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Introduction

Focus and agenda

Panel literature focuses on parameter estimation and inference
Surprisingly few studies on using panel estimation to forecast individual
units, see Baltagi (2013)

We examine existing approaches and develop new forecasting methods for
panel data with heterogeneous parameters

new forecast poolability test which we contrast with parameter homogeneity
tests
new forecast combination methods

We compare the predictive accuracy of individual forecasts for different
cross-sectional (N) and time (T) dimensions, and varying degrees of
parameter heterogeneity
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Introduction

Panel data models with parameter heterogeneity

Baseline panel model

yit = β′ixit + εit, i = 1,2, . . . ,N, t = 1,2, . . . ,T

We study forecast of individual units, yit, given the ex-ante known
predictors, xit

Forecasts can be computed using individual estimates of βi or using the
pooled estimate βi = β
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Assumptions and Theoretical Analysis Forecasts based on individual and pooled estimation

Comparing MSFE values: Individual vs. pooled

Forecasts based on individual estimates:

ŷi,T+1 = β̂
′
ixi,T+1, β̂i = (X′iXi)

−1X′iyi,
êi,T+1 = yi,T+1 − ŷi,T+1.

Forecasts based on pooled estimator:

ỹi,T+1 = β̃
′
xi,T+1, β̃ = (X′X)−1X′y,

ẽi,T+1 = yi,T+1 − ỹi,T+1.
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Assumptions and Theoretical Analysis Forecasts based on individual and pooled estimation

Proposition 1

(i) The MSFE from individual-specific parameter estimation is

Var(êi,T+1|Xi, xi,T+1) = σ2
i + T−1σ2

i x′i,T+1Q−1
iT xi,T+1

= σ2
i + Op

(
T−1

)
,

where QiT = T−1X′iXi.
(ii) The MSFE from pooled parameter estimation is

Var(ẽi,T+1|Xi, xi,T+1) = σ2
i + x′i,T+1Ωηxi,T+1 + Op

(
N−1) .
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Assumptions and Theoretical Analysis Forecasts based on individual and pooled estimation

Interpretation of Proposition

Remark 1 For small T, parameter estimation uncertainty can be important for the
individual forecasts. Parameter heterogeneity, in contrast, does not affect the
accuracy of the individual forecasts. For large T, forecasts based on individual
estimation will have a lower MSFE than forecasts based on pooled estimation.

Remark 2 The accuracy of forecasts that use pooled estimates depends both on the degree
of parameter heterogeneity and the dispersion of the predictors through
x′i,T+1Ωηxi,T+1.

Remark 3 Forecasts based on individual estimates have large T optimality properties even if
predictors are weakly exogenous. In contrast, forecasts based on pooled
regressions require strict exogeneity.

Remark 4 Parameter heterogeneity could be particularly problematic if ηi = βi − E(βi)
and X′iXi are correlated. Individual estimates of βi are not affected by parameter
heterogeneity even if heterogeneity is correlated with xit. The same is not true
for the pooled estimates: plim

N→∞

(
β̃ − β

)
= Ψ−1b, where

Ψ = lim
N→∞

N−1
N∑

i=1

E
(
X′iXi

)
, b = lim

N→∞
N−1

N∑
i=1

E
(
X′iXiηi

)
.

For the pooled estimator to be unbiased, need that E
(
X′iXiηi

)
= 0.
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Assumptions and Theoretical Analysis Combination forecasts

Combination forecasts

Consider the combined forecast

y∗i,T+1 = ωiŷi,T+1 + (1− ωi)ỹi,T+1,

with forecast error

e∗i,T+1 = ωiêi,T+1 + (1− ωi)ẽi,T+1.

The optimal ω∗i , which minimizes the MSFE of the combined forecast is

ω∗i =
Var(ẽi,T+1)− Cov(êi,T+1, ẽi,T+1)

Var(êi,T+1) + Var(ẽi,T+1)− 2Cov(êi,T+1, ẽi,T+1)
.
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Assumptions and Theoretical Analysis Combination forecasts

Optimal combination weights

Proposition 2

For fixed T > T0, the optimal combination weights that minimize the MSFE
conditional on Xi and xi,T+1, Ωη and σ2

i are given by (for i = 1,2, . . . ,N)

ω∗i =
x′i,T+1Ωηxi,T+1

x′i,T+1

[
T−1σ2

i Q−1
iT + Ωη

]
xi,T+1

+ Op
(
N−1)
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Assumptions and Theoretical Analysis Combination forecasts

Bias-adjusted combination weights

We use the following bias-adjusted plug-in estimator for ω∗i

ω̃∗i =
x′i,T+1

[
Ω̂η − 1

NT

∑N
i=1 σ̂

2
i Q−1

iT

]
xi,T+1

x′i,T+1

[
1
T σ̂

2
i Q−1

iT + Ω̂η − 1
NT

∑N
i=1 σ̂

2
i Q−1

iT

]
xi,T+1

Weights are restricted to lie between zero and one
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Assumptions and Theoretical Analysis Forecast-based tests for pooling

Forecast-based tests for pooling

From the expressions for the MSFE of the individual and pooled forecasts

MSFE(ŷi,T+1)−MSFE(ỹi,T+1)

= T−1σ2
i x′i,T+1Q−1

iT xi,T+1 − x′i,T+1 Ωηxi,T+1 + Op
(
N−1

)
.
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Assumptions and Theoretical Analysis Forecast-based tests for pooling

New pre-test for pooling

Proposition 3

Suppose that ηi and εi are normally distributed, and ηi are cross-sectionally independent.
Then, under the null of equal forecast accuracy defined by

H0,PF : T−1σ2
i x′i,T+1Q−1

iT xi,T+1 = x′i,T+1Ωηxi,T+1, ∀i,

there exists a finite T0 such that for all T > T0 and as N →∞

PFNT =
1√
N

N∑
i=1

(
ω2

i,NT − 1
√

2

)
d→ N(0, 1),

where

ω2
i,NT =

T
[
x′i,T+1(β̂i −

¯̂
β)
]2

2σ2
i,NTx′i,T+1Q−1

iT xi,T+1
.
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Monte Carlo Design

Monte Carlo: Design

yi,t+1 = αi + ρiyit + γixit + κσiεi,t+1,

εi,t+1 ∼ iidN(0,1) , σ2
i ∼ iid

(
1 + χ2

1

)
/2

xit = µxi + ξit, µxi = (z2
i − 1)/

√
2, zi ∼ iidN (0,1) ,

ξit = ρxiξi,t−1 + σxi
(
1− ρ2

xi
)1/2

νit, νit ∼ iidN (0,1) ,

σ2
xi ∼ iid

(
1 + χ2

1

)
/2.

N = 500 and T = {20,50,100}.
Number of replications: R = 10,000.
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Monte Carlo Design

Monte Carlo (cont.)

Autocorrelations of xit: ρxi ∼ iid Uniform(0,0.95)

Coefficient of yi,t−1: ρi ∼ iid Uniform(0, ρ̄), where we vary ρ̄ to capture
different degrees of dynamic heterogeneity. The value of ρ̄ depends on the
value of pooled R2.

We consider cases where the regressors and the coefficients are correlated:

αi = φµxi + σηηi, and γi = 1 + θµxi + σζζi,

where ηi, ζi ∼ iidN(0,1).
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Monte Carlo Design

List of Panel Forecasting Methods

Individual estimation

Pooled estimation

Random effects estimator of Goldberger (1962)

Median group estimator (new)

Forecast combination with bias-unadjusted and bias-adjusted weights

Forecasts based on the pre-test (poolability test)
Forecasts based on the shrinkage estimators (Maddala et al. (1997)):

prior likelihood
Bayesian
empirical Bayes

Measures of Predictive Accuracy: Median of individual MSFEs
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Monte Carlo Results

Some Monte Carlo Results

Pooled estimates perform best:
under parameter homogeneity
when average R2 is low and T is relatively small, T = 20, even in the
presence of parameter heterogeneity.
in the absence of correlated heterogeneity

Forecast combination using Ω̂η is the most precise method more often
than any other methods, and is otherwise close to the best forecast. It is
also robust to correlation between parameters and regressors.

Pre-test forecasts, using the poolability test, consistently chooses best of
individual and pooled forecasts.

Shrinkage forecasts perform well under parameter homogeneity, but have
a mixed performance under parameter heterogeneity

Conclusion: No uniform ordering of the forecasting methods due to the
tradeoffs between estimation uncertainty and parameter heterogeneity
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Empirical Applications

Empirical Applications

Three empirical applications:
1 House price inflation across U.S. metropolitan areas
2 inflation of CPI sub-indices
3 stock returns on U.S. firms.

Contrasting in-sample fit:

individual stock returns: in-sample R2 < 0.01

CPI: in-sample R2 ≈ 0.2

house price inflation in-sample R2 ≈ 0.8
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Empirical Applications House prices

House price changes

Quarterly data on annual real house price inflation on 377 U.S.
Metropolitan Statistical Areas (MSAs), 1975Q1–2014Q4
Forecasts 1995Q1–2014Q4, rolling window of 60 observations.

yit = αi + ρiyi,t−1 + ρ∗i y∗i,t−1 + γRiȳ
(R)
i,t−1 + γCiȳt−1 + εit,

y∗it =

N∑
k=1,k 6=i

ωikyjt

ωik are given spatial weights

ȳ(R)it : average house price inflation in region R of MSA i
ȳt: country-wide average house price inflation.
SAR: γRi = γCi = 0; SARX: γRi 6= γCi 6= 0
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Empirical Applications House prices

Cross-sectional distribution of MSFE ratios for house
price changes
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Empirical Applications House prices

Forecasting results for U.S. House price changes

Median freq. beating freq. smallest freq. largest
Forecast MSFE benchmark MSFE MSFE
methods SAR SARX SAR SARX SAR SARX SAR SARX
Individual 2.536 2.569 – – 0.077 0.036 0.450 0.401

Pooled 0.971 0.989 0.660 0.539 0.030 0.011 0.119 0.202
RE 0.952 0.952 0.754 0.682 0.221 0.091 0.041 0.044
Median group 0.952 0.941 0.727 0.688 0.312 0.318 0.050 0.069
Optimal combination
Naive 0.980 0.975 0.876 0.934 0.019 0.047 0.000 0.000
Bias adj. 0.974 0.966 0.859 0.914 0.069 0.119 0.006 0.006
Pre-test
PF 0.984 0.974 0.608 0.691 0.102 0.185 0.213 0.091
Shrinkage
Prior lik. 0.970 0.963 0.715 0.622 0.047 0.088 0.105 0.149
Bayes. 0.960 0.948 0.749 0.699 0.058 0.047 0.006 0.003
Emp. Bayes. 0.956 0.954 0.754 0.652 0.064 0.058 0.011 0.036
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Empirical Applications CPI subindices

CPI inflation subindices

Inflation rates for 202 sub-indices of the US consumer price index (CPI)

Monthly frequency, Nov 1958–Dec 2018

Rolling estimation windows of 60 observations

We generate 590 forecasts for each series, with the first forecast computed
for November 1969
Two forecasting models:

AR: a purely autoregressive specification with lags 1, 2, and 12;
AR-PC: AR specification augmented with the lagged value of the first PC;
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Empirical Applications CPI subindices

Cross-sectional distribution of MSFE ratios for CPI
inflation
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Empirical Applications CPI subindices

Results for CPI inflation subindices

Median freq. beating freq. smallest freq. largest
Forecast MSFE benchmark MSFE MSFE
method AR AR-PC AR AR-PC AR AR-PC AR AR-PC
Individual 1.568 1.573 – – 0.059 0.054 0.064 0.054
Pooled 1.076 1.077 0.351 0.347 0.144 0.153 0.119 0.124
RE 1.153 1.155 0.213 0.218 0.015 0.015 0.579 0.564
Median group 1.038 1.038 0.337 0.342 0.030 0.030 0.124 0.119
Optimal combination
Naive 0.975 0.974 0.936 0.936 0.317 0.297 0.000 0.000
Bias adj. 0.973 0.971 0.678 0.673 0.074 0.074 0.000 0.000
Pre-test
PF 1.000 1.000 0.356 0.485 0.030 0.030 0.0.03 0.025
Shrinkage
Prior lik. 0.991 0.989 0.574 0.554 0.069 0.059 0.054 0.020
Bayes. 0.982 0.980 0.644 0.683 0.114 0.104 0.000 0.000
Emp. Bayes. 0.994 0.996 0.584 0.550 0.173 0.188 0.035 0.094
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Empirical Applications Stock returns

Stock returns

Panel of 23,121 individual US firm-level monthly stock returns

Sample from January 1977 through December 2017

Rolling estimation window of 120 observations; out-of-sample forecasts
from January 1987 through December 2017
given period, between 1,116 and 2,726 stocks are included

yi,t+1 = αi + βixit + εit+1,

xit is the 6-month momentum of stock i, measured using cumulative
returns up to the previous month
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Empirical Applications Stock returns

Cross-sectional distribution of OOS R2 for stock return
forecasts
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Empirical Applications Stock returns

Results for stock return forecasts

Forecast Median freq. beating freq. beating freq. smallest freq. largest
method R-squared prevail.mean individual MSFE MSFE
Individual -1.399 0.352 – 0.088 0.583
Prevailing mean – – 0.648 0.164 0.089
Pooled 0.232 0.609 0.648 0.106 0.018
RE -0.220 0.439 0.647 0.200 0.206
Median Group 0.302 0.623 0.648 0.151 0.011
Optimal combination
Naive −0.244 0.414 0.647 0.049 0.002
Bias adj. 0.184 0.577 0.648 0.117 0.026
Pre-test
PF 0.232 0.609 0.648 0.106 0.018
Shrinkage
Prior lik. 0.274 0.602 0.648 0.136 0.074
Bayes. 0.295 0.622 0.648 0.033 0.002
Emp. Bayes. 0.295 0.623 0.648 0.003 0.000
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Conclusions

Conclusion

Comprehensive examination of the out-of-sample predictive accuracy of a large set
of existing and novel panel data methods

Main findings:
1 Several approaches perform systematically better than individual forecasts: sizeable

gains from exploiting panel information
2 No single forecasting approach is uniformly dominant across applications. Yet,

combination and (Bayesian) shrinkage forecasts are more precise than the pooled and
individual forecasts

3 Methods differ in risk profiles: individual, pooled, random effect, and median group
methods do poorly in at least one application

Forecast combinations and shrinkage methods offer insurance against poor
performance. Forecast combinations, in particular, perform well across the board,
the performance of shrinkage methods tends to vary a bit more across applications
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