_{it}$ :  $\bar{A}_{it}$ 

• Let 
$$A_{ijy} = A^*_{ijy} - \beta X_{ijy}$$
; then  $\overline{A}_{jy} = \frac{1}{n_{jy}} \sum_{i=1}^{n_{jy}} A_{ijy}$ 

Simple fixed effect (MLE) estimator A
<sub>j</sub> has large variance for teachers with few students

$$\bar{A}_{j} \equiv \frac{\sum_{y} n_{jy} \bar{A}_{jt}}{\sum_{y} n_{jy}} \sim \mathcal{N}(\alpha_{j}, \frac{\sigma_{\epsilon}^{2}}{\sum_{y} n_{jy}})$$
(8)

For teachers observed at treated schools, average value added across pre-entry years



• Adopt Parametric Empirical Bayes Estimator:  $\alpha_i \sim \mathcal{N}(0, \sigma_{\alpha}^2)$ 

$$\hat{\alpha}_{j} = \bar{A}_{j} \frac{\sigma_{\alpha}^{2}}{\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2} / \sum_{y} n_{jy}}$$
(9)

• 
$$\hat{\alpha}_j \rightarrow \bar{A}_j$$
 for large  $n_{jy}$ 

Implement via plug-in estimator with MLE

| Research Question | Context<br>000 |  | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|--|--------------------------------------------------|
|                   |                |  |                                                  |

#### No Increase In Ability Tracking

|                                   | (1)     | (2)       |
|-----------------------------------|---------|-----------|
| VARIABLES                         | Actual  | Simulated |
|                                   |         |           |
| Within 5 miles $\times$ Post      | -0.011  | -0.004    |
|                                   | (0.008) | (0.004)   |
| School size                       | Y       | Y         |
| School white share                | Y       | Y         |
| School-by-cohort FE               | Y       | Y         |
| Year-by-cohort FE                 | Y       | Y         |
| Observations                      | 1,548   | 1,554     |
| R-squared                         | 0.651   | 0.650     |
| Mean dependent variable pre-entry | 0.075   | 0.054     |

| Research Question | Context<br>000 |  | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|--|--------------------------------------------------|
|                   |                |  |                                                  |

#### No Change In Teacher VA Or Class Size

|                | (1)         | (2)         | (3)        | (4)        |
|----------------|-------------|-------------|------------|------------|
| VARIABLES      | Value Added | Value Added | Class Size | Class Size |
|                | White       | Non-White   | White      | Non-White  |
|                |             |             |            |            |
| Within 5 miles | -0.005      | -0.003      | 0.187      | 0.208      |
| $\times$ Post  | (0.006)     | (0.006)     | (0.253)    | (0.241)    |
| Size           | Y           | Y           | Y          | Y          |
| % White        | Y           | Y           | Y          | Y          |
| School FE      | Y           | Y           | Y          | Y          |
| Year FE        | Y           | Y           | Y          | Y          |
| Observations   | 5,724       | 5,724       | 4,902      | 4,902      |
| R-squared      | 0.733       | 0.749       | 0.610      | 0.624      |
| Mean dep. var. | 0.020       | 0.016       | 25.361     | 25.437     |

| Research Question | Context<br>000 |  | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|--|--------------------------------------------------|
|                   |                |  |                                                  |

# **Results For Gifted Education**



| Research Question | Context<br>000 |  | Appendix<br>000000000000000000000000000000000000 |
|-------------------|----------------|--|--------------------------------------------------|
|                   |                |  |                                                  |

#### Test Score Inequality Widens

|                | (5)     | (6)       | (7)         | (8)         |
|----------------|---------|-----------|-------------|-------------|
| VARIABLES      | Gifted  | Gifted    | Test Scores | Test Scores |
|                | White   | Non-White | P90-P10     | Racial Gap  |
| Within F miles | 0.010*  | 0.010***  | 0.052**     | 0.050***    |
| within 5 miles | 0.010.  | -0.018    | 0.057**     | 0.050       |
| $\times$ Post  | (0.006) | (0.003)   | (0.026)     | (0.018)     |
| Size           | Y       | Y         | Y           | Y           |
| % White        | Y       | Y         | Y           | Y           |
| School FE      | Y       | Y         | Y           | Y           |
| Year FE        | Y       | Y         | Y           | Y           |
| Observations   | 5,892   | 5,892     | 3,588       | 3,588       |
| R-squared      | 0.804   | 0.620     | 0.454       | 0.678       |
| Mean dep. var. | 0.160   | 0.058     | 2.328       | 0.491       |

| Research Question | Context | Empirical Strategy |        |    | Appendix                                |
|-------------------|---------|--------------------|--------|----|-----------------------------------------|
| 000               | 000     | 00                 | 000000 | 00 | 000000000000000000000000000000000000000 |
|                   |         |                    |        |    |                                         |

Test Score Inequality Widens



| Research Question Conte | xt Empirical Strategy |        | Conclusions | Appendix                                |
|-------------------------|-----------------------|--------|-------------|-----------------------------------------|
| 000 000                 | 00                    | 000000 | 00          | 000000000000000000000000000000000000000 |

Test Score Inequality Widens

