Optimal Monetary Policy in HANK

Danila Smirnov

UPF and BSE

EEA-ESEM August 23, 2022

Motivation

- Heterogeneity in the model adds relevance but also complexity
 - How aggregate variables react?
 - How distribution reacts?
 - More relevance for the Optimal Policy
- Redistributive motives in NK model
 - Affects differently constrained and unconstrained households
 - Affects share of constrained

Related literature

- New Keynesian model, with reduced form heterogeneity

Bilbiie (2008); Debortoli and Galí (2017); Bilbiie (2019); Challe (2020)

- HANK models

Kaplan, Moll, and Violante (2018); Le Grand and Ragot (2022); Werning (2015); McKay, Nakamura, and Steinsson (2016)

- Optimal policy in HANK
 - Nuño and Thomas (2022)

Small open economy

- González, Nuño, Thaler, and Albrizio (WP) Firms heterogeneity
- Bhandari, Evans, Golosov, and Sargent (2021)

Both monetary and fiscal, but no binding borrowing constraint

- Contribution

- Transition to and from boundary constraint opens new channel for the policy
- Optimal policy is qualitatively different from the RANK and TANK models

Empirical Evidence*

Probability to be constrained. Conditional mean and s.d. over time

Credit Score	Prob. mean	Constrained s.d.
< 620	73.7	4.1
620 - 679	54.7	4.4
680 - 719	37.8	5.7
720 - 760	23.4	3.7
> 760	11.8	2.0

Correlation of real interest rate and the share of constrained households

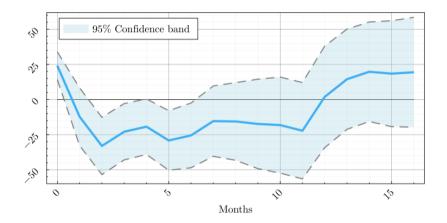
	Prob. Constrained
real rate	-0.53 (0.81)
real rate × credit score < 620	-2.42^{**} (1.08)
real rate, 1 year lag	-0.85 (0.91)
real rate, 1 year lag × credit score < 620	2.34^{**} (1.16)
R-squared N	0.2471 18,431
Note: * $p < 0.1$; ** $p < 0$.05; *** $p < 0.01$

Note: * p < 0.1; ** p < 0.05; *** p < 0.01GDP, CPI, time trend², individual controls

*Survey of Consumer Expectations (SCE) Credit Access Survey

Empirical Evidence (Supply*)

Change of willingness to provide consumer installment loans after a contractionary monetary policy shock



*Senior Loan Officer Opinion Survey on Bank Lending Practices

- Continuum of households $i \in [0, 1]$, each solving the problem:

$$\max_{\{c_{i,t}, l_{i,t}, \dot{b}_{i,t}\}_{t}} \int_{0}^{+\infty} e^{-\rho t} \left(\frac{c_{i,t}^{1-\nu}}{1-\nu} - \varphi \frac{l_{i,t}^{1+\gamma}}{1+\gamma} \right) dt$$

s.t. $c_{i,t} + \dot{b}_{i,t} = \lambda W_{t} l_{i,t} \varepsilon_{i,t} + d_{t} + T_{t} + r_{t}^{b} b_{i,t}$

- Idiosyncratic productivity $\varepsilon_{i,t}$ follows the process:

$$\varepsilon_{i,t} = exp\{e_{i,t}\}; \ de_{i,t} = \rho_e(\bar{e} - e_{i,t})dt + \sigma_e dW_{e,i,t}$$

- Where $b_{i,t} \ge \underline{b}$ are individual holdings of **nominal bonds** expressed in real terms With real return: $r_t^b = i_t - \pi_t$
- RANK: $\varepsilon_{i,t} = 1, \forall i \Rightarrow b_{i,t} = 0, \forall i$

Optimality conditions

- Result of the household problem is given by equations:

$$c_{i,t} = \left(\frac{\partial \mathcal{V}_{i,t}}{\partial b}\right)^{-\frac{1}{\nu}}$$
(Consumption)

$$\rho \mathcal{V}_{i,t} = \frac{c_{i,t}^{1-\nu}}{1-\nu} - \varphi \frac{l_{i,t}^{1+\gamma}}{1+\gamma} + \mathcal{A}_{i,t} \mathcal{V}_{i,t} + \frac{\partial \mathcal{V}_{i,t}}{\partial t}$$
(HJB)

$$l_{i,t}^{\gamma} c_{i,t}^{\nu} = \frac{\lambda W_t \varepsilon_{i,t}}{\varphi}$$
(Labor supply)

- Evolution of the distribution is given by Fokker–Planck / Kolmogorov forward equation me

$$\frac{\partial f_{i,t}}{\partial t} = \mathcal{A}_{i,t}^* f_{i,t}$$

Optimal Policy

- The Ramsey problem is solved by maximizing the Lagrangian:

$$\mathcal{L}[f, \mathcal{V}, c, l, W, Y, \pi, r^{b}, T] = \int_{0}^{\infty} e^{-\rho t} \left[\left\langle \frac{c_{i,t}^{1-\nu}}{1-\nu} - \varphi \frac{l_{i,t}^{1+\gamma}}{1+\gamma}, f_{i,t} \right\rangle + (\text{costate variables}) \times (\text{competitive equilibrium equations}) \right] dt$$

more

- Why continuous time?

Distribution law of motion has simple functional form

$$\frac{\partial f_{i,t}}{\partial t} = \mathcal{A}_{i,t}^* f_{i,t}$$

derivative of $\mathcal L$ can be calculated using Calculus of Variations \square

Solution algorithm

Solving for the equilibrium response to the deterministic path of the shock under the optimal policy

- Solving dynamics given a candidate path of π
 - Guess bonds prices, wages and dividends
 - Solve the household problem
 - Calculate implied distribution and market clearing prices

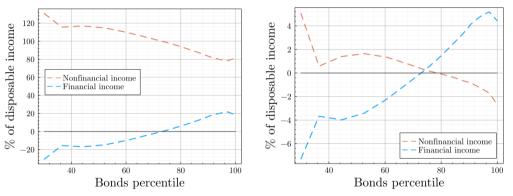
- Costate dynamics

- Solve a system of linear differential equations
- Check the first order condition wrt π_t , otherwise iterate

Calibration

Solving for optimal stabilization policy

Monetary policy shock $(r^b \uparrow)$

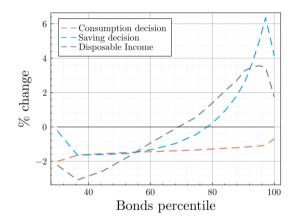


(a) Cash flow shares in Steady State

(b) Cash flow shares change after MP shock

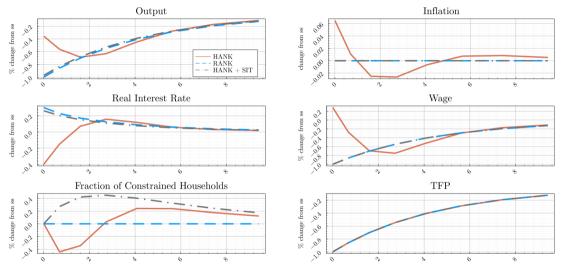
- Distribution of bonds has the $point\ mass\ 0.3$ at the constraint
- Borrowers suffer from higher interest rates
- Countercyclical inequality through interest rates exposure

Monetary policy shock $(r^b \uparrow)$



- Borrowers have decline in income and can't smooth consumption
- Having high interest rates is clearly harming borrowers

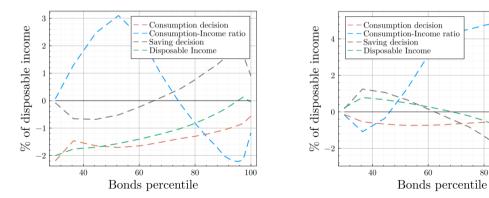
Optimal policy in response to TFP shock me



Optimal policy: lower the real interest rate to create redistribution from wealthy to poor

SIT vs Optimal policy

- Policy affects households' income differently
- Looking at differential impact of two policies
- SIT vs Ramsey in the first quarter after TFP shock

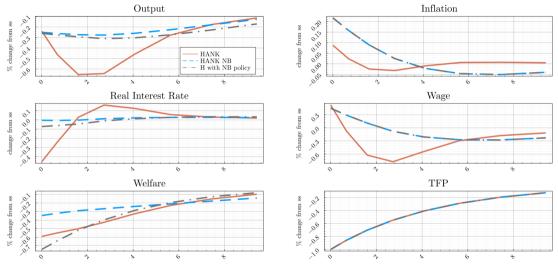


(a) SIT

(b) Ramsey OP

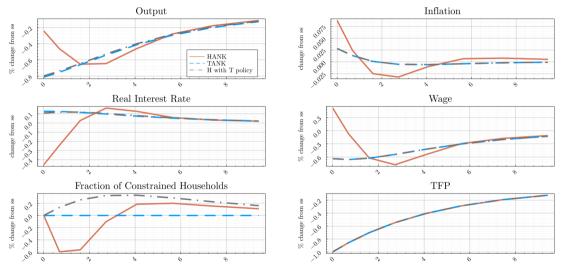
100

Optimal policy Natural Borrowing Constraint



With natural borrowing constraint in the model, only partial redistributive motive applies, and there is almost no response of real interest rate 13/16

Optimal policy TANK



TANK model does not have the redistributive motive

Conclusion

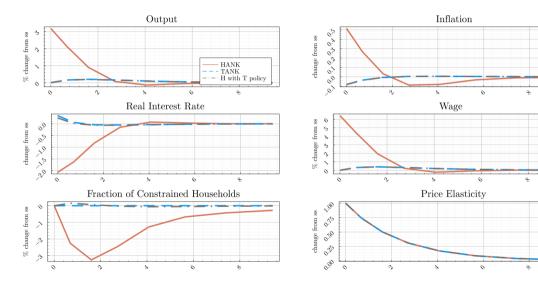
- Heterogeneity in is a needed extension but brings a lot of complexity
- Optimal policy is significantly different in HANK model
- Changing the fraction of constrained agents has the first order effect on Optimal policy

Thank You

Model

- Standard sticky price model in continuous time
- Supply side gives Phillips Curve
- Government provides labor subsidy to balance the inefficiency caused by monopolistic competition with no additional redistribution
- Household side:
 - Idiosyncratic productivity shocks drive heterogeneity in income and wealth
 - Bonds constrained by the borrowing limit $\underline{b} < 0$
- Planner chooses interest rate path to maximize aggregate welfare
- Study response to TFP and Markup shocks

Optimal policy in response to Markup shock me



- Final good producers:
 - Produced by competitive firms with CES production function

$$y_{j,t} = \left(\frac{p_{j,t}}{P_t}\right)^{-\phi} Y_t$$

- Intermediate firms are **monopolistic producers** and have linear production function and quadratic price adjustment costs **more**
- Solution gives the Phillips Curve

$$\left(r_t^b-rac{\dot{Y}_t}{Y_t}
ight)\pi_t=rac{\phi-1}{\psi}\left(rac{\phi}{\phi-1}m_t-1
ight)+\dot{\pi}_t$$

Competitive equilibrium

- Household problem (for $i \in [0,1]$)
 - HJB
 - Consumption
 - Household budget constraint
 - Labor supply
- Distribution law of motion
- Supply side
 - Aggregate output
 - Phillips Curve
 - Dividends
- Bond market clearing
- Feasibility constraint
- Monetary policy

$$\begin{split} \rho \mathcal{V}_{i,t} &= \frac{c_{i,t}^{1-\nu}}{1-\nu} - \varphi \frac{l_{i,t}^{1+\gamma}}{1+\gamma} + \mathcal{A}_{i,t} \mathcal{V}_{i,t} + \frac{\partial \mathcal{V}_{i,t}}{\partial t} \\ c_{i,t}^{-\nu} &= \frac{\partial \mathcal{V}_{i,t}}{\partial b} \\ c_{i,t} + \dot{b}_{i,t} &= \lambda W_t l_{i,t} \varepsilon_{i,t} + d_t + T_t + r_t^b b_{i,t} \\ l_{i,t}^{\gamma} c_{i,t}^{-\nu} &= \frac{\lambda W_t \varepsilon_{i,t}}{\varphi} \\ \mathcal{A}_{i,t}^* f_{i,t} &= \frac{\partial f_{i,t}}{\partial t} \end{split}$$

$$\begin{split} Y_t &= \theta_t \left\langle l_{i,t} \varepsilon_{i,t}, f_{i,t} \right\rangle \\ \frac{\phi - 1}{\psi} \left(\frac{\phi}{\phi - 1} \frac{W_t}{\theta_t} - 1 \right) + \dot{\pi}_t = \left(r_t^b - \frac{\dot{Y}_t}{Y_t} \right) \pi_t \\ d_t &= Y_t - W_t \left\langle l_{i,t} \varepsilon_{i,t}, f_{i,t} \right\rangle - \frac{\psi}{2} \pi_t^2 \\ \left\langle b_{i,t}, f_{i,t} \right\rangle &= 0 \\ C_t &= Y_t - \frac{\psi}{2} \pi_t^2 \end{split}$$

Intermediate firms **Less**

$$\mathcal{J}_{j} = \max_{\{\dot{p}_{j,t}\}_{t}} \mathbb{E} \int_{0}^{\infty} e^{-\int_{t}^{\infty} r_{t}^{b} dt} \left[\left(\frac{p_{jt}}{P_{t}} - m_{t} \right) \left(\frac{p_{j,t}}{P_{t}} \right)^{-\phi} Y_{t} - \frac{\psi}{2} \left(\frac{\dot{p}_{j,t}}{p_{j,t}} \right)^{2} Y_{t} \right] dt$$

The Bellman equation for the firms problem has the following form

$$r_t^b \mathcal{J}_{j,t} = \max_{\dot{p}_{j,t}} \left(\frac{p_{j,t}}{P_t} - m_t \right) \left(\frac{p_{j,t}}{P_t} \right)^{-\phi} Y_t - \frac{\psi}{2} \left(\frac{\dot{p}_{j,t}}{p_{j,t}} \right)^2 Y_t + \dot{p}_{j,t} \frac{\partial \mathcal{J}_t}{\partial p} + \frac{\partial \mathcal{J}_t}{\partial t}$$

$$\Rightarrow \begin{cases} \pi_t = \frac{P_t}{\psi Y_t} \frac{\partial \mathcal{J}_t}{\partial p} \\ r_t^b \frac{\partial \mathcal{J}_t}{\partial p} = -\phi(1-m_t)\frac{Y_t}{P_t} + \frac{Y_t}{P_t} + \pi_t \frac{\partial \mathcal{J}_t}{\partial p} + P_t \pi_t \frac{\partial^2 \mathcal{J}_t}{\partial p^2} + \frac{\partial^2 \mathcal{J}_t}{\partial p \partial t} \end{cases}$$

This implies the Phillips Curve

$$\left(r_t^b - \frac{\dot{Y}_t}{Y_t}\right) \pi_t = \frac{\phi - 1}{\psi} \left(\frac{\phi}{\phi - 1}m_t - 1\right) + \dot{\pi}_t$$

Infinitesimal generator **back**

$$\begin{cases} \mathcal{A}_{i,t}\mathcal{V}_{i,t} = \dot{b}_{i,t}\frac{\partial\mathcal{V}_{i,t}}{\partial b} + \rho_{\varepsilon}\varepsilon_{i,t}(\bar{e} - e_{i,t})\frac{\partial\mathcal{V}_{i,t}}{\partial\varepsilon} + \varepsilon_{i,t}\frac{\sigma_{\varepsilon}^{2}}{2}\frac{\partial^{2}\mathcal{V}_{i,t}}{\partial\varepsilon^{2}} \\ \dot{b}_{i,t} = \lambda W_{t}l_{i,t}\varepsilon_{i,t} + r_{t}^{b}b_{i,t} + T_{t} + d_{t} - c_{i,t} \end{cases}$$

$$\begin{aligned} \mathcal{A}_{i,t}\mathcal{V}_{i,t} &= \left(\lambda W_t l_{i,t}\varepsilon_{i,t} + r_t^b b_{i,t} + T_t + d_t - c_{i,t}\right) \frac{\partial \mathcal{V}}{\partial b} \\ &+ \rho_{\varepsilon}\varepsilon_{i,t}(\bar{e} - e_{i,t}) \frac{\partial \mathcal{V}}{\partial \varepsilon} + \varepsilon_{i,t} \frac{\sigma_{\varepsilon}^2}{2} \frac{\partial^2 \mathcal{V}}{\partial \varepsilon^2} \end{aligned}$$

Infinitesimal generator $A_{i,t}$ of HJB equation is adjacent to the $A_{i,t}^*$ of the Fokker–Planck equation \frown

Fokker–Planck / Kolmogorov forward equation **back**

$$\langle g, \mathcal{A}^*h \rangle = \int_{\varepsilon} \int_{b} g \mathcal{A}^*h db d\varepsilon =$$

$$= \int_{\varepsilon} \int_{b} g \left(-\frac{\partial}{\partial b} \left\{ \left(\lambda W l\varepsilon + d + T + r^b b - c \right) h \right\} - \frac{\partial}{\partial \varepsilon} \rho_{\varepsilon} \varepsilon (\bar{\varepsilon} - \varepsilon) h + \frac{\partial^2}{\partial \varepsilon^2} \varepsilon \frac{\sigma_{\varepsilon}^2}{2} h \right) db d\varepsilon =$$

$$= -\int_{\varepsilon} \int_{b} g \frac{\partial}{\partial b} \dot{b} h db d\varepsilon - \int_{b} \int_{\varepsilon} g \frac{\partial}{\partial \varepsilon} \dot{\varepsilon} h d\varepsilon db + \int_{b} \int_{\varepsilon} g \frac{\partial^2}{\partial \varepsilon^2} \frac{\sigma_{\varepsilon}^2}{2} h d\varepsilon db =$$

$$= \langle \mathcal{A}g, h \rangle - \int_{\varepsilon} \left[g \dot{b} h \Big|_{\underline{b}}^{\infty} \right] d\varepsilon - \int_{b} \left[g \dot{\varepsilon} h \Big|_{0}^{\infty} \right] db + \int_{b} \left[g \frac{\partial}{\partial \varepsilon} \frac{\sigma_{\varepsilon}^2}{2} h \Big|_{0}^{\infty} \right] db - \int_{b} \left[\frac{\sigma_{\varepsilon}^2}{2} h \frac{\partial}{\partial \varepsilon} g \Big|_{0}^{\infty} \right] db$$

$$\begin{aligned} \mathcal{A}_{i,t}\mathcal{V}_{i,t} &= \dot{b}_{i,t}\frac{\partial \mathcal{V}_{i,t}}{\partial b} + \rho_{\varepsilon}\varepsilon_{i,t}(\bar{e} - e_{i,t})\frac{\partial \mathcal{V}_{i,t}}{\partial \varepsilon} + \varepsilon_{i,t}\frac{\sigma_{\varepsilon}^{2}}{2}\frac{\partial^{2}\mathcal{V}_{i,t}}{\partial \varepsilon^{2}} \\ \mathcal{A}_{i,t}^{*}f_{i,t} &= -\frac{\partial}{\partial b}\dot{b}_{i,t}f_{i,t} - \frac{\partial}{\partial \varepsilon}\rho_{\varepsilon}\varepsilon_{i,t}(\bar{e} - e_{i,t})f_{i,t} + \frac{\partial^{2}}{\partial \varepsilon^{2}}\varepsilon_{i,t}\frac{\sigma_{\varepsilon}^{2}}{2}f_{i,t} \end{aligned}$$

Optimal Policy **back**

$$\begin{split} \mathcal{L}[f, \mathcal{V}, c, l, W, Y, \pi, r^{b}, T] &= \\ &= \int_{0}^{\infty} e^{-\rho t} \left[\left\langle \frac{c_{i,t}^{1-\nu}}{1-\nu} - \varphi \frac{l_{i,t}^{1+\gamma}}{1+\gamma}, f_{i,t} \right\rangle + \left\langle \zeta_{i,t}, \mathcal{A}_{i,t}^{*}f_{i,t} - \frac{\partial f_{i,t}}{\partial t} \right\rangle & \text{(Objective); (Distribution LOM)} \\ &+ \left\langle \varrho_{i,t}, \frac{c_{i,t}^{1-\nu}}{1-\nu} - \varphi \frac{l_{i,t}^{1+\gamma}}{1+\gamma} + \mathcal{A}_{i,t}\mathcal{V}_{i,t} + \frac{\partial \mathcal{V}_{i,t}}{\partial t} - \rho \mathcal{V}_{i,t} \right\rangle & \text{(Household HJB)} \\ &+ \left\langle \mu_{i,t}, c_{i,t}^{-\nu} - \frac{\partial \mathcal{V}_{i,t}}{\partial b} \right\rangle + \left\langle \kappa_{i,t}, l_{i,t}^{\gamma} c_{i,t}^{-\nu} - \frac{\lambda W_{t} \varepsilon_{i,t}}{\varphi} \right\rangle & \text{(Consumption); (Labor supply)} \\ &+ \eta_{b,t} \left\langle b_{i,t}, f_{i,t} \right\rangle + \eta_{Y,t} \left(Y_{t} - \theta_{t} \left\langle l_{i,t} \varepsilon_{i,t}, f_{i,t} \right\rangle \right) & \text{(Bond market); (Output)} \\ &+ \eta_{T,t} \left(T_{t} - \left(1 - \frac{\psi}{2} \pi_{t}^{2} - \lambda \frac{W_{t}}{\theta_{t}}\right) Y_{t}\right) & \text{(Government budget constraint)} \\ &+ \eta_{\pi,t} \left(\frac{\phi - 1}{\psi} \left(\frac{\phi}{\phi - 1} \frac{W_{t}}{\theta_{t}} - 1\right) + \dot{\pi}_{t} - \left(r_{t}^{b} - \frac{\dot{Y}_{t}}{Y_{t}}\right) \pi_{t}\right) \right] dt & \text{(Phillips Curve)} \end{split}$$

Calculus of Variations (back)

- Maximization with respect to functions
- Control over inflation:
 - Weak form (looking at total variation of v_t)

$$\frac{\delta \mathcal{L}}{\delta \pi} = \int_{0}^{\infty} e^{-\rho t} \left[\eta_{T,t} \psi \pi_t \boldsymbol{v}_t Y_t + \eta_{\pi,t} \left(\dot{\boldsymbol{v}}_t - \left(r_t^b - \frac{\dot{Y}_t}{Y_t} \right) \boldsymbol{v}_t \right) \right] dt = 0$$

Using integration by parts to substitute \dot{v}_t

$$\int_{0}^{\infty} e^{-\rho t} \left[\eta_{T,t} \psi \pi_t \boldsymbol{v}_t Y_t - \eta_{\pi,t} \left(r_t^b - \frac{\dot{Y}_t}{Y_t} \right) \boldsymbol{v}_t - \dot{\eta}_{\pi,t} \boldsymbol{v}_t + \rho \eta_{\pi,t} \boldsymbol{v}_t \right] dt + e^{-\rho t} \eta_{\pi,t} \boldsymbol{v}_t \bigg|_{0}^{\infty} = 0$$

- Strong form (Since v_t can be chosen freely, every part of the function has to be zero)

$$\begin{split} \eta_{T,t}\psi\pi_tY_t - \eta_{\pi,t}\left(r_t^b - \frac{\dot{Y}_t}{Y_t} - \rho\right) - \dot{\eta}_{\pi,t} &= 0\\ \eta_{\pi,0} &= 0 \end{split}$$

Duality

- Symmetry between the original problem and the OP costate variables problem
- Phillips Curve is a **forward looking** differential equation in π_t (has to be solved backward) Solution uniqueness is given by the boundary constraint at $t \to \infty$

$$\begin{aligned} \dot{\pi}_t &= \left(r_t^b - \frac{\dot{Y}_t}{Y_t} \right) \pi_t - \frac{\phi - 1}{\psi} \left(\frac{\phi}{\phi - 1} \frac{W_t}{\theta_t} - 1 \right) \\ \lim_{t \to \infty} \pi_t &= \pi \end{aligned}$$

- Associated costate equation is a **backward looking** differential equation in $\eta_{\pi,t}$ (hast to be solved forward)

$$\begin{split} \dot{\eta}_{\pi,t} &= \eta_{\pi,t} \left(\rho + \frac{\dot{Y}_t}{Y_t} - r_t^b \right) + \eta_{T,t} \psi \pi_t Y_t \\ \eta_{\pi,0} &= 0 \end{split}$$

- Same duality holds for the rest of the differential equations constraints
- Importantly, for the HJB on the borrowing limit

Fixed	Description	Value		
ν	Risk aversion	1		
$1/\gamma$	Frisch elasticity of labor supply	1		
ϕ	Price elasticity of demand	10	(slope of the Phillips Curve	
ψ	Price adjustment cost	100	$\phi/\psi=0.1$)	
Fitted	Description	Value	Moment	Value
ρ	Discount rate	0.067	real return	3%
b	Borrowing limit	-3.54	% constrained	30%
ρ_e	Mean reversion	0.1	var <i>log(average LI</i>)	0.7
σ_e	Volatility	0.32	var $\Delta(average LI)$	0.23

