
Optimal Monetary Policy in HANK ∗

Danila Smirnov †

April 2022

Preliminary and incomplete

Abstract

In this project, I study optimal monetary policy in a New Keynesian model with het-

erogeneous households. I use the continuous-time formulation and the numerical techniques

from Kaplan et al. (2018) and expand the dynamic programming approach to the optimal

policy proposed by Dixit et al. (1994) and further developed by Nuño and Thomas (2016).

I show that occasionally binding borrowing constraints significantly change the way Ramsey

planner uses monetary policy relative to the economy without borrowing constraints. I find

that both in response to contractionary TFP shock and shock that reduces the desired firms’

markup the wage/dividends margin is no longer as important. Instead Ramsey planner finds

it optimal to reduce the real interest rate in order to relax the borrowing constraint at least

for some households. Relaxing the borrowing constraint by the means of monetary policy

becomes the primary driver of the optimal response to a given negative shock to the economy

regardless of the nature of the shock.
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Introduction

In this paper I study the optimal monetary policy in a New Keynesian model with heterogeneous

households that insure against idiosyncratic risk by holding tradable nominal bonds. In such a

setup in response to the unanticipated shocks, the Ramsey planner chooses a monetary policy

that is substantially different from the representative household case. Moreover, I show that the

presence of the occasionally binding borrowing limit substantially changes the optimal policy

as well. Specifically, the deciding force that substantially affects the behavior of the Ramsey

planner is the desire to relax the borrowing constraint for at least some of the households,

following the contractionary shock.

Presence of the constrained households was shown to have a significant impact on the propa-

gation of the shocks through the economy, for example in the papers by Algan and Ragot (2010)

andDebortoli et al. (2017). I contribute to this literature by emphasizing that this channel also

has a substantial effect on the optimal policy. In the model calibrated to the US economy this

margin proves to be more important than all of the other channels. Specifically when looking

at the optimal real interest rate in response to the negative TFP shock and negative shock

to desired markup, the behavior is opposite to the those in the the representative agent (RA)

case and substantially different with respect to the model with natural borrowing limit which is

not binding in equilibrium, as assumed in the paper by Bhandari et al. (2021). This difference

originates in the desire of the Ramsey planner to relax the borrowing constraint on some of the

agents and is achieved by lowering real interest rate, thus relieving the pressure on borrowers

and lowering the returns of lenders.

Heterogeneity in macro can be seen as the way to increase the relevance of the models,

making them capture some of the important margins in actual economies, that representative

agent models can’t. Naturally, when facing the model with heterogeneity one can ask whether

it significantly contributes to altering the behavior of the aggregates, and if so, through which

channels. At the same time, heterogeneity allows studying the redistributive impact of the

shocks in the economy. That is, between the two models win no heterogeneity and with it,

both of which deliver identical aggregate dynamics, the latter yields the insights into identifying

winners and losers in response to shocks, or from a change in the policy rule. Importantly

when thinking about optimal policy in such models, both effects are crucially important. First,

different propagation of the shocks due to heterogeneity can alter the way optimal policy is
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conducted, to achieve the desired goal. Second, redistributive motives can prove to be as much

important as governing the aggregates or even more so, which is the case of the model I study

in this paper, thus calling for the reassessment of the optimal policy altogether.

To tackle the optimal monetary policy problem I rely on the continuous-time formulation.

Combining together the analytical part of the solution with the method of first differences

allows me to substantially decrease the complexity of the problem and perform the numerical

calculations much faster. The advantages of this method were proven to be substantial, as

it allows to solve the model very fast without relying on local projections both in the steady

state as well as computing the impulse responses to unexpected transitory shocks. To solve the

optimal policy problem I use the optimal control in the dynamic programming setting approach

and calculus of variations. The main idea of the method is to use the Lagrangian formulation

of the problem in the infinite-horizon setting to find the optimal path for the control variables.

I show that the set of equations that one gets in this setting, mirrors the structure of the model

equations under a simple policy rule, which means that there is no substantial extra cost of

solving for the optimal policy as long as the model can be solved for any given policy.

Literature review

The New Keynesian model has been analyzed in many papers and books that constitute the

core of the results on the monetary policy in this setup, among them are Clarida et al. (1999),

Woodford (2003), Gaĺı (2015). The standard version is characterized by a representative agent,

which allows solving for the optimal policy results in closed form and is exceptionally good for

building intuition for the main forces acting in the monetary policy analysis.

The results though do rely on the assumption of a representative household, so everything

that happens in the economy can be seen as influencing the welfare of this single individual.

This unrealistic assumption was one of the motivations for the recent literature that asked the

same questions but in the model with heterogeneous agents. The main complication that was

restricting advancements in this field was the computational complexity of such models. In order

not to solve the models that are numerically heavy, as well as to retain the relative simplicity of

the results for analysis some authors have chosen to study the models with reduced heterogeneity.

Some of the examples include Debortoli et al. (2017), who study the New Keynesian model

with two agents. One agent is representing the households on the borrowing limit and another

agent represents households away from the borrowing constraint. This simplification allows for
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the calculation of the effects of the monetary policy on aggregates under limited heterogeneity.

Another approach was used in the papers by Bilbiie and Ragot (2017) and Challe et al. (2017)

where heterogeneity is restricted by limited history dependencies, which helps to simplify the

numerical solution process.

One of the new powerful methods involves solving the approximation of the model around

the equilibrium path as shown by Bhandari et al. (2021). The authors study the heterogeneous

agent model with nominal rigidities (HANK) with both monetary and fiscal policy. They find

that the Ramsey planner has a strong motive to increase the inflation and labor tax in the

short run to redistribute labor income. Higher inflation leads to lower dividend payments and

partially reduces the inequality caused by differential income from equity. Importantly though

this holds under assumption of no binding borrowing constraint (BC), or the exogenous BC,

which is the crucial restricting assumption, as I show in this paper.

A different approach is taken by McKay and Wolf (2022) where the idea is to capture

the incentive of the monetary authority to change the monetary policy in the presence of the

heterogeneous agents by finding the weight on the additional term in the quadratic welfare

function that captures the change in consumption dispersion. The advantage of this method is

in the relative computational simplicity of determining the change of the optimal policy in the

presence of heterogeneous agents.

The method that I use in this work makes use of the continuous-time formulation of the

New Keynesian model. This approach was developed in works by Kaplan and Violante (2014),

Kaplan et al. (2018) in this recent work authors build the HANK model with two assets to

study the effect of an exogenous monetary policy shock on the distribution. They find that in

the setting with liquid and illiquid assets the effect of monetary policy shock on the aggregate

outcomes that is explained by the indirect effects acting through the household distribution

outweighs the direct effect that dominates in the representative household model.

In this work I build on the method for finding an optimal policy in continuous time models

proposed by Dixit et al. (1994) and further developed by Nuño (2013) to calculate the optimal

monetary policy in the heterogeneous agents continuous-time model. This method relies on

deriving the Lagrangian associated with the optimization problem and calculating its partial

derivatives using the calculus of variations. This method was used in Nuño and Thomas (2016)

in the small open economy setting to derive the optimal policy. Though in the analyzed setting

there was no effect of the changing wealth distribution on aggregate variables, the method can
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be used in a more complicated setting as I will show in this work.

In the recent working paper by González et al. (2021), authors use the method in the setting

with the heterogeneous firms in the New Keynesian model and show how the optimal policy

problem can be solved using Dynare. The similar approach is taken by Dávila and Schaab (2022)

where authors analyze the optimal monetary policy in HANK setting, but the maximization of

the Lagrangian by the Ramsey planner is performed already on the discretised model equations.

In both papers the disadvantage of the optimization approach is in the inflexibility of the method.

If one is to use any other method for solving the model, other than the finite difference, it will

be impossible to apply the algorithm proposed in both papers, which is not a restriction when

using my approach.

In this paper I contribute to both branches of the literature. Specifically, from the theoretical

standpoint, I show that the presence of an occasionally binding borrowing constraint (with

the resulting endogenous share of constrained households) significantly changes the optimal

monetary policy. This naturally extends the work by Kaplan et al. (2018), and also highlights the

differences with the setup with an exogenous fraction of constrained households, as in Bhandari

et al. (2021). Moreover, I contribute to the growing literature on optimal policy in the continuous

time approach, by extending the method to the models with non-trivial binding constraints.

The rest of the paper is organized as follows: In the second section, I describe the model

setup, in the third section I show the Ramsey problem formulation and solution approach, in the

fourth section I show the results of the calibrated model and finally the fifth section concludes.

Model

In this section I introduce the model used in the subsequent analysis. It is a standard New Key-

nesian model with monopolistic competition on intermediate goods market with sticky prices.

The supply side of the economy, as well as the government block, are kept at a bare minimum

to keep the model as tractable as possible. The household block is the one that has most of

the complexity and one that crucially affects the way the optimal monetary policy is conducted.

Households make a decision on their consumption, labor supply, and investment into nominal

bonds, given the aggregate values in the economy as well as household-specific productivity εi,t

and bond holdings bi,t of this household, that are constrained by the binding borrowing limit b.

The government corrects the inefficiency, caused by imperfect competition, by subsidizing wages
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while keeping balanced budget by collecting the lump-sum tax. Below I describe the model in

more detail.

Supply side

The final good is produced by competitive firms that use the continuum of intermediate goods in

the production process. Each intermediate good is supplied by a single producer. Intermediate

producers have a unit mass and are indexed by j ∈ [0, 1]. Consequently, the same indexing

applies to intermediate goods as well. The production function has a CES structure with ϕt

determining the price elasticity of demand for the intermediate goods yj,t. The price elasticity

is fixed in the steady state but can change unexpectedly, with subsequent convergence back to

the initial level. This is a source of markup shock.

Yt =

(∫ 1

0
y

ϕt−1
ϕt

j,t dj

) ϕt
ϕt−1

(1)

Producers of the final good are competitive and take both the price Pt of the final good as well as

prices of intermediate goods pj,t as given. Thus they maximize the following expression, subject

to the production function above

max
{yj,t}j∈[0,1]

PtYt −
∫ 1

0
pj,tyj,tdj (2)

Notice that since the maximization problem is solved independently of past and future decisions

of the firms, there is no difference between this specification in continuous time or in the discreet

time formulation of the problem.

The outcome of the profit maximization, is a demand function

yj,t =

(
pj,t
Pt

)−ϕt
Yt (3)

Zero profit condition arises from the assumption of CES demand for intermediate goods and

perfect competition on the final good market. This condition together with the previous opti-

mization result yields:

Pt =

(∫ 1

0
p1−ϕtj,t dj

) 1
1−ϕt

(4)
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Having derived the demand function facing the intermediate producers, we can now turn to

their problem. These producers are monopolists with a linear production function that is the

same for all j ∈ [0, 1]. For simplicity, I assume that a given firm j in its’ production process uses

only labor nj,t as input and features linear production technology.

yj,t = θtnj,t (5)

The aggregate productivity level θt is common across all firms and is equal to 1 in the steady

state, whereas when shock arrives in the economy, it temporarily deviates from the steady state

level with gradual convergence back to the original level, more on this later.

Intermediate goods producers set prices optimally given the demand functions from the final

good producers, thus competing monopolistically. Thus the j-th firm maximization problem is

max
{ṗj,t}t

Et
∫ ∞

0
e
−

t∫
0

rbτdτ
[(

pjt
Pt

−mt

)(
pj,t
Pt

)−ϕt
Yt −

ψ

2

(
ṗj,t
pj,t

)2

Yt

]
dt (6)

Where mt =
Wt

θt
is the marginal cost of production, with Wt denoting the real wage at time

period t and −
t∫
0

rbτdτ is the discount factor1.

The Hamilton-Jacobi-Bellman equation for the above problem has the following form

rbtJj,t = max
ṗj,t

(
pj,t
Pt

−mt

)(
pj,t
Pt

)−ϕt
Yt −

ψ

2

(
ṗj,t
pj,t

)2

Yt + ṗj,t
∂Jt
∂p

+
∂Jt
∂t

(7)

Taking derivative with respect to inflation πj,t =
ṗj,t
pj,t

(maximization problem) and price pj,t

(using the Envelope theorem) and using the symmetry of the solutions of all the firms in the

equilibrium I get the PDE that describes the solution of the firms’ problem

πt =
Pt
ψYt

∂Jt
∂p

(8)

rbt
∂Jt
∂p

=− ϕt(1−mt)
Yt
Pt

+
Yt
Pt

+ πt
∂Jt
∂p

+ Ptπt
∂2Jt
∂p2

+
∂2Jt
∂p∂t

(9)

1Notice, that the firms’ discounting factor is equal to the return on the bonds market. This is due to the
assumption that the firms are owned by the mutual fund that all the households in the economy invest into.
This means that if the distribution of households who have shares in the mutual fund is not the same as the
distribution that participates in the bond market, the discount rate should be different. Despite of that I take
this discount factor as a simplifying assumption even in the case when dividends are not distributed equally to
all of the households.
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This implies Phillips curve that links inflation with the markup gap in the economy

(
rbt −

Ẏt
Yt

)
πt =

ϕt − 1

ψ

(
ϕt

ϕt − 1
mt − 1

)
+ π̇t (10)

Moreover, I assume that intermediate firms are owned by a fund that distributes profits equally

among all the households in the economy. This means that since both the intermediate firms

as well as households have unit masses, the dividends that go to household are exactly equal to

the firms’ aggregate profits

dt =

(
1− ψ

2
π2t

)
Yt −WtNt (11)

Finally, total output is equal to a representative firm output in the symmetric equilibrium also

because of the unit mass of the firms and because they are identical. This means as well, that

the labor demand of each firm is equal to the aggregate labor demand nj,t = Nt

Yt = yj,t = θtnj,t = θtNt (12)

Household side

There is a continuum of infinitely-lived households indexed by i ∈ [0, 1] that have a unit mass

and differ in their bond holdings, labor productivity and equity shares. All households have the

same discounting factor ρ. They maximize their expected utility over the infinite lifetime span

subject to the budget constraint, choosing the consumption path, labor supply path, and bond

investment path. Households have a borrowing constraint bi,t ≥ b < 0

Vi,t = max
{ci,t,li,t,ḃi,t}t

Et

+∞∫
0

e−ρt

(
c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ

)
dt (13)

s.t. ci,t + ḃi,t = λWtli,tεi,t + dtsi + Tt + rbtbi,t (14)

bi,t ≥ b (15)
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Where bi,t are the bond holdings by the household that are priced in nominal terms, thus their

value depreciates at the inflation rate2.

rbt = it − πt (16)

The significant assumption in my model is that the borrowing constraint is constant both across

households and time. This simplification helps me with finding a solution, but clearly constraints

the implications of the model. Importantly, if the borrowing constraint depends on the charac-

teristics of the household, such as labor income or capital holdings, the results can change. On

the other hand, as I argue later in the paper, the crucial factor is that there is a hard borrowing

constraint that is binding for some households. Regardless of the amount of borrowing where

this constraint starts to bind, the implication for the Ramsey planner is to relax this constraint

as much as possible, to allow households take advantage of the financial markets to smooth the

consumption path. This also implies that if there is a way for the monetary authority to effect

directly the constraint, this mechanism is going to play a significant importance as well. In this

paper the borrowing constraint is exogenous, but building the tractable model with endogenous

borrowing constraint can shed more light on implications for optimal monetary policy in HANK.

The idiosyncratic productivity level εi,t is the exponent of an Ornstein-Uhlenbeck process

ei,t that has zero mean with mean reversion parameter ρe and Wiener process dWe,i,t multiplied

by parameter for standard deviation of the shock σe

εi,t = exp{ei,t}; dei,t = −ρeei,tdt+ σedWe,i,t (17)

Households receive labor subsidy λ that cancels the inefficiency associated with monopolistic

competition and pay lump-sum transfer Tt to balance the government budget that finances the

labor subsidy. Finally, households receive dividends from firms that are distributed equally

among all households.

Share of equity holdings si that determine the dividend payments from firms are fixed and

exogenous. Share of households have zero shares of equity, thus not receiving any dividend.

Others have some positive shares that entitle them to more or less of the firm profit, depending

2In the rest of the paper I treat all the variables in real terms. This also means the effectively central bank
is controlling the real rate directly, which lets me to omit the step with the Fischer equation for simplicity of
exposition. This doesn’t mean though that the nominal pricing in the economy is not important, as it remains the
cornerstone of the model, causing indeterminacy and calling for the central bank policy as means of determining
the equilibrium.
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on the size of the share, but can’t trade them.

Distribution of the households over the space of bond holdings and productivity levels is

denoted by ft. This distribution hence is a two-dimensional object that in a steady state is

constant, due to the law of large numbers. Importantly, the dimension that is associated with

the evolution of the idiosyncratic shock is evolving exogenously, according to the law of motion

associated with the exponent of the Ornstein-Uhlenbeck process, whereas the evolution of the

bond holdings follows the process determined by the optimizing behavior of the households.

The Hamilton-Jacobi-Bellman equation for the household problem takes the following form

ρVi,t = max
ci,t,li,t

{
c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
+
(
λWtli,tεi,t + dtsi + Tt + rbtbi,t − ci,t

) ∂V
∂b

}
− (18)

− εi,tρeei,t
∂Vi,t
∂ε

+ εi,t
σ2e
2

∂2Vi,t
∂ε2

+
∂Vi,t
∂t

(19)

Where the first two terms represent instantaneous utility, third term governs the change of the

value function because of the change of the bond holdings, next two terms correspond to the

change associated with stochastic labor productivity process and finally last term is capturing

the changes associated with the changes of the aggregate variables.

Solving this maximization problem for the optimal value of consumption and labor and

combining it with the HJB equation I get the optimality conditions for the household problem

in the form of the partial differential equation, which is the standard step in continuous-time

literature3.

ci,t =

(
∂Vi,t
∂b

)− 1
ν

(20)

li,t =

(
λWtεi,t
φ

∂Vi,t
∂b

) 1
γ

(21)

ρVi,t =
c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
+Ai,tVi,t +

∂Vi,t
∂t

(22)

Where Ai,t is the infinitesimal generator of process Vi,t, that captures the changes in the value

function due to the evolution of the household-specific state variables εi,t and bi,t

Ai,tVi,t =
(
λWtli,tεi,t + dtsi + Tt + rbtbi,t − ci,t

) ∂V
∂b

− εi,tρeei,t
∂Vi,t
∂ε

+ εi,t
σ2e
2

∂2Vi,t
∂ε2

(23)

3See the paper by Achdou et al. (2021) for the extensive explanation of the solution method of consumption-
saving problem in continuous time.
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Fokker–Planck / Kolmogorov forward equation

The law of motion of the joint distribution of bond holdings and labor productivities can be

characterized by Fokker–Planck or Kolmogorov forward equation

∂fi,t
∂t

=− ∂

∂b

[(
λWtli,tεi,t + dtsi + Tt + rbtbi,t − ci,t

)
fi,t

]
+ (24)

+
∂

∂ε
[εi,tρeei,tfi,t] +

∂2

∂ε2

[
εi,t

σ2ε
2
fi,t

]
= A∗

i,tfi,t (25)

Notice that conceptually the evolution of the distribution should be tightly linked to the house-

hold problem. The saving decisions of the households change the distribution of bonds in the

economy. This means that knowing the saving decision at any point of the state space it is

possible to determine what is the corresponding stationary distribution of bonds.

Mathematically speaking, the law of motion of the household value function adjoins to the

law of motion of distribution. See Appendix for the analytical derivation of this fact in the setting

of my model. For the standard Aiyagari–Bewley–Huggett model see the paper by Achdou et al.

(2021).

Markets clearing

In addition to the supply and household side there is also the government, that only provides

the labor subsidy, as mentioned before. The subsidy λ to workers is such that it cancels out

the inefficiency created by the monopolistic competition of the intermediate goods producers.

Government runs the balanced budget and levies the lump-sum tax on the households to finance

the labor subsidy

λ =
ϕ

ϕ− 1
, Tt = ⟨(1− λ)Wtli,tεi,t, ft⟩

Where ⟨·, ·⟩ stands for summation over the distribution, see more detailed explanation in the

Appendix. There are no additional redistributions done by the government, apart from the one

described above.
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In equilibrium bond market clears to zero aggregate bond supply4.

⟨bi,t, fi,t⟩ = 0

The labor market clears with the wage Wt so that labor demand equals to effective labor supply

Yt
θt

= Nt = ⟨εi,tli,t, fi,t⟩

Dividends payed to the households are equal to the profits of the intermediate firms

dt = Yt −Wt ⟨li,tεi,t, fi,t⟩ −
ψ

2
π2t

Finally the last equation that determines the equilibrium is the goods market clearing condition

Ct = Yt −
ψ

2
π2t

Notice that there is one equation that is still missing, which is the one that defines the monetary

policy. Since the policy has to be optimal, it is determined by the optimality conditions of the

Ramsey planner that are discussed in the next section.

Ramsey problem

The problem for the optimal monetary policy is solved by the standard Lagrangian method. The

difficulty in this application is that all the objects with respect to which the derivatives have to

be taken are actually functions, not variables. Partially this is due to the fact that in continuous

time taking the derivative with respect to the control variable has to be done not period-by-

period as in discreet time approach, but rather on all of the paths simultaneously. This is hardly

a real complication because after using the method described below the analogy to the discreet

time method is straightforward and conceptually doesn’t differ at all. In Appendix, I include the

derivation of the Ramsey problem for the standard RANK model in continuous time, without

log-linearization both as a simpler example for the derivations, but also as a reference model

for the comparison of the results. Moreover, some of the objects are functions even within one

4⟨·, ·⟩ stands for the inner product of two functions. In this case it’s the aggregation of bond holdings for all
the households in the distribution. See a more extensive explanation of this notation in the ”Ramsey problem”
section.
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period. For example, the distribution is a two-dimensional object at every instant of time, which

means, that again, a different approach to taking derivatives has to be pursued.

The seminal paper by Nuño and Thomas (2016) proposed the method for obtaining the

Ramsey policy in continuous time with heterogeneous agents. Their method involves writing

the social planner problem in form of Lagrangian and taking the Gateaux derivatives with respect

to the state variables. In this paper, I slightly change the methodology by using Calculus of

Variations instead of Gateaux differentials. On the one hand, the method is very similar in its

essence, so the logic for the main results applies. On the other hand, using calculus of variations

is suited much better for analysis of the behavior of the problem at the boundary constraints.

Something that can be done with Gateaux differentials in the simplest cases, but as soon as

the conditions on the constraint are more complex, which is the case for the binding borrowing

constraint, it can’t be used conveniently.

Calculus of variations is widely used in other fields of economics as well, e.g. wide range of

continuous-time applications in finance can be found in books Malliavin and Thalmaier (2006),

Clarke (2013). But to the best of my knowledge, this is the first work to show how it can be ap-

plied in macro, where it is particularly useful in applications with nontrivial binding constraints.

I apply the method to solve for the Ramsey problem in the general equilibrium setting of

the HANK model described above and show how to perform the calculations to get the system

of differential equations that can be solved numerically and that define the optimal policy in

this model. This method proves to be very convenient, as the resulting system of differential

equations for the costates is not just linear, which is something to be expected for any Lagrangian

problem, but also has symmetry with respect to the original problem. See derivations and more

detailed intuitions in the Appendix.

The Ramsey problem is a maximization of the utilitarian value function subject to all of the

equations that define the competitive equilibrium

VG = max
f,V,c,l,W,Y,π,rb

∞∫
0

e−ρt

〈
c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
, fi,t

〉
dt (26)

s.t. {competitive equilibrium equations} (27)

Notation ⟨·, ·⟩ represents the inner product of two functions, defined on the common domain D.

In this case it is the space of productivity levels ε and bond holdings b. In case of the social
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planner instantaneous utility this means

〈
c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
, fi,t

〉
=

∫ ∞

b

∫ ∞

0

∫ ∞

0

(
c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ

)
fi,t dεi,tdbi,tdsi (28)

The full Ramsey problem has the following form

L[f,V, c, l,W, Y, π, rb, T, d] = (29)

=

∞∫
0

e−ρt

[〈
c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
, fi,t

〉
+

〈
ζi,t,A∗

i,tfi,t −
∂fi,t
∂t

〉
(30)

+

〈
ϱi,t,

c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
+Ai,tVi,t +

∂Vi,t
∂t

− ρVi,t

〉
(31)

+

〈
µi,t, c

−ν
i,t − ∂Vi,t

∂b

〉
+

〈
κi,t, l

γ
i,tc

ν
i,t −

λWtεi,t
φ

〉
(32)

+ ηb,t ⟨bi,t, fi,t⟩+ ηY,t (Yt − θt ⟨li,tεi,t, fi,t⟩) (33)

+ ηT,t

(
Tt − (1− λ)

Wt

θt
Yt

)
+ ηd,t

(
dt −

(
1− ψ

2
π2t −

Wt

θt

)
Yt

)
(34)

+ ηπ,t

(
ϕ− 1

ψ

(
ϕ

ϕ− 1

Wt

θt
− 1

)
+ π̇t −

(
rbt −

Ẏt
Yt

)
πt

)]
dt (35)

Where

Ai,tVi,t =ḃi,t
∂Vi,t
∂b

− ρεεi,tei,t
∂Vi,t
∂ε

+ εi,t
σ2ε
2

∂2Vi,t
∂ε2

(36)

A∗
i,tfi,t =− ∂

∂b
ḃi,tfi,t +

∂

∂ε
ρεεi,tei,tfi,t +

∂2

∂ε2
εi,t

σ2ε
2
fi,t (37)

ḃi,t =λWtli,tεi,t + rbtbi,t + Tt + dtsi − ci,t (38)

In Appendix, I show how to take the differentials with respect to control variables using calculus

of variations and how to rearrange the equations to get the equations for updating the solution

algorithm.

Solution algorithm

The solution algorithm aims to find the equilibrium response under the optimal monetary policy

to an unexpected transitory shock (MIT). The shocks that I study are negative TFP and shock

to demand price elasticity that lowers desired markup. After the arrival of the unexpected

shock, agents form rational expectations about the changes of the aggregate variables from that

moment onward. For households this is captured by the
∂V
∂t

which summarizes the changes of
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the households value due to the changes in the aggregate variables.

First, I conjecture some path for the aggregate variables that enter the household problem

in response to the shock at hand. Specifically, I fix the path for the real interest rate rbt
5. Given

this path, I can solve the household problem. Starting at time T , very distant from the shock

impact allows me to assume that the household value at this point coincides with the one in the

steady state, so I can solve for the value of VT , given the state variables at that point. Then,

using backward induction I solve for the path of Vt all the way back to the initial impact at t = 0.

Having solved for the household choices for the whole path, I can now use forward induction to

determine the corresponding path of the distribution. Specifically, starting at t = 0 and taking

distribution f0 to be the one from the steady state, I can use the Fokker–Planck / Kolmogorov

forward equation to solve for the path of the distribution up to time T . Now, having determined

the path of the distribution I can check if all the markets clear, and if they don’t, update the

corresponding prices and aggregate variables (notice that there is no update for the policy yet)

and start the procedure again.

Second, I find the update for the monetary policy. For this update I have to solve the

corresponding costate variables problem from the Lagrangian first-order conditions that have the

form of linear differential equations, so technically is a bit easier than the first step. Specifically,

I guess for the paths for the costate variables, in the same way, I have guessed for the path of

state variables. Then I start at the time period T and under the assumption that by this time

the steady state has been attained, I solve for the stationary value of the multipliers associated

with the first-order condition on the distribution. Then, following the analogy with the value

function, I use backward induction to solve backward for the path of this costate two-dimensional

object until the impact at t = 0. Then I take the costate associated with the value function

and take its values to be the same at the moment of impact as in the steady state. Notice, that

this object is a two-dimensional distribution as well. Also, the assumption that the starting

values are the values from the steady state has to do with the fact that I’m solving the problem

under Woodford’s timeless perspective. Specifically, if the Ramsey planner was able to ignore

the previous commitments as soon as the shock hits, the value for this costate should have been

taken to be zero. Now, following the analogy with the distribution, I solve forward for the values

of this costate into the future until time T . Then, using the rest of the first-order conditions, I

5As mentioned above, the real interest rate has to be thought of as the monetary policy instrument. This
allows me to omit the Fisher equation and think directly in terms of the real variables in the economy. At the
same time this doesn’t create indeterminacy, because the ”missing” equation is still there and one can determine
the nominal interest rate using Fisher equation, if needed.
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update the guess for the costate variables. Finally, as in every Lagrangian problem, there is an

extra equation that is associated with the policy function, that allows me to get an update on

the policy itself. Now I need to repeat the process for costate variables until the convergence

and use the final update on the policy function to change it and go to the first step again.

The solution is achieved when the residuals from the equilibrium and optimality conditions

are smaller than the predefined convergence criterion. Notice that the first and second steps

that respectively solve for the state and costate variables equilibria, do not have to be done

separately. As a matter of fact, the updates can be done simultaneously, which can give a faster

speed of convergence.

Calibration

To calibrate the model I use the parameters from the two papers that are closest to mine in

the application. Specifically, for the supply side as well as a household preference I take the

parameters from Kaplan et al. (2018) and for the labor income process and inequality I take the

moments from Bhandari et al. (2021). Final good producers have a price elasticity parameter

ϕ = 10 which implies the markups for the intermediate firms equal to around 10% and the

cost of price adjustment is ψ = 100. This means that the resulting slope of the Phillips curve

is ϕ/ψ = 0.1. Notice that in this setting the actual markup of the firms is not actually that

important. Specifically, it governs primarily the amount of profits and thus the relative size of

the dividends share in the incomes of the households. But since the dividends are distributed

equally, the smaller size of profit share actually helps to reduce the bias of the results that come

from this assumption.

Household utility function has the risk aversion ν = 1 and the inverse Frisch elasticity of

labor supply γ = 1 as well. The household discount factor is calibrated to match a yearly real

interest rate of 3%. The borrowing limit is calibrated to deliver 30% of constrained households

in steady state. The value of b for which this is achieved is approximately equal to three average

yearly labor incomes. Finally, to calibrate the two parameters for the labor productivity process

I match the variance of the yearly labor income change in one year (for the variance of the

stochastic component) and the variance of the natural logarithm of the labor earnings in the

cross-section (for the mean reversion parameter). All of the parameters and their values can be

seen in the table below6.

6I assume that the is no ZLB in this setup and solve the model under this assumption.
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Fixed Description Value

ν Risk aversion 1
1/γ Frisch elasticity of labor supply 1
ϕ Price elasticity of demand 10 (slope of the Phillips Curve
ψ Price adjustment cost 100 ϕ/ψ = 0.1)

Fitted Description Value Moment Value
ρ Discount rate 0.067 real return 3%
b Borrowing limit -3.54 % constrained 30%
ρe Mean reversion 0.1 var log(LI) 0.7
σe Volatility 0.32 var ∆(LI) 0.23

Table 1: Calibration

Results

Steady state

Solving the model first in the steady state and finding the optimal level of inflation for it reveals

that the optimal inflation is actually not significantly different from zero. The intuition for this

result is fairly simple. Since what happens in the steady state is perfectly anticipated by all of

the agents, the only reason for the inflation to be non-zero is to change the balance between

the way firms’ sales are distributed between dividends and wages. But as this redistribution

is anticipated by the households the main effect of this change will result in the more or less

demand of bonds to compensate for the changes in labor income and dividend composition with

changes in labor productivity. This means that by having non-zero inflation Ramsey planner has

to sacrifice some efficiency for potential redistribution that is not taking place since households

are able to effectively counteract it by changing the bond holdings in the equilibrium. In practice

for the calibrated model optimal steady state level of inflation is less than 0.1%.

The steady state is characterized by the distribution of bonds that have a unit mass of 0.3

at b and the rest of the distribution as shown in the Figure 1. The plots display the average

values for the given bond holdings, to reduce the dimensionality of plots. The 3D plots on the

space of bond holdings and labor productivity can be found in the Appendix.

As households are able to optimally choose the consumption and labor supply, the following

holds in the steady state. First, households with lower bond holdings are consuming less and

supplying more labor in terms of hours worked. At the same time, because of the endogenous

positive correlation of bond holdings and labor productivity, the effective labor supply measured

in efficiency units is increasing in bond holdings, despite the fact that the labor supply decreases.

Composition of household income components in the steady state play the crucial role in
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(a) Distribution of Bonds (b) Average Consumption

(c) Average Labor (d) Average Labor Income

Figure 1: Steady state

determining propagation of the monetary policy. Recent empirical evidence by Holm et al.

(2021), Andersen et al. (2020) and Flodén et al. (2021) shows that propagation of monetary

policy shocks is largely driven by the direct effect of changing interest rates on income, and not

by intertemporal shift of consumption. Explanation of this empirical fact relies on differential

exposure of households to interest rates. Some of them are borrowers and receive the negative

income shock when rates increase, some have positive net asset position and benefit from higher

rates. This dimension of heterogeneity of exposure to the interest rates is at the core of the

monetary policy transmission, as suggested by the empirical evidence. Since the key dimension

of heterogeneity in my model is the bond position, the same mechanism will certainly play a

significant role in my predictions as well. In order to have an understanding of similarities and

differences between my model and empirical evidence, I provide a comparison of behavior of
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the model and empirical facts in the steady state and later in response to the monetary policy

shock.

Starting with the steady state analysis, the most direct comparison to make is with Holm

et al. (2021) who use data from Norway to capture differential effects of monetary policy con-

ditional on liquidity holdings, which is exactly the dimension of heterogeneity in my model. In

Figure 2 I plot the two separate sources of income for the households in the model, conditional

on their bond holdings: financial income is the return on holding bonds and nonfinancial income

is everything else. I find that the importance of financial income increases with higher liquidity

and nonfinancial income share decreases, which is perfectly inline with the empirical evidence.

Figure 2: Cash flow shares

It is more difficult to directly compare my model with Andersen et al. (2020). The caveat is

that in the paper the dimension of heterogeneity is the disposable income of the household. Since

households with higher disposable income hold on average more debt, my model can’t be directly

compared, as I don’t have wealthy hand-to-mouth agents, that are driving this empirical result.

Moreover, since my model doesn’t have redistributive taxation, I have to perform aggregation

of income into financial and nonfinancial categories. Despite of these shortcomings, the values

in the model have similar behavior to their counterparts in the data. Specifically when looking

at Figure 3, I conclude that in the model, households with higher income have relatively lower

importance of nonfinancial income, which is inline with the data.

Finally, comparing with the empirical evidence from Flodén et al. (2021), I conclude that in

the same way, as it is documented in the paper based on the data from Sweden, the households

with higher debt to income ratio have higher debt expenditures shares. Empirically, the cause of

higher debt position of these households is the debt taken for the purchase of the house. Despite
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Figure 3: Cash flow shares

of the fact that my model doesn’t have housing, the primary implication of negative effect of

increasing interest rates on indebted households is captured by my model and plays the crucial

role in implications for the optimal monetary policy.

Dynamics

Before looking at the optimal monetary policy responses to TFP and markup shocks, I first

provide an analysis of responses to the monetary policy shocks under the simple rule policy. As

in the steady state analysis, I compare these responses to the evidence from the empirical data

and show what are the effects of changes in the interest rates on the households in the model.

Using the standard monetary policy shock is a natural way to see both the differential effect on

the households income as well as their saving and consumption decisions. The insights that can

be gathered from this exercise help in understanding economics behind the Ramsey policy later

on.

I look at response of the model to 1% contractionary monetary policy shock. As optimal

monetary policy can’t exist under the monetary policy shocks, I use simple policy rule it =

rt + 1.5πt + εt to close the model, where εt is a persistent monetary policy shock. Under this

simple rule, in Figure 4 I plot the change of the households income shares in response to the

contractionary monetary policy shock.

Contractionary monetary policy increases real interest rates. As a result of that financial

income share decreases for borrowers and increases for lenders. At the same time, the change

of the rest of the income components has the opposite effect. This implication of the model

qualitatively is inline with the empirical evidence from Holm et al. (2021).
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Figure 4: Cash flow shares change

Moreover, when looking at the changes in disposable income, consumption and investment

choices in Figure 5, the predictions of the model can be compared to the data as well. Disposable

income decreases for all households, but more so for the poor. In the model reduction of

consumption share is relatively the same, given different bond holdings. Disposable income

change is transmitted to savings decision, and doesn’t affect consumption as much as documented

empirically. But crucially, poorer households suffer more from this shock, which is true both in

the model and in the data.

Figure 5: Income and Consumption-Saving decision change

Comparison with empirical evidence from Andersen et al. (2020) can’t deliver same results.

The reason for this is that in the model there is no wealthy hand-to-mouth agents. Empirically

there is a high proportion of households with high disposable income and high debt that have

an increase of debt payments following the increase of real interest rates, which is documented

empirically. Since in the model there is only one asset, wealthy individuals have an increase of
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income from increased returns on bonds, following the increase of the real rates. This dimension

is at odds with the data, because of the simplifying assumption of having one asset in the

economy. The labor income response, on the other hand, is captured quite precisely and matches

the more significant reduction of labor income for lower income groups after contractionary

monetary policy shock (see Figure 6).

Figure 6: Cash flow shares change

Finally, comparing model responses with empirical evidence from Flodén et al. (2021), reveals

that households with higher exposure to interest rate shocks and higher debt have a more severe

decline in consumption (see Figure7).

Figure 7: Consumption change

Effects of increase of the real rates due to the monetary policy intervention indicate that

the model predicts a more detrimental effect on the borrowers than lenders. This means, that

for the given shock that increases inequality the monetary authority should implement looser

policy, compared to the SIT that is optimal in representative agent NK model. In what follows
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I analyze the optimal Ramsey stabilization policy, that was calculated numerically using the

procedure described in previous sections.

As discussed above, Ramsey policy is under the Woodford’s timeless perspective. This means

that the optimal policy that I get is an optimal stabilization policy. Target for such policy is

to minimize deviations from the steady state, both in terms of aggregate variables as well as

individual outcomes. This implies that for the shock that increases inequality, planner will aim

to reduce inequality to initial levels, but the opposite also holds. This is one of the shortcomings

of the method that comes from the fact that optimal monetary policy is time inconsistent in

this setting due to inequality that is present in the steady state, and can be affected by the

unexpected monetary policy intervention.

In this paper I take the approach of Woodford’s timeless perspective, but the alternatively

one can introduce the redistribution scheme that completely eliminates the time inconsistency

and analyze the unconstrained Ramsey policy in response to shocks under such redistribution

scheme. Arguably, the method that I’m using gives an advantage of studying implications for

the model that has reasonable inequality in the steady state and allows the monetary policy to

influence the inequality level. The disadvantage is that for the shocks that reduce inequality,

optimal policy will aim for maintaining the initial level of inequality, hence taking action to

increase it, after the impact of the shock. Taking this into account, for both TFP and markup

shocks I choose the sign of the shock such that the overall effect increases inequality under the

SIT policy and allows to illustrate the mechanisms at play for the reduction of inequality that

the Ramsey planner chooses. At the same time, it is true that for the opposite shocks the

optimal stabilization policy will imply the symmetrical and opposite response.

I first analyze the optimal responses to the TFP shock and perform the comparison with

the RANK model. Specifically what I find is that in response to contractionary TFP shock the

optimal RANK model policy, of course, results in zero inflation. Very much different from that,

optimal policy in HANK model instructs to respond to the shock with positive inflation and

then reduce inflation to negative values before returning to the steady state level. Notice, that

despite the fact that inflation is negative for some period of time, the new nominal price level

after the shock has passed is going to be different from the initial steady state level.

The reason behind this response can potentially have two explanations: either strict inflation

targeting (SIT) policy in HANK fails to achieve the same behavior of the aggregates, and

a different policy is needed to sustain the same optimal response, or the notion of optimal
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response is different. The different target for the optimal response can be explained by the new

redistributive motive, that calls for a change in the SIT policy, that achieves zero output gap.

When comparing responses of RANK model and HANK model with SIT to the same TFP shock

in Figure 8, it is clear, that the effect of the same policy is almost identical in two models. Since

the optimal policy in HANK is substantially different from SIT, and calls for non-zero response

of inflation, it is clear, that having heterogeneous agents in the economy introduces a new source

of inefficiency that has to be addressed by the optimal monetary policy as well.

Figure 8: Response to the TFP shock. HANK vs RANK

Specifically when looking at the result of the policy, the crucial difference between RANK and

HANK optimal responses is in the real interest rate responses. HANK model has the real

interest rate go down, in contrast with the upward movement in RANK. The reason for this

is to create redistribution towards the less wealthy individuals, and more specifically towards

the constrained agents. The result of such redistribution can be seen in the fact that under

the optimal policy in HANK the fraction of constrained agents is actually falling as opposed to

implementing the strict inflation targeting in HANK.

To have a better understanding of the redistributional effect of the optimal monetary policy,

I look at the heterogeneous response of household disposable income after the shock hits the

economy. In Figure 9 I show the baseline redistribution in HANK model under SIT. Comparing

disposable income components immediately after shock with the steady state values, predictably

reveals that increase of the real interest rate creates redistribution from poor to rich and re-

duction of wages creates redistribution in the opposite direction. Importantly, redistribution
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created by real interest rate dominates and total redistributive effect favors the rich.

Figure 9: Disposable income and consumption-saving policy response under SIT

Now having the baseline in the form of SIT policy, I compare it to the redistribution achieved by

optimal policy. Specifically, Figure 10 shows the redistribution under Ramsey policy and Figure

11 compares the disposable income of the households immediately after the TFP shock under

the optimal policy with the disposable income under SIT.

Figure 10: Disposable income and consumption-saving policy response under Ramsey

The graph on the left shows that the aggregate disposable income is redistributed more towards

the households with higher debt which is achieved by implementing lower real interest rate.

Notice that in the specification with the lump-sum distribution of dividends, the higher wages

and lower dividends are working in favor of wealthy individuals, which is the opposite effect from

what the Ramsey planner wants to achieve. This allows me to conclude that under any other

distribution rule that implies a positive correlation between dividends and bond holdings, this

Page 25



Figure 11: Disposable income and consumption-saving differential response (Ramsey - SIT)

negative effect is going to be smaller, or may even become positive, as in the case of Bhandari

et al. (2021). On the right-hand side, I show how the change in disposable income translates to

the changes in consumption-saving decision. Inline with the logic discussed above when looking

at pure monetary policy shocks, the lower real interest rate under the Ramsey policy creates

redistribution towards poorer individuals which translates into their higher consumption and

higher investment.

At the same time one can try to understand how much of this effect is present in the models

where the fraction of the constrained households is fixed, as in TANK models, or is zero, as

in the HANK model with the natural borrowing constraint (NB HANK), as in Bhandari et al.

(2021). Specifically, in the TANK model, since both agents have the same labor productivity

but different bond holdings (positive for unconstrained and negative for constrained), the effect

on income through opposite exposure to interest rates (Figure 12) can be achieved as well.

Borrower pays interest on debt and lender receives the return. But since there is no incentive

for Ramsey planner to affect bond holdings of the individuals, since they are fixed, the inflation

does not differ much from the RANK optimal policy.

When comparing with the HANK model with the natural borrowing limit (NB HANK), the

effect is much more pronounced (Figure 13), but still lacks in magnitude, because despite of the

fact that there is an effect on the households’ bond holdings, there is no incentive as strong as

relieving some agents from the borrowing constraint. This is why the real interest rate doesn’t

show as much of a decline, since all the changes of the disposable income that households

experience, they can compensate by borrowing or saving.

Comparison of these three cases illustrates that having a fixed share of constrained agents or
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Figure 12: Response to the TFP shock. HANK vs TANK

Figure 13: Response to the TFP shock. HANK vs NB HANK

heterogeneous agents with natural borrowing constraint does not provide the same incentives for

the Ramsey planner to reduce the real interest rate as HANK model with occasionally binding

borrowing constraint. The reason for this is that in the case of TANK model reduction of real

interest rates does reduce the pressure on the constrained share of households, but they can’t

react in the same way, by switching to unconstrained. As for the HANK model with natural

borrowing limit, despite of the fact that effect of changing the real rates on financial income is

strong, households are able to fully compensate for this effect by altering their savings decisions,

so effectively they don’t benefit from the loose monetary policy as much.

The same logic as I have just described for the case of the TFP shock also holds for the
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markup shock (Figure 14). Specifically, I study the response to a shock that temporarily in-

creases the price elasticity of the demand for the intermediate goods by 1, thus reducing the

desired markups by approximately 1%.

Figure 14: Response to the Markup shock. HANK vs RANK

In this case the redistributional motive has the same logic of relaxing the binding constraint

for some of the households on it. The mechanism is similar to the response to the TFP shock.

When comparing the difference in responses under optimal policy to SIT policy in Figure the

mechanism of the optimal policy is again, to create relative redistribution of disposable income

towards poorer households through raising real interest rates, which leads to higher consump-

tion.

Figure 15: Disposable income and consumption-saving differential response (Ramsey - SIT)

Finally, comparing this result to the optimal policy in HANK with natural borrowing constraint
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and RANK in Figure 16, reveals that incentive for reducing the real interest rate is strongest

in the case of occasionally binding borrowing constraint, for the same reason of reducing the

fraction of constrained households.

Figure 16: Response to the Markup shock. HANK vs HANK NB vs RANK

Conclusion

In this paper I study the optimal monetary policy in the HANK model with the occasionally

binding borrowing constraints, when fraction of credit constrained households is endogenous.

The solution to this problem makes a two-fold contribution to the literature. I extend the

methods used in continuous-time optimal policy models to the application with the non-trivial

binding constraint, which extends the set of models the method can be used in. Moreover, I use

a different solution method that is different from the alternative approach that relies on Dynare,

used in the working paper by González et al. (2021).

Using this extension I take the case from Debortoli et al. (2017), where authors argue that the

presence of credit constrained agents was proved to be a crucial part in the understanding of the

model, but do not have the optimal policy analysis. In this paper, I show that indeed, considering

the HANK model with the endogenous fraction of constrained individuals significantly changes

the optimal Ramsey policy with respect to the RANK model, which is something Bhandari et al.

(2021) have already shown, but also with respect to their paper.

I conclude that the presence of an endogenous fraction of constrained households in the model

introduces an important margin for the optimal monetary policy to consider. Specifically, the

Ramsey planner optimally decides to relax the constraint for as many households as possible

in response to the contractionary shocks to allow them to smooth their consumption. When
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looking at the model that is calibrated to US data, this channel proves to be most important

channel, confirming the idea that the optimal policy should first target the biggest source of

inefficiency in the model, which in this case is the borrowing constraint.
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Appendix

Steady state plots

(a) Distribution (b) Average Consumption

(c) Average Labor (d) Average Labor Income

Figure 17: Steady state
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Household law of motion adjoins to KF

In the appendix I will drop the time and household subscripts for the values. Though in some

cases no subscripts means that the object is a function rather than a value of a function. The

exact use will be clear each time and this simplification is done in order to shorten the expressions.

For the two given functions g, h the proof is the following

⟨g,A∗h⟩ =
∫
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∫
ε

ε̇h
∂

∂ε
g dεdbds−

∫
s

∫
b

[gε̇h|∞0 ] dbds

(42)

+

∫
s

∫
b

∫
ε

σ2ε
2
h
∂2

∂ε2
g dεdbds+

∫
s

∫
b

[
g
∂

∂ε

σ2ε
2
h

∣∣∣∣∞
0

]
dbds−

∫
s

∫
b

[
σ2ε
2
h
∂

∂ε
g

∣∣∣∣∞
0

]
dbds = (43)

= ⟨Ag, h⟩ −
∫
s

∫
ε

[
gḃh
∣∣∣∞
b

]
dεds−

∫
s

∫
b

[gε̇h|∞0 ] dbds+

∫
s

∫
b

[
g
∂

∂ε

σ2ε
2
h

∣∣∣∣∞
0

]
dbds−

∫
s

∫
b

[
σ2ε
2
h
∂

∂ε
g

∣∣∣∣∞
0

]
dbds

(44)

Notice that when one of the functions is a distribution of the households, it must be that it is

equal to zero on the limits of the domain. This implies that the only non-zero boundary integral

is
∫
lim
ε
gḃh
∣∣∣
b=b

dε This derivation together with the constraint on the density function on the

limits of the domain is going to be crucially important for the derivation of the optimal policy.
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Ramsey problem in RANK

This section shows how to solve the RANK optimal MP Ramsey problem using Calculus of

Variations.

The Ramsey problem has the following form:

L[c, l,W, Y, π, rb] = (45)

=

∞∫
0

e−ρt

[
Zt

(
c1−νt

1− ν
− φ

l1+γt

1 + γ

)
+ ϱt

(
rbt − ρ+

Żt
Zt

− ν
ċt
ct

)
+ µi,t

(
lγt c

ν
t −

λWt

φ

)
+ (46)

+ ηY,t (Yt − θtlt) + ηT,t

(
ct −

(
1− ψ

2
π2t

)
Yt

)
+ (47)

+ ηπ,t

(
ϕt − 1

ψ

(
ϕt

ϕt − 1

Wt

θt
− 1

)
+ π̇t −

(
rbt −

Ẏt
Yt

)
πt

)]
dt (48)

Control over consumption

According to Calculus of Variations, I start with taking the first variation wrt the control

function at hand. This implies taking the variation of the function and separately the variation

of the variation of the derivative of this function. Notice that here I can take all the variations

separately, as they do not interact between each other and the strong forms can be derived

separately for each of the controls. This will not be the case in the HANK problem.

Weak form:

δL
δc

=

∞∫
0

e−ρt
[
Ztc

−ν
t vc,t + ν

ϱtċt
c2t

vc,t − νϱt
v̇c,t
ct

+ νµtl
γ
t c
ν−1
t vc,t + ηT,tvc,t

]
dt (49)

To proceed further, I have to isolate the all the variations in their initial form without

derivatives.

Rearranging the term with v̇c,t:

∞∫
0

e−ρt
[
−νϱt

v̇c,t
ct

]
dt = −e−ρtνϱt

vc,t
ct

∣∣∣∞
0

+

∞∫
0

e−ρt
[
ν
ϱ̇t
ct

− νϱt
ċt
c2t

− ρν
ϱt
ct

]
vc,tdt (50)

Finally weak form is:

δL
δc

=

∞∫
0

e−ρt
[
Ztc

−ν
t + ν

ϱ̇t
ct

− ρν
ϱt
ct

+ νµtl
γ
t c
ν−1
t + ηT,t

]
vc,tdt− e−ρtνϱt

vc,t
ct

∣∣∣∞
0

= 0 (51)
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Now using the standard CV approach to allow for any admissible variation, we can conclude

that at any point the term that multiplies the variation has to be zero. Thus the strong form:



ρϱt = ϱ̇t + Zt
c1−νt

ν
+ µtl

γ
t c
ν
t +

ηT,tct
ν

lim
t→∞

e−ρtν
ϱt
ct

= 0

ϱt

∣∣∣
t=0

= 0

(52)

Control over labor

Weak form:

δL
δl

=

∞∫
0

e−ρt
[
−Ztφlγt vl,t + γµtl

γ−1
t cνt vl,t − ηY,tθtvl,t

]
dt = 0 (53)

Strong form:

−Ztφlγt + γµtl
γ−1
t cνt − ηY,tθt = 0 (54)

Control over wage

Weak form:

δL
δW

=

∞∫
0

e−ρt
[
−µt

λ

φ
vW,t + ηπ,t

ϕt
ψθt

vW,t

]
dt = 0 (55)

Strong form:

−µt
λ

φ
+ ηπ,t

ϕt
ψθt

= 0 (56)

Control over return

Weak form:

δL
δrb

=

∞∫
0

e−ρt
[
ϱtvrb,t − ηππtvrb,t

]
dt = 0 (57)
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Strong form:

ϱt = ηππt (58)

Control over output

Weak form:

δL
δY

=

∞∫
0

e−ρt

[
−ηT,t

(
1− ψ

2
π2t

)
vY,t + ηY,tvY,t + ηπ,tπt

v̇Y,t
Yt

− ηπ,tπt
Ẏt
Y 2
t

vY,t

]
dt (59)

In the same way as in the control over the consumption, to proceed further, I have to isolate

all the variations in their initial form without derivatives.

Rearranging the term with v̇Y,t:

∞∫
0

e−ρt
[
ηπ,tπt

v̇Y,t
Yt

]
dt = e−ρtηπ,tπt

vY,t
Yt

∣∣∣∞
0

−
∞∫
0

e−ρt

[
∂
∂t(ηπ,tπt)

Yt
− ηπ,tπtẎt

Y 2
t

− ρ
ηπ,tπt
Yt

]
vY,tdt

(60)

This implies the weak form to be:

δL
δY

=

∞∫
0

e−ρt

[
−ηT,t

(
1− ψ

2
π2t

)
+ ηY,t −

∂
∂t(ηπ,tπt)

Yt
+ ρ

ηπ,tπt
Yt

]
vY,tdt+ e−ρtηπ,tπt

vY,t
Yt

∣∣∣∞
0

= 0

(61)

Strong form:



ρηπ,tπt =
∂
∂t(ηπ,tπt) + ηT,t

(
1− ψ

2 π
2
t

)
Yt − ηY,tYt

lim
t→∞

e−ρt
ηπ,tπt
Yt

= 0

ηπ,tπt

∣∣∣
t=0

= 0

(62)

Control over inflation

Weak form:

δL
δπ

=

∞∫
0

e−ρt

[
−ηT,tψπtYtvπ,t − ηπ,t

(
rbt −

Ẏt
Yt

− ρ

)
− η̇π,tvπ,t

]
dt+ e−ρtηπ,tvπ,t

∣∣∣∞
0

= 0 (63)

Page 37



Strong form:



η̇π,t =

(
ρ− rbt +

Ẏt
Yt

)
ηπ,t + ηT,tψπtYt

lim
t→∞

e−ρtηπ,t = 0

ηπ,t

∣∣∣
t=0

= 0

(64)

Optimal MP policy

Finally all conditions can be brought together in one system:



ρϱt = ϱ̇t + Zt
c1−νt

ν
+ µtl

γ
t c
ν
t +

ηT,tct
ν

lim
t→∞

e−ρtϱt = 0

ϱt

∣∣∣
t=0

= 0

−Ztφlγt + γµtl
γ−1
t cνt − ηY,tθt = 0

−µt λφ + ηπ,t
ϕt
ψθt

= 0

ϱt = ηππt

ρηπ,tπt =
∂
∂t(ηπ,tπt) + ηT,t

(
1− ψ

2 π
2
t

)
Yt − ηY,tYt

lim
t→∞

e−ρt
ηπ,tπt
Yt

= 0

ηπ,tπt

∣∣∣
t=0

= 0

η̇π,t =

(
ρ− rbt +

Ẏt
Yt

)
ηπ,t + ηT,tψπtYt

lim
t→∞

e−ρtηπ,t = 0

ηπ,t

∣∣∣
t=0

= 0

(65)

Combining differential equation for output control, inflation control and PC gives

ηY,t = ηT,t

(
1 +

ψ

2
π2t

)
− ϕt − 1

ψ

(
ϕt

ϕt − 1

Wt

θt
− 1

)
1

Yt
ηπ,t (66)

And combining consumption control with output control and real return control

Zt
c1−νt

ν
+ µtl

γ
t c
ν
t +

ηT,tct
ν

= ηT,t

(
1− ψ

2
π2t

)
Yt − ηY,tYt (67)
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So the Optimal MP problem becomes:



Zt
c1−νt

ν
+ µtl

γ
t c
ν
t +

ηT,tct
ν

= ηT,t

(
1− ψ

2 π
2
t

)
Yt − ηY,tYt

−Ztφlγt + γµtl
γ−1
t cνt − ηY,tθt = 0

−µt
λ

φ
+ ηπ,t

ϕt
ψθt

= 0

ηY,t = ηT,t

(
1 +

ψ

2
π2t

)
− ϕt − 1

ψ

(
ϕt

ϕt − 1

Wt

θt
− 1

)
1

Yt
ηπ,t

η̇π,t =

(
ρ− rbt +

Ẏt
Yt

)
ηπ,t + ηT,tψπtYt

lim
t→∞

e−ρtηπ,t = 0

ηπ,t

∣∣∣
t=0

= 0

(68)

Rearranging the first three equations:



µt =
Ztφlt
γcνt

+ ηY,t
θt

γlγ−1
t cνt

ηπ,t = µt
λψθt
ϕtφ

ηT,t =
Zt

c1−ν
t
ν + µtl

γ
t c
ν
t + ηY,tYt(

1− 1
ν

) (
1− ψ

2 π
2
t

)
Yt

ηY,t = ηT,t

(
1 +

ψ

2
π2t

)
− ηπ,t

1

Yt

ϕt − 1

ψ

(
ϕt

ϕt − 1

Wt

θt
− 1

)
η̇π,t =

(
ρ− rbt +

Ẏt
Yt

)
ηπ,t + ηT,tψπtYt

lim
t→∞

e−ρtηπ,t = 0

ηπ,t

∣∣∣
t=0

= 0

(69)
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Ramsey problem in HANK

This section provides comprehensive scratch notes for the Ramsey problem solution using Cal-

culus of Variations.

First, let’s write the problem of the Ramsey planner:

L[f,V, c, l,W, Y, π, rb, T, d] = (70)

=

∞∫
0

e−ρt

[〈
c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
, fi,t

〉
+

〈
ζi,t,A∗

i,tfi,t −
∂fi,t
∂t

〉
(71)

+

〈
ϱi,t,

c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
+Ai,tVi,t +

∂Vi,t
∂t

− ρVi,t

〉
(72)

+

〈
µi,t, c

−ν
i,t − ∂Vi,t

∂b

〉
+

〈
κi,t, l

γ
i,tc

ν
i,t −

λWtεi,t
φ

〉
(73)

+ ηb,t ⟨bi,t, fi,t⟩+ ηY,t (Yt − θt ⟨li,tεi,t, fi,t⟩) (74)

+ ηT,t

(
Tt − (1− λ)

Wt

θt
Yt

)
+ ηd,t

(
dt −

(
1− ψ

2
π2t −

Wt

θt

)
Yt

)
(75)

+ ηπ,t

(
ϕ− 1

ψ

(
ϕ

ϕ− 1

Wt

θt
− 1

)
+ π̇t −

(
rbt −

Ẏt
Yt

)
πt

)]
dt (76)

Where

Ai,tVi,t =ḃi,t
∂Vi,t
∂b

+ ρεεi,t(ē− ei,t)
∂Vi,t
∂ε

+ εi,t
σ2ε
2

∂2Vi,t
∂ε2

(77)

A∗
i,tfi,t =− ∂

∂b
ḃi,tfi,t −

∂

∂ε
ρεεi,t(ē− ei,t)fi,t +

∂2

∂ε2
εi,t

σ2ε
2
fi,t (78)

ḃi,t =λWtli,tεi,t + rbtbi,t + Tt + dtsi − ci,t (79)

And for E ,B,S defined as sets such that ε ∈ E , b ∈ B, s ∈ S and ∂E , ∂B, ∂S defined as boundaries

of sets E ,B,S.

⟨·, ·⟩ ≡
∫
S

∫
E

∫
B

· · dbdεds (80)

Using calculus of variations I will take the functional derivatives of L wrt all of the con-

trol functions. Notice that the key idea is to treat derivatives of the control functions in the

Lagrangean as functions themselves.

One important aspect is that the variations should be taken all together, and not separately.

This matters for the treatment of the boundary conditions. For the readability, I will write
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the variations one by one, but highlight the place in the derivation where I use the fact that

variations are taken together to treat the boundary constraint on the bonds.

Control over distribution

Weak form:

δL
δf

=

∞∫
0

e−ρt

[〈
c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
, vi,t

〉
+

〈
ζi,t,A∗

i,tvi,t −
∂vi,t
∂t

〉
(81)

+ ηb,t ⟨bi,t, vi,t⟩+ ηY,t (−θt ⟨li,tεi,t, vi,t⟩)

]
dt = 0 (82)

Now to move to the strong form some rearrangement should be done to the differential part

of the weak form

∞∫
0

e−ρt
[〈
ζi,t,A∗

i,tvi,t −
∂vi,t
∂t

〉]
dt = (83)

∞∫
0

e−ρt

∫
S

∫
E

∫
B

ζi,t

(
A∗
i,tvi,t −

∂vi,t
∂t

)
dbdεds

 dt = (84)

∞∫
0

e−ρt

∫
S

∫
E

∫
B

ζi,t

(
− ∂

∂b
ḃi,tvi,t −

∂

∂ε
ρεεi,t(ē− ei,t)vi,t +

∂2

∂ε2
εi,t

σ2ε
2
vi,t −

∂vi,t
∂t

)
dbdεds

 dt
(85)

Treating all four parts of the integral separately:

First:

−
∞∫
0

e−ρt

∫
S

∫
E

∫
B

ζi,t

(
∂

∂b
ḃi,tvi,t

)
dbdεds

 dt = (86)

−
∞∫
0

e−ρt
∫
S

∫
E

(ζi,tḃi,tvi,t)
∣∣∣∣∣
∂B

−
∫
B

ḃi,tvi,t
∂ζi,t
∂b

db

 dεdsdt (87)

Second:

−
∞∫
0

e−ρt

∫
S

∫
E

∫
B

ζi,t

(
∂

∂ε
ρεεi,t(ē− ei,t)vi,t

)
dbdεds

 dt = (88)

−
∞∫
0

e−ρt
∫
S

∫
B

(ζi,tρεεi,t(ē− ei,t)vi,t)

∣∣∣∣∣
∂E

−
∫
E

ρεεi,t(ē− ei,t)vi,t
∂ζi,t
∂ε

dε

 dbdsdt (89)
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Third:

∞∫
0

e−ρt

∫
S

∫
E

∫
B

ζi,t

(
∂2

∂ε2
εi,t

σ2ε
2
vi,t

)
dbdεds

 dt = (90)

∞∫
0

e−ρt
∫
S

∫
B

ζi,t( ∂

∂ε
εi,t

σ2ε
2
vi,t

) ∣∣∣∣∣
∂E

−
∫
E

∂ζi,t
∂ε

(
∂

∂ε
εi,t

σ2ε
2
vi,t

)
dε

 dbdsdt = (91)

∞∫
0

e−ρt
∫
S

∫
B

ζi,t( ∂

∂ε
εi,t

σ2ε
2
vi,t

) ∣∣∣∣∣
∂E

−
(
∂ζi,t
∂ε

εi,t
σ2ε
2
vi,t

) ∣∣∣∣∣
∂E

+

∫
E

εi,t
σ2ε
2
vi,t

∂2ζi,t
∂ε2

dε

 dbdsdt
(92)

Fourth:

−
∞∫
0

e−ρt

∫
S

∫
E

∫
B

ζi,t

(
∂vi,t
∂t

)
dbdεds

 dt = −
∫
S

∫
E

∫
B

 ∞∫
0

e−ρtζi,t
∂vi,t
∂t

dt

 dbdεds = (93)

−
∫
S

∫
E

∫
B

e−ρtζi,tvi,t
∣∣∣∣∣
∞

0

−
∞∫
0

vi,t
∂

∂t
e−ρtζi,tdt

 dbdεds = (94)

−
∫
S

∫
E

∫
B

e−ρtζi,tvi,t
∣∣∣∣∣
∞

0

−
∞∫
0

vi,te
−ρt
(
∂ζi,t
∂t

− ρζi,t

)
dt

 dbdεds (95)

Finally, notice that the boundary constraint on fi,t implies that it has to be equal to zero on

any boundary except b = b for values of ḃ = 0, as well as
∂fi,t
∂ε

= 0 for f ∈ ∂E . This implies that

all the boundaries

∣∣∣∣∣
∂B

and

∣∣∣∣∣
∂E

actually cancel out. Moreover, since distribution is fixed at t = 0,

the only boundary condition that is left is the one at t→ ∞. Then the term can be written as

∞∫
0

e−ρt
[〈
ζi,t,A∗

i,tvi,t −
∂vi,t
∂t

〉]
dt = (96)

∞∫
0

e−ρt
[〈

Ai,tζi,t +
∂ζi,t
∂t

− ρζi,t, vi,t

〉]
dt− lim

t→∞

∫
S

∫
E

∫
B

e−ρtζi,tvi,tdbdεds (97)

Strong form:

c1−νi,t

1− ν
− φ

l1+γi,t

1 + γ
+Ai,tζi,t +

∂ζi,t
∂t

− ρζi,t + ηb,tbi,t − ηY,tθtli,tεi,t = 0 (98)

lim
t→∞

e−ρtζi,t = 0 (99)
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Control over household value

Weak form:

δL
δV

=

∞∫
0

e−ρt
[〈
ϱi,t,Ai,tvi,t +

∂vi,t
∂t

− ρvi,t

〉
+

〈
µi,t,−

∂vi,t
∂b

〉]
dt = 0 (100)

Where

Ai,tvi,t =ḃi,t
∂vi,t
∂b

+ ρεεi,t(ē− ei,t)
∂vi,t
∂ε

+ εi,t
σ2ε
2

∂2vi,t
∂ε2

(101)

ḃi,t =λWtli,tεi,t + rbtbi,t + Tt + dtsi − ci,t (102)

For Ai,tvi,t the following rearrangement can be done:

⟨ϱi,t,Ai,tvi,t⟩ =
∫
S

∫
E

∫
B

ϱi,tAi,tvi,tdbdεds = (103)

∫
S

∫
E

∫
B

ϱi,t

(
ḃi,t

∂vi,t
∂b

+ ρεεi,t(ē− ei,t)
∂vi,t
∂ε

+ εi,t
σ2ε
2

∂2vi,t
∂ε2

)
dbdεds (104)

As in the previous case, working the three terms separately.

First:

∫
S

∫
E

∫
B

ϱi,tḃi,t
∂vi,t
∂b

dbdεds =

∫
S

∫
E

ϱi,tḃi,tvi,t

∣∣∣∣∣
∂B

dεds−
∫
S

∫
E

∫
B

vi,t
∂

∂b
ϱi,tḃi,tdbdεds (105)

Second:

∫
S

∫
E

∫
B

ϱi,tρεεi,t(ē− ei,t)
∂vi,t
∂ε

dbdεds = (106)

∫
S

∫
B

ϱi,tρεεi,t(ē− ei,t)vi,t

∣∣∣∣∣
∂E

dbds−
∫
S

∫
B

∫
E

vi,t
∂

∂ε
ϱi,tρεεi,t(ē− ei,t)dεdbds (107)
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Third:

∫
S

∫
E

∫
B

ϱi,tεi,t
σ2ε
2

∂2vi,t
∂ε2

dbdεds = (108)

∫
S

∫
B

ϱi,tεi,t
σ2ε
2

∂vi,t
∂ε

∣∣∣∣∣
∂E

dbds−
∫
S

∫
B

∫
E

∂vi,t
∂ε

∂

∂ε
ϱi,tεi,t

σ2ε
2
dεdbds = (109)

∫
S

∫
B

ϱi,tεi,t
σ2ε
2

∂vi,t
∂ε

∣∣∣∣∣
∂E

dbds−
∫
S

∫
B

vi,t
∂

∂ε
ϱi,tεi,t

σ2ε
2

∣∣∣∣∣
∂E

dbds+

∫
S

∫
B

∫
E

vi,t
∂2

∂ε2
ϱi,tεi,t

σ2ε
2
dεdbds

(110)

Notice, that because of Inada conditions, the values of
∂V
∂b

and
∂V
∂ε

are fixed to be zero for

b → ∞ and ε → ∞. This implies that variation of partial derivatives has to be zero at these

boundaries as well. This means that the expression becomes

⟨ϱi,t,Ai,tvi,t⟩ =
〈
A∗
i,tϱi,t, vi,t

〉
+

∫
S

∫
E

ϱi,tḃi,tvi,t

∣∣∣∣∣
b=b

dεds+

∫
S

∫
B

ϱi,tρεεi,t(ē− ei,t)vi,t

∣∣∣∣∣
ε=ε

dbds+

(111)

+

∫
S

∫
B

ϱi,tεi,t
σ2ε
2

∂vi,t
∂ε

∣∣∣∣∣
ε=ε

dbds−
∫
S

∫
B

vi,t
∂

∂ε
ϱi,tεi,t

σ2ε
2

∣∣∣∣∣
ε=ε

dbds (112)

Finally notice, that since the distribution of ε is a log-normal, then ε = 0, so that almost all

the terms cancel out

⟨ϱi,t,Ai,tvi,t⟩ =
〈
A∗
i,tϱi,t, vi,t

〉
+

∫
S

∫
E

ϱi,tḃi,tvi,t

∣∣∣∣∣
b=b

dεds−
∫
S

∫
B

vi,tϱi,t
σ2ε
2

∣∣∣∣∣
ε=ε

dbds (113)

For the FOC constraints (utilizing Inada conditions on b→ ∞):

−
〈
µi,t,

∂vi,t
∂b

〉
= −

∫
S

∫
E

µi,tvi,t

∣∣∣∣∣
b=b

dεds+

∫
S

∫
E

∫
B

vi,t
∂µi,t
∂b

dbdεds (114)

For the time derivative:

∞∫
0

e−ρt
[〈
ϱi,t,

∂vi,t
∂t

− ρvi,t

〉]
dt =

〈
ϱi,te

−ρtvi,t

∣∣∣∣∣
∞

0

〉
−

〈 ∞∫
0

e−ρtvi,t
∂ϱi,t
∂t

dt

〉
(115)
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Finally, this means that the strong form is:

A∗
i,tϱi,t −

∂ϱi,t
∂t

+
∂µi,t
∂b

= 0 (116)

ϱi,0 = 0 (117)

ϱi,t

∣∣∣
ε=ε

= 0 (118)

ϱi,tḃi,t − µi,t

∣∣∣
b=b

= 0 (119)

Control over household consumption

Weak form:

δL
δc

=

∞∫
0

e−ρt

[〈
c−νi,t vi,t, fi,t

〉
+

〈
ζi,t,

∂

∂b
vi,tfi,t

〉
+

〈
ϱi,t, c

−ν
i,t vi,t −

∂Vi,t
∂b

vi,t

〉
(120)

+
〈
µi,t,−νc−ν−1

i,t vi,t

〉
+
〈
κi,t, νl

γ
i,tc

ν−1
i,t vi,t

〉]
dt = 0 (121)

Rearranging the term with the derivative

∞∫
0

e−ρt

[〈
ζi,t,

∂

∂b
vi,tfi,t

〉]
dt =

∞∫
0

e−ρt

[∫
S

∫
E

∫
B

ζi,t
∂

∂b
vi,tfi,tdbdεds

]
dt = (122)

∞∫
0

e−ρt
∫
S

∫
E

[
ζi,tvi,tfi,t

∣∣∣∣∣
∂B

−
∫
B

vi,tfi,t
∂ζi,t
∂b

db

]
dεdsdt (123)

The strong form is:

c−νi,t fi,t − fi,t
∂ζi,t
∂b

+ ϱi,t

(
c−νi,t − ∂Vi,t

∂b

)
− µi,tνc

−ν−1
i,t + κi,tνl

γ
i,tc

ν−1
i,t = 0 (124)

ζi,tfi,t

∣∣∣
b=b

= 0 (125)

Since FOC wrt c holds, the condition becomes

(
c−νi,t − ∂ζi,t

∂b

)
fi,t − µi,tνc

−ν−1
i,t + κi,tνl

γ
i,tc

ν−1
i,t = 0 (126)

ζi,tfi,t

∣∣∣
b=b

= 0 (127)

Here I come back to the point that that the variations should be taken together. This means

that the boundary conditions for b = b should be satisfied as a sum, not separately from each
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other. This means that the following should hold:

Combining the equation for µ with constraint from value control one can get the following

conditions:

If ḃi,t ̸= 0 at b = b, then fi,t = 0

⇒ κi,t = 0 ⇒ µi,t = 0 ⇒ ϱi,t = 0 (128)

If ḃi,t = 0 at b = b, then fi,t ̸= 0 ⇒ µi,t = 0. Using FOC l from below:

⇒
(
ci,t
ν

+
li,t
γ
λWtεi,t

)(
∂ζi,t
∂b

− ∂Vi,t
∂b

)
=
ηY,tθtεi,tli,t

γ
(129)

Control over household labor

Weak form:

δL
δl

=

∞∫
0

e−ρt
[〈

−φlγi,tvi,t, fi,t
〉
+

〈
ζi,t,−

∂

∂b
λWtvi,tεi,tfi,t

〉
(130)

+

〈
ϱi,t,−φlγi,tvi,t + λWtvi,tεi,t

∂Vi,t
∂b

〉
(131)

+
〈
κi,t, γl

γ−1
i,t vi,tc

ν
i,t

〉
+ ηY,t (−θt ⟨vi,tεi,t, fi,t⟩)

]
dt = 0 (132)

After rearranging, I get the strong form:

(
−φlγi,t + λWtεi,t

∂ζi,t
∂b

)
fi,t + κi,tγl

γ−1
i,t cνi,t − ηY,tθtεi,tfi,t = 0 (133)

Control over wage

Weak form:

δL
δW

=

∞∫
0

e−ρt

[〈
ζi,t,−

∂

∂b
λvtli,tεi,tfi,t

〉
+

〈
ϱi,t, λvtli,tεi,t

∂Vi,t
∂b

〉
(134)

+

〈
κi,t,−

λvtεi,t
φ

〉
− ηT,t (1− λ)

vt
θt
Yt + ηd,t

vt
θt
Yt + ηπ,t

(
ϕ

ψ

vt
θt

)]
dt = 0 (135)
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Strong form:

〈
∂ζi,t
∂b

, λli,tεi,tfi,t

〉
+

〈
ϱi,tλli,tεi,t,

∂Vi,t
∂b

〉
−
〈
κi,t,

λεi,t
φ

〉
− ηT,t (1− λ)

Yt
θt

+ ηd,t
Yt
θt

+ ηπ,t
ϕ

ψθt
= 0

(136)

Control over output

Weak form:

δL
δY

=

∞∫
0

e−ρt

[
ηY,tvt − ηT,t (1− λ)

Wt

θt
vt − ηd,t

(
1− ψ

2
π2t −

Wt

θt

)
vt + ηπ,t

v̇t
Yt
πt − ηπ,t

Ẏt
Yt

vt
Yt
πt

]
dt = 0

(137)

Rearranging time variation:

∞∫
0

e−ρtηπ,t
v̇t
Yt
πtdt = e−ρtηπ,t

vt
Yt
πt

∣∣∣∣∣
∞

0

−
∞∫
0

vt
∂

∂t
e−ρtηπ,t

1

Yt
πtdt (138)

Strong form:

ηY,t − ηT,t (1− λ)
Wt

θt
− ηd,t

(
1− ψ

2
π2t −

Wt

θt

)
− ηπ,t

Ẏt
Yt

1

Yt
πt −

∂

∂t

(
ηπ,t

1

Yt
πt

)
+ ρ

(
ηπ,t

1

Yt
πt

)
= 0

(139)

ηπ,0π0 = 0 (140)

Which can be rearranged to

ηY,t − ηT,t (1− λ)
Wt

θt
− ηd,t

(
1− ψ

2
π2t −

Wt

θt

)
−
(
η̇π,t
ηπ,t

+
π̇t
πt

− ρ

)
ηπ,tπt
Yt

= 0 (141)

ηπ,0π0 = 0 (142)
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Control over inflation

Weak form:

δL
δπ

=

∞∫
0

e−ρt

[
ηd,tψπtvtYt + ηπ,t

(
v̇t −

(
rbt −

Ẏt
Yt

)
vt

)]
dt = 0 (143)

∞∫
0

e−ρt

[
ηd,tψπtvtYt − ηπ,t

(
rbt −

Ẏt
Yt

)
vt − η̇π,tvt + ρηπ,tvt

]
dt+ e−ρtηπ,tvt

∣∣∣∣∣
∞

0

= 0 (144)

Strong form:

ηd,tψπtYt − ηπ,t

(
rbt −

Ẏt
Yt

− ρ

)
− η̇π,t = 0 (145)

ηπ,0 = 0 (146)

Control over real return

Weak form:

δL
δrb

=

∞∫
0

e−ρt

[〈
∂ζi,t
∂b

, vtbi,tfi,t

〉
+

〈
ϱi,t, vtbi,t

∂Vi,t
∂b

〉
− ηπ,tvtπt

]
dt = 0 (147)

ζi,tfi,tbi,t

∣∣∣
b=b

= 0 (148)

Strong form:

〈
∂ζi,t
∂b

, bi,tfi,t

〉
+

〈
ϱi,t, bi,t

∂Vi,t
∂b

〉
− ηπ,tπt = 0 (149)

Control over transfers

Weak form:

δL
δT

=

∞∫
0

e−ρt

[〈
∂ζi,t
∂b

, vtfi,t

〉
+

〈
ϱi,t, vt

∂Vi,t
∂b

〉
+ ηT,tvt

]
dt = 0 (150)

ζi,tfi,t

∣∣∣
b=b

= 0 (151)

Strong form:

〈
∂ζi,t
∂b

, fi,t

〉
+

〈
ϱi,t,

∂Vi,t
∂b

〉
+ ηT,t = 0 (152)
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Control over dividends

Weak form:

δL
δd

=

∞∫
0

e−ρt

[〈
∂ζi,t
∂b

, vtsifi,t

〉
+

〈
ϱi,t, vtsi

∂Vi,t
∂b

〉
+ ηd,tvt

]
dt = 0 (153)

ζi,tfi,tsi

∣∣∣
b=b

= 0 (154)

Strong form:

〈
∂ζi,t
∂b

, sifi,t

〉
+

〈
ϱi,t, si

∂Vi,t
∂b

〉
+ ηd,t = 0 (155)
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