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Abstract

This paper extends the spatial lag of the exogenous regressor model (SLX) in two

dimensions. First, we consider a nonparametric model in which the spatial effects

are modelled as a functional coefficient. This coefficient is approximated using Tay-

lor expansions of arbitrary (finite) order over a set of disjoint intervals covering the

support of the spatial variable. Second, by considering the spatial variable to be

stochastic and different from geographical distance, we extend the model to a net-

work setting. The model is also extended to incorporate endogenous spatial/network

effects in the spirit of nonparametric SAR models. Estimation of the nonparametric

SLX model is based on the theory on sieve regression and partitioning estimators.

Estimation of the endogenous version is based on GMM. The asymptotic properties

of the partitioning estimator of the functional network coefficient for the SLX model

are derived. We also propose pointwise and uniform tests for the presence of net-

work effects for this model. The empirical application studies environmental Engel

curves and finds strong evidence of neighboring effects in the relationship between

households’ income and the amount of pollution embodied in the goods and services

they consume.
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1 Introduction

Spillovers between units in a cross section are of main interest in spatial and network

models. They can be defined as the impact of changes to explanatory variables in a par-

ticular unit on the dependent variable measured at other units. Spillovers - interpreted

as exogenous interactions in the explanatory variables - is one of the three types of inter-

actions across units in a cross section of observations. The other two types are defined by

(ii) endogenous interactions affecting the dependent variable and (iii) interaction effects

among the error terms.

Each of these models is represented in the spatial econometrics literature by a different

specification of the spatial effects. The first type considering exogenous interactions is

usually specified as a SLX model (Y = Xβ +WXγ + u) in which the dependent variable

(Y ) is a linear function of the regressors X. There is a direct effect of the regressors

on the dependent variable through the β parameters and an indirect effect through the

spatial matrix W that allows for spillovers from the covariate Xj on Yi, for i 6= j. The

second model specification is the spatial AR model, SAR, which adds a weighted average

of nearby values of the dependent variable to the base set of explanatory variables: Y =

WY + Xβ + u. The third specification given by the spatial error model, SEM, uses a

similar structure to directly model spatial relationships among the errors: Y = Xβ + u,

with the error variable u = θWu + e, where θ captures the spatial correlation between

the error terms. The spatial Durbin model combines spatial features in the dependent

variable and exogenous regressors. In the network literature a similar specification is the

linear-in-means model of peer effects introduced by Manski (1993). In this model agents’

outcomes depend on their own characteristics, their peers’ characteristics, and their peers’

outcomes.

Spatial econometric models suffer, in general, from identification problems. Halleck

Vega and Elhorst (2015) discuss three types of identification problems. First, different

spatial econometric models are generally impossible to distinguish without assuming prior

knowledge about the true data-generating process, including the spatial W matrix, see

Gibbons and Overman (2012), Corrado and Fingleton (2012) and Partridge, Boarnet,

Brakman, and Ottaviano (2012).1 Second, spatial models are characterized by N(N-1)

potential relationships among the observations, but only N data observations are available,

1For this reason, empirical analyses usually report estimation results under different specifications of

the dependence structure. Kelejian (2008) and Kelejian and Piras (2011) develop test statistics to select

a spatial weights matrix across a set of candidates. Lam and Souza (2020) propose to estimate their

best linear combination and a sparse adjustment matrix using the least absolute shrinkage and selection

operator (LASSO). Higgins and Martellosio (2020) develop a similar approach based on a penalised

quasi-maximum likelihood estimator and controlling for unobserved factors. Bhattacharjee and Jensen-

Butler (2013) estimate the interaction matrix from the spatial autocovariance matrix with panel data,

showing that identification is only partial. Rose (2017) identifies peer effects in a social network from the

fluctuations in the variance and covariance of the outcomes.
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see McMillen (2012). The third identification problem occurs when the unknown param-

eters of a model cannot be uniquely recovered from their reduced-form specification even

if the spatial econometric model and W are correctly specified. Although this problem

can arise in models exhibiting spatial endogeneity such as the SAR, the spatial economet-

rics literature has made significant progress in this dimension by developing techniques

for the consistent estimation of the model parameters under correct specification of the

spatial model and certain assumptions on the weight matrix, see Kelejian and Prucha

(1998, 1999), Lee (2004), Bramoullé, Djebbari, and Fortin (2009), and Sun (2016). See

also Anselin (1988) for an excellent monograph on spatial econometrics models.

In this paper, we will focus on the first two issues by proposing a flexible specification

of a SLX model. Our contribution is to model the spatial effect as a functional coefficient

that is approximated nonparametrically using a series of Taylor expansions that are ap-

plied over disjoint intervals covering a partition of the spatial variable. This approach is

nonparametric because the Taylor approximation together with the partition entail a num-

ber of regressors that increases with the sample size, see Pinkse, Slade, and Brett (2002),

Sun (2016) and Koroglu and Sun (2016), for similar frameworks. The second contribu-

tion of this study is to extend the standard SLX model to allow for network effects. The

spatial variable - geographical distance - is replaced by a variable that captures network

effects between the covariates and the dependent variable measured at different units.

This extension, called NLX model in this paper, has nontrivial implications for modelling

purposes. Whereas the geographical distance is treated as a nonstochastic variable the

network variable indexing the functional coefficient is a random variable, adding another

layer of complexity to the model.

Identification of N(N − 1) network interactions in a cross section of N observations

is possible due to the specification of the functional coefficient characterizing network

spillovers. Each pairwise interaction is interpreted as a realization of the functional param-

eter. This setting takes advantage of smoothing techniques for approximating unknown

functional parameters, see Fan and Gijbels (1996), Cai and Li (2008), Cai and Xu (2008)

and Cai and Xiao (2012) for local polynomial approximations in different contexts. Sun

(2016) applies a similar procedure in a spatial model only considering endogenous SAR

effects and Koroglu and Sun (2016) in a nonparametric spatial Durbin model. In contrast

to these authors, we do not use kernel methods to control for the local character of the

approximation. Instead, we approximate the functional coefficient using Taylor expan-

sions over an increasing number of disjoint intervals defining a partition of the compact

support of the network variable. This methodology allows us to estimate the coefficients

characterizing the local Taylor expansions by minimizing the residual sum of squares over

each interval. In this respect, our estimation approach can be framed in the sieve re-

gression literature (see Newey (1997) for a general setting and Pinkse, Slade, and Brett

(2002) for an application of series estimators to endogenous spatial models) and, more

specifically, in the class of partitioning estimators, see Cattaneo and Farrell (2013) and
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Cattaneo, Farrell, and Feng (2020), that we extend to the spatial/network literature. The

accuracy of our approximation also depends on the order of the Taylor expansion of the

functional coefficient that, in contrast to the number of intervals defining the partition,

is assumed to be finite.

Although we focus on solving the first two identification issues discussed above, our

NLX model can be also extended to incorporate endogenous SAR effects using the ap-

proach introduced in Sun (2016). This author considers a functional coefficient SAR

model with nonparametric spatial weights that is approximated using a series expansion

defined by a sequence of orthonormal basis functions. This model is extended to consid-

ering also exogenous spatial effects in Koroglu and Sun (2016). In Section 2.2, we adapt

these models to our setting by including endogenous SAR effects in the NLX specifica-

tion. Estimation of the model parameters is more cumbersome in this context due to the

presence of endogeneity. Following Sun (2016) and Koroglu and Sun (2016), Section 3.2

proposes a GMM estimation procedure with instrumental variables that is adapted to our

partitioning method.

As an additional contribution, We extend existing theory on partitioning estimators to

derive pointwise and uniform convergence of the partitioning estimator of the functional

coefficient for the NLX model and leave the analysis of the model with endogenous features

for future research. In particular, we derive pointwise estimates based on realizations

of the functional coefficient at specific locations that are shown to converge at a rate

N to a standard normal distribution. This convergence rate is due to the presence of

N(N − 1) potential neighbors and is similar to the square root of N convergence of the

partitioning estimator in a nonparametric setting, see Cattaneo and Farrell (2013) and

Cattaneo, Farrell, and Feng (2020). We use asymptotic results derived by these authors to

extend the convergence of the partitioning estimator to a centered Gaussian process in the

functional space. We also develop pointwise t-tests to evaluate the statistical significance

of the network effects on specific locations and a uniform test that extends the analysis to

the compact support of the network variable. The implementation of the uniform test is

not straightforward as it is a composite hypothesis. Under the null, we face Davies (1977,

1987)’ problem of lack of identification of the nuisance parameter. Thus, the asymptotic

null distribution of the composite test H0 is a zero-mean Gaussian process with covariance

kernel that cannot be tabulated. Nevertheless, we follow the theory in Cattaneo, Farrell,

and Feng (2020) for deriving the asymptotic distribution of the test, and the use of Wild

bootstrap methods in Hansen (1996) to approximate its finite-sample distribution under

the null hypothesis.

The finite-sample performance of these tests is evaluated using Monte Carlo meth-

ods. Simulations are divided in three exercises. First, we compute the bias and root

mean square error (RMSE) of the parameter estimators to demonstrate their consistency.

Second, we analyze the size and power of the marginal t-tests and uniform test. The

simulations show a very good performance of both tests in terms of power, and a reliable
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empirical size, that is slightly undersized for the uniform test. In the third simulation

exercise, we propose different information criteria to select the optimal tuning parameter

based on popular Akaike and Bayesian methods and also on specific criteria developed for

series estimators such as Mallows (1973) and Craven and Wahba (1978). Our simulations

illustrate how to optimally choose the order of the Taylor expansion and the partition

of the grid that determines the number of regressors in our augmented model capturing

network effects.

The proposed methodology is illustrated in an empirical application studying the envi-

ronmental Engel curves (EECs) discussed in an influential work by Levinson and O’Brien

(2019). We extend the analysis carried out by these authors by incorporating neighbor-

ing effects in the relationship between households’ income and pollution measures. The

network variable is the L1 distance between the pollution content at two different units

such that two neighbouring observations are characterized by similar pollution patterns.

Building on recent studies about peer effects in household consumption and energy behav-

iors (Agarwal, Qian, and Zou 2021; De Giorgi, Frederiksen, and Pistaferri 2020; Wolske,

Gillingham, and Schultz 2020), we provide strong empirical evidence of neighboring effects

in the relationship between different forms of environmental pollution and after-tax house-

hold income discovered by Levinson and O’Brien (2019). The sign of this relationship is

positive, suggesting a reinforcing effect of income on pollution coming from households

with similar levels of income.

The rest of the paper is structured as follows. Section 2 introduces a nonparametric

SLX model with network effects. In Section 3, we propose a nonparametric estimator

based on the theory on partitioning estimators. The section also studies GMM methods

to estimate the model parameters under the presence of network endogeneity. Section

4 presents the asymptotic theory on the proposed estimators for the NLX model. In

particular, we show the consistency and uniform convergence of the network functional

parameter estimator obtained by our augmented regression model. The section also de-

rives pointwise convergence results on the asymptotic distribution of the standardized

functional coefficient estimator to a Normal distribution. Section 5 presents different hy-

pothesis tests to statistically assess the presence of network effects in the data. The section

also discusses model selection and the optimal choice of the tuning parameter. Section

6 presents a Monte Carlo exercise to evaluate parameter estimation, hypothesis testing,

and model selection in finite samples. Section 7 contains the empirical application, and

Section 8 concludes. An appendix contains the mathematical proofs of the main results

of the paper. Tables and figures are collected at the end of this document.

In what follows, ‖A‖ =

(
n∑
i=1

m∑
j=1

a2
ij

)1/2

denotes the L2 norm for A a m × n matrix,

and ‖a‖ =

(
n∑
i=1

a2
i

)1/2

denotes the L2 norm for a vector a of dimension n.
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2 Network regression model

This section introduces the nonparametric SLX model based on functional coefficients

and discusses its approximation by Taylor expansions over disjoint intervals covering the

compact support of the spatial variable characterizing the spatial/network effects. The

section also proposes estimators of the slope and network parameters based on the theory

on partitioning estimators, see Cattaneo and Farrell (2013) and Cattaneo, Farrell, and

Feng (2020), as recent seminal contributions.

2.1 The baseline model

We propose the following NLX specification that extends standard SLX models in two

dimensions: (i) there are network effects that replace spatial effects, (ii) network effects

are modelled as a functional coefficient. The proposed model is

Y = Xλ+
M∑
j=1

Wj(dj)Xj + ε, (2.1)

with Y = (Y1, . . . , YN)′ a vector that contains the dependent variable evaluated at each

unit, X = (X1, . . . , XM) is a N ×M matrix, where N denotes the number of observations

and M the number of exogenous regressors; λ is a M × 1 vector of coefficients, and εt =

(ε1t, . . . , εNt)
′ is a zero-mean random vector containing the error term that is assumed to be

independent and identically distributed (iid). For simplicity, we remove the intercept from

the model specification by assuming that (Y,X) are demeaned. The exogenous network

effects between the different covariates and the dependent variable are captured by the

sequence of N×N matrices Wj(dj). Each of these matrices contains N(N−1) parameters

describing the network relationships and is indexed by the distance dj,rs = f(zjr, zjs), for

j = 1, . . . ,M , with {zjr, zjs} realizations of a random variable Zj evaluated at units r

and s. This variable characterizes the type of network dependence. The metric f(·, ·) can

also differ across regressors. For example, the geographical distance is characterized by

the Euclidean distance between the geographical coordinates (Zi ∈ R2) at two different

locations but other metrics are also possible. In the empirical application, we consider,

instead, the L1 distance between the regressors, i.e. drs = |xr−xs|, with xr, xs realizations

of the regressor X measured at different units.

To illustrate the model and estimation procedure, we consider one regressor but the

methods below can be extended naturally to the case of M regressors, with M finite. The

baseline model is

Y = Xλ+ W(d)X + ε, (2.2)

with X an N×1 vector, λ a scalar parameter and W(d) the corresponding spatial/network

weight matrix, with d a spatial/network variable measuring the distance between the

different units. The elements of the matrix W(d) are estimable coefficients w(dij), for
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i 6= j, such that the diagonal values satisfy dii = 0 and w(dii) = 0. The distance between

units is defined as dij = f(zi, zj), with {zi, zj} realizations of the random variable Z

evaluated at units i and j, and f(·, ·) is a function defined over the positive real line and

satisfying the properties of a metric.

Our objective is to estimate these parameters from a sample of N observations. To

do this, we model the weight function as a functional coefficient such that the elements

w(dij) are interpreted as realizations of w(d), with d ∈ R+, see Pinkse, Slade, and Brett

(2002) and Sun (2016) for similar settings. Then, model (2.2) can be expressed as

yi = λxi +
N∑
j=1
j 6=i

w(dij)xj + εi, i = 1, . . . , N. (2.3)

A neighboring unit is determined by the magnitude of dij and a bandwidth parameter h

that defines the width of the intervals covering the support χ of the network variable, that

is assumed to be compact. More specifically, there are K disjoint intervals constructed

from a grid of K points {z1, . . . , zK}. Let [zk − h, zk + h) be a generic interval of the

partition such that, for d ∈ χ, 1k(d) is an indicator function with 1k(d) = 1 if d belongs

to the interval and zero, otherwise. Similarly, let pk = P{d ∈ [zk − h, zk + h)} be the

probability of belonging to a given interval and such that
K∑
k=1

pk = 1.

The following assumptions impose the exogeneity of the regressors and independence

of the errors, and introduce regularity conditions on the functional coefficient and the

elements of the partition.

Assumption A.

(A1) {(xi, zi, εi)} is an iid sequence across index i and yi is generated from model

(2.3). The regressor E[x4
i ] <∞, for i = 1, . . . , N .

(A2) The functional coefficient w(d) is (q+1)-times continuously differentiable on (and

extension of) the compact set χ ⊂ R+, with q ≥ 0 fixed.

(A3) The network variable d ∈ χ is continuously distributed with Lebesgue density

that is bounded, and bounded away from zero on χ.

(A4) E[εi | Xi = x,Di = di] = 0 for di = {di1, . . . , di,i−1, di,i+1, . . . , diN}; σ2(x, d) =

E(ε2
i | Xi = x,Di = di) is continuous and bounded away from zero, and E[ε4

i | Xi =

x,Di = di] <∞, for all i and any (x, di) ∈ R× χN−1.

(A5) Let K denote the number of disjoint intervals covering the compact set χ. Then,

we require K/N → 0 and N/Kq+1 → 0 as K,N →∞.
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(A6) The number of intervals K depends on the tuning parameter h such that h �
K−1, where for scalars a and b, a � b denotes that C∗b ≤ a ≤ C∗b for positive constants

C∗ and C∗. Similarly, we assume pk � K−1. By construction, pk = K−1 if pk is exactly

the same across intervals.

Assumption A1 imposes the regressors to be iid and guarantees the fourth moment

of the regressors to be finite. This will be required for proving consistency of the sample

covariance matrices. Assumption A2 is a classical smoothness condition on the functional

coefficient that allows us to approximate the unknown function w(d) using local Taylor

expansions for each interval of the partition of the compact set. Assumption A3 guarantees

that all the intervals in the partitioning of the compact set are non-empty. Assumption A4

imposes moment conditions on the error term of the regression equation (2.3) conditional

on the vector of exogenous covariates X and D, with D a vector that contains for each unit

the network distance from the rest. The assumption also guarantees the smoothness of the

conditional variance as a function of the covariates, and the existence of the conditional

fourth moment of the error term. Importantly, the model accommodates the presence of

conditional heteroscedasticity. Assumption A5 imposes some regularity conditions on the

number of intervals characterizing the partition with respect to the order of the Taylor

expansion and the sample size. Assumption A6 introduces the asymptotic relationship

between the bandwidth parameter h defining the width of the intervals and the probability

of an observation belonging to them.

Under the above partition and noting that
K∑
k=1

1k(d) = 1, the functional coefficient can

be expressed as a Taylor expansion of order q, with q fixed, such that

w(d) =
K∑
k=1

q∑
m=0

1

m!
w(m)(zk)(d− zk)m1k(d) +R(d), (2.4)

with w(m)(zk) the mth−derivative of w(·) evaluated at zk; w
(0)(zk) = w(zk) the functional

coefficient evaluated at zk; and R(d) =
K∑
k=1

w(q+1)(ck)(d− zk)q+11k(d) the remainder of the

Taylor expansion, with ck ∈ (zk − h, zk + h).

Local polynomial approximations of functional coefficients are proposed in Fan and

Gijbels (1996), Cai and Li (2008), Cai and Xu (2008) and Cai and Xiao (2012), amongst

others. However, in contrast to these articles, the approximation proposed below is not

based on kernel smoothers of the neighboring observations but on a partitioning of the

compact set into disjoint intervals. More formally, let x̃
(km)
i =

N∑
j=1
j 6=i

xj(dij − zk)m1k(dij) be

regression variables indexed by k = 1, . . . , K and m = 0, . . . , q, and let γkm = 1
m!
w(m)(zk)

be the corresponding network regression coefficients. Similarly, let Ri =
N∑
j=1
j 6=i

R(dij)xj be

8



the aggregate remainder term. Plugging in the Taylor expansion in equation (2.3), and

using the above notation, we obtain the following regression model:

yi = λxi +
K∑
k=1

q∑
m=0

γkmx̃
(km)
i +Ri + εi. (2.5)

By applying a Taylor expansion to w(dij) around the different knots in the partition, we

reduce the dimension of the above infinite-dimensional problem with N2 parameters to a

regression model with K(q + 1) parameters with K,N →∞, K/N → 0, and q fixed.

A more convenient specification for estimation purposes is its matrix form:

Y = Xλ+ X Γ +R + ε, (2.6)

where Y = (Y1, . . . , YN)′ and X = [X1, . . . ,XK ] is a matrix of dimension N × K(q + 1).

Each Xk defines a N× (q+1) matrix with elements (x̃
(k0)
i , . . . , x̃

(kq)
i ). Similarly, the vector

of coefficients satisfies that Γ = (Γ′1, . . . ,Γ
′
K)′, with Γk = (γk0, . . . , γkq)

′. The vector

ε = (ε1, . . . , εN)′ is the error term and R is a vector with the remainder terms Ri for

i = 1, . . . , N .

2.2 Nonparametric model with endogenous network effects

Spillovers in the SLX model are transmitted only through the covariates to the depen-

dent variable. The presence of endogenous spatial effects has received the attention of

researchers for several reasons. McMillen (2012) shows that endogenous spatial effects

may be the result of omitted variables and misspecification of the exogenous spatial ef-

fects. Brueckner (2006) provides a general framework for a class of theoretical models

of spatial interaction among local governments that lead directly to the type of SAR

models implemented in the spatial econometrics literature. Sun (2016) uses the latter ap-

proach to motivate the presence of endogenous spatial effects as part of a reaction function

yi = R(y−i , xi), in which yi is an outcome variable from jurisdiction i, y−i is a vector con-

taining the observations from the rest of jurisdictions and xi contains the characteristics

of jurisdiction i. See Pinkse, Slade, and Brett (2002) for a similar motivation of empirical

endogenous spatial effects on a model of price competition.

In this subsection, we extend the NLX model proposed in (2.3) to accommodate the

presence of endogenous network effects. Following Sun (2016) and Koroglu and Sun

(2016), these effects are modelled using a functional coefficient w̃(dij) such that

yi =
N∑
j=1
j 6=i

w̃(dij)yj + λxi +
N∑
j=1
j 6=i

w(dij)xj + εi, i = 1, . . . , N. (2.7)

In contrast to these authors, we approximate the functional coefficient using a Taylor

expansion over disjoint intervals of a partition of the compact space of the network variable
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and not as a series expansion of orthonormal basis functions. Following the same steps

as above, we obtain

w̃(d) =
K∑
k=1

q∑
m=0

1

m!
w̃(m)(zk)(d− zk)m1k(d) + R̃(d), (2.8)

with w̃(m)(zk) the mth−derivative of w̃(·) evaluated at zk; w̃
(0)(zk) = w̃(zk) the functional

coefficient evaluated at zk; and R̃(d) =
K∑
k=1

w̃(q+1)(c̃k)(d− zk)q+11k(d) the remainder of the

Taylor expansion, with c̃k ∈ (zk − h, zk + h). Similarly, let ỹ
(km)
i =

N∑
j=1
j 6=i

yj(dij − zk)m1k(dij)

be the endogenous variables indexed by k = 1, . . . , K and m = 0, . . . , q, and let γ̃km =

1
m!
w̃(m)(zk) be the network coefficients for the endogenous regressors; R̃i =

N∑
j=1
j 6=i

R̃(dij)yj is

the aggregate remainder term. Then,

yi =
K∑
k=1

q∑
m=0

γ̃kmỹ
(km)
i + λxi +

K∑
k=1

q∑
m=0

γkmx̃
(km)
i +Ri + εi, (2.9)

with Ri = Ri + R̃i the approximation error aggregating the exogenous and endogenous

error terms. In matrix form, we obtain

Y = Y Γ̃ +Xλ+ X Γ +R + ε, (2.10)

with Y = [Y1, . . . ,YK ] a matrix of dimension N ×K(q + 1), where Yk is a N × (q + 1)

matrix with elements (ỹ
(k0)
i , . . . , ỹ

(kq)
i ). Similarly, the vector of coefficients satisfies that

Γ̃ = (Γ̃′1, . . . , Γ̃
′
K)′, with Γ̃k = (γ̃k0, . . . , γ̃kq)

′.

3 Parameter estimation

This section studies the estimation of the NLX model and its extension incorporating

endogenous network effects. The first model is estimated using the theory on sieve re-

gression and partitioning estimators, see Newey (1997) and Cattaneo, Farrell, and Feng

(2020). The model with endogenous network effects is estimated using GMM methods

and is inspired by the models in Sun (2016) and Koroglu and Sun (2016).

3.1 Partitioning estimator for NLX model

Using the partitioned inverse, a suitable estimator of λ is

λ̂ =
(
X̂ ′uX̂u

)−1

X̂ ′u(Y − Ỹ ), (3.1)
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with X̂u = MXX, where MX = IN −PX and PX = X(X′X)−1X′. Similarly, Ỹ = PXY is the

projection of Y on X = [X1, . . . ,XK ]. This matrix is partitioned in blocks such that each

of the network parameters is estimated from the partitioned regression as

Γ̂k =

(
N∑
i=1

X′kiXki

)−1 N∑
i=1

X′ki(yi − xiλ̂), (3.2)

for each Γ̂k = (γ̂k0, . . . , γ̂kq)
′, see Cattaneo and Farrell (2013) for details on partitioned

regressors. The estimator of w(d) is obtained from the Taylor expansion (2.4) as

ŵ(d) =
K∑
k=1

q∑
m=0

γ̂km(d− zk)m1k(d) =
K∑
k=1

Γ̂′kvk(d)1k(d), (3.3)

with vk(d) = [1, (d− zk), (d− zk)2, . . . , (d− zk)q]′.
Other important quantity for making statistical inference about the network param-

eters is the variance of the parameter estimators. Let Φ0 = E[X ′MXX] and Ψ0 =

E[X ′MXXε
2]. The sample counterparts are Φ̂ = 1

N

N∑
i=1

X̂ ′uiX̂ui and Ψ̂ = 1
N

N∑
i=1

X̂ ′uiX̂uie
2
i ,

where ei = yi − λ̂xi −
K∑
k=1

Xki Γ̂k. Then,

V̂
(
λ̂
)

=
1

N
Φ̂−1Ψ̂Φ̂−1. (3.4)

Similarly, we will show in the following section that an appropriate estimator of the

variance of the network parameter estimator is

V̂
(

Γ̂k

)
=

1

αNpk
Q̂−1
k ÂkQ̂

−1
k , (3.5)

with αN = N(N−1) a standardizing constant for the network coefficient. Note that Qk =
1

(N−1)pk
E[X′kiXki] = E[X

′
k,ijXk,ij]/pk, withXk,ij = (xj1k(dij), xj(dij−zk)1k(dij), . . . , xj(dij−

zk)
q1k(dij)) such that a suitable estimator is Q̂k = 1

αNpk

N∑
i=1

N∑
j=1
j 6=i

X
′
k,ijXk,ij. Similarly, we de-

fine Âk = 1
αNpk

N∑
i=1

N∑
j=1
j 6=i

X
′
k,ijXk,ije

2
i as a suitable estimator of Ak = 1

(N−1)pk
E[X′kiXkiε

2
i ] =

E[X
′
k,ijXk,ijε

2
i ]/pk, under assumption A1. From this expression, a natural estimator of

the variance of ŵ(d) in (3.3) is

V̂ (ŵ(d)) =
K∑
k=1

v′k(d)V̂ (Γ̂k)vk(d)1k(d). (3.6)

11



3.2 GMM estimator for the nonparametric spatial Durbin model

The endogeneity of the spatial Durbin model in (2.10) invalidates the approach proposed

for the nonparametric NLX model. In this case a viable estimation approach producing

consistent parameter estimates is the application of GMM under a suitable choice of

instrumental variables. There are K(q + 1) parameters associated to the endogenous

regressors and K(q+1)+1 parameters associated to the exogenous regressor X evaluated

over different elements of the partition. Let Xreg = [Y, X,X] a N×(2K(q+1)+1) matrix,

ΓAll = [Γ̃′, λ,Γ′]′ the associated (2K(q+ 1) + 1)× 1 vector and IVN a N ×N matrix with

row elements IVNi = (xi, di) containing the exogenous instruments. The GMM estimate

of ΓAll is obtained from the set of orthogonal moment conditions

E[IV ′N(Y − XregΓAll)] = 0,

and, more specifically, from minimizing the following objective function

min
{ΓAll}

{(Y − XregΓAll)
′ IVN IV ′N (Y − XregΓAll)} .

The solution to this problem yields the following vector of parameter estimates

Γ̂All =
(
X′reg IVN IV ′N Xreg

)−1 X′reg IVN IV ′N Y. (3.7)

Sun (2016) and Koroglu and Sun (2016) provide conditions that guarantee the existence

and consistency of the GMM estimator. These conditions are similar to the above set of

assumptions but also contain certain additional conditions that guarantee the invertibility

and boundedness of the matrices IN−WY and X′regIVNIV ′NXreg, with IN theN×N identity

matrix; WY is a N ×N matrix with element (r, s) given by w̃(drs) for r, s = 1, . . . , N , see

Assumption A1 in Sun (2016).

The above estimator (3.7) is inefficient as also discussed by these authors in a related

setting. As in Koroglu and Sun (2016), we do not pursue an efficient estimator of ΓAll
obtained from an optimal choice of instruments due to the potentially large number of

regressors in Xreg. We simply require that the number of moment conditions N - equal to

the number of instrumental variables - is greater than the number of parameters 2K(q +

1) + 1 to be estimated. Additionally, the matrix E[IV ′NXreg] needs to have a full column

rank. Under these conditions, the asymptotic properties of the estimator (3.7) follow from

extending the asymptotic analysis of the partitioning estimator to a GMM setting. The

formal analysis of these properties is, however, beyond the scope of this study. Thus, in

what follows, we derive the asymptotic theory for the partitioning estimator corresponding

to the NLX approach and leave the study of the asymptotic properties of the GMM

estimator for future research.
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4 Asymptotic convergence of the NLX estimator

This section presents pointwise and uniform convergence results for the functional estima-

tor ŵ(d) in (3.3). The section also presents results necessary to make asymptotic inference

on the pointwise estimates, and explores uniform approximations and convergence results

when the estimator is considered a process in d ∈ χ. The following regularity conditions

guarantee the existence of the population covariance matrices and suitable conditions for

applying the law of large numbers and the central limit theorem in an iid setting.

Assumption B. The matrices Φ0 and Ψ0 are positive definite, such that ‖Φ0‖ < ∞,

‖Ψ0‖ <∞, ‖Φ−1
0 ‖ <∞ and ‖Ψ−1

0 ‖ <∞. Similarly, we impose E[‖X ′MXX‖2] <∞. We

also assume ‖Qk‖ <∞ and ‖Ak‖ <∞, for k = 1, . . . , K.

Conditions in assumption B guarantee the existence and positive definiteness of the pop-

ulation covariance matrices Φ0, Ψ0, Qk and Ak, for k = 1, . . . , K. This assumption is

sufficient to show that ‖Φ̂ − Φ0‖ = op (1). The following result presents convergence

results between the network covariance matrices.

Lemma 1.- Under assumptions A and B, for k = 1, . . . , K, it follows that ‖Q̂k −Qk‖ =

Op

(
Kν
√
N

)
, with ν = 0, if dij 6= dji, and ν = 1/2 if the network variable is symmetric

(dij = dji, for all i, j = 1, . . . N) as K,N →∞.

These results also allow us to derive the consistency of the slope parameter estimator λ̂

and the network parameter estimators Γ̂k, for each k = 1, . . . , K. More formally,

Proposition 1.- Under assumptions A and B, it follows that ‖λ̂− λ‖ = Op(1/
√
N) and

‖Γ̂k − Γk‖ = Op(
√
K/N), for k = 1, . . . , K, as K,N →∞.

The above result illustrates the effect of considering all units for estimating the network

functional coefficient. The choice of a partitioning type estimator introduces an additional

effect produced by dividing the compact set into K disjoint intervals. The proof of these

results is included in the appendix.

Proposition 2.- Under assumptions A and B,
√
N(λ̂− λ)

d→ N
(
0,Φ−1

0 Ψ0Φ−1
0

)
. (4.1)

These results allow us to derive the uniform convergence of the estimator of the functional

coefficient.
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Theorem 1.- Under assumptions A and B,

sup
d∈χ
|ŵ(d)− w(d)| = Op

(√
K/N +K−(q+1)

)
. (4.2)

The uniform convergence is determined by a variance term
√
K/N given by the estimation

of the network parameters and a bias term K−(q+1) driven by the approximation error

due to the remainder terms of the Taylor expansions evaluated at different intervals.

The following auxiliary results are useful for obtaining the asymptotic distribution of the

estimator of the functional coefficient.

Lemma 2.- Under assumptions A and B, and the result in Proposition 1, for every

k = 1, . . . , K, we have ‖Âk − Ak‖ = Op

(
1√
N

)
.

Lemma 3.- Under assumptions A and B, for k = 1, . . . , K, the estimator (3.5) satisfies

that

V (Γ̂k) =
1

αNpk
Q−1
k AkQ

−1
k +Op

(
K

N3

)
.

This result can be extended to derive the asymptotic convergence of the variance estimator

(3.6). To do this, we introduce further notation. Let VK(d) ≡ αN
K∑
k=1

v′k(d)V (Γ̂k)vk(d)1k(d).

Similarly, we define V̂K(d) =
K∑
k=1

v′k(d)Q̂−1
k ÂkQ̂

−1
k vk(d)1k(d)/pk.

2

Proposition 3.- Under assumptions A and B, for k = 1, . . . , K and any d ∈ χ fixed, it

holds that

(i) |V̂K(d)− VK(d)| = Op (K/N).

(ii) V
(√

αN(ŵ(d)− w(d))
)

= VK(d) +O(N/K2(q+1)),

Therefore, under the regularity conditions in assumption A5, a consistent estimator

of V
(√

αN(ŵ(d)− w(d))
)

is V̂K(d). More formally, applying the triangular inequality,

Proposition 3 shows that

|V (
√
αN(ŵ(d)− w(d)))− V̂K(d)| = O(N/K2(q+1)) +Op(K/N) = Op(K/N), (4.3)

2Note that knowledge of the probability pk is not required for obtaining V̂K(d). This is so because pk
cancels out with the covariance estimators Q̂−1k ÂkQ̂

−1
k .
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under assumption A5.

The following theorem presents the asymptotic distribution of the estimator of the

functional coefficient.

Theorem 2.- Under assumptions A and B, for any d ∈ χ fixed, it follows that

√
αN

ŵ(d)− w(d)

V̂
1/2
K (d)

d→ N (0, 1) . (4.4)

The convergence rate of the estimator reflects the influence of neighboring effects.

This result is the basis of pointwise tests for the presence of network effects given by

H0 : w(d) = 0 against HA : w(d) 6= 0, for some d ∈ χ fixed. Importantly, this result

can be also extended to the functional space if ŵ(d) is considered a process in d ∈ χ.

Unfortunately, the stochastic process ŵ(d) is not asymptotically tight and, therefore,

does not converge weakly in L∞, where L∞ denotes the set of all uniformly bounded real

functions on χ equipped with the uniform norm. Nevertheless, the weak convergence of

the above process can be obtained adapting the strong approximation results derived in

Section 6 of Cattaneo, Farrell, and Feng (2020). We state the following result, the proof

of which is obtained from the application of the asymptotic results by these authors.

Proposition 4.- Under assumptions A and B, the estimator ŵ(d), for d ∈ χ, satisfies

that
√
αN

ŵ(d)− w(d)

V̂
1/2
K (d)

w→ G(d), (4.5)

with
w→ denoting weak convergence and G(d) a zero-mean Gaussian process defined on

d ∈ χ.

As a byproduct of this result, the asymptotic distribution of the supremum functional

can be obtained as

√
αN sup

d∈χ

∣∣∣∣∣ŵ(d)− w(d))

V̂
1/2
K (d)

∣∣∣∣∣ d→ sup
d∈χ
|G(d)| , as N →∞. (4.6)

Its proof follows from the continuous mapping theorem applied to the supremum. The

next section introduces a test for the presence of network effects based on the above

results, and discusses different methods for model selection.
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5 Hypothesis testing and model selection

5.1 Hypothesis testing

This subsection exploits the above asymptotic theory to construct different hypothesis

tests. Although the focus is on testing for the presence of network effects, we also introduce

a framework to statistically assess the functional form of w(d). In our context, testing

for the presence of network effects can be formulated as H0 : sup
d∈χ
|w(d)| = 0, against the

alternative HA : sup
d∈χ
|w(d)| > 0. The null hypothesis can be modified to evaluate specific

functional forms of w(d). In this case, the hypothesis of interest is H0f : sup
d∈χ
|w(d) −

f(d)| = 0, with f(·) some known functional specification of d ∈ χ, against the alternative

HAf : sup
d∈χ
|w(d)− f(d)| > 0.

Following Davies (1977, 1987), we propose the test statistic

TN =
√
αN sup

d∈χ

∣∣∣∣∣ŵ(d)− f(d)

V̂
1/2
K (d)

∣∣∣∣∣ , (5.1)

where the functional form f(d) depends on the null hypothesis under study. Hypothesis

tests involving nuisance parameters under the null have been widely investigated in the

time series literature and, in particular, in threshold models and structural break testing.

The seminal contribution of Andrews and Ploberger (1994) proposes alternative tests

based on average weighted and average exponential statistics. Hansen (1996) develops a

Wald-type test that is made operational through a p-value transformation.

Theorem 3: Under assumptions A and B, and the null hypothesis of interest (H0 or

H0f), it holds that

TN
d→ sup

d∈χ
|G(d)|, as N →∞, (5.2)

with G(d) the zero-mean Gaussian process defined above.

Its proof follows as an application of the asymptotic result (4.6), obtained by replacing

w(d) by the null hypothesis of interest.

Obtaining asymptotic critical values for these tests is difficult because the asymptotic

distribution is non-standard and cannot be tabulated. Fortunately, simulation and re-

sampling methods can be applied to approximate the critical values in finite samples, see

Andrews (1993), Hansen (1996) and, more recently, Cattaneo, Farrell, and Feng (2020).

We proceed now to discuss a p-value transformation method for testing the null hypoth-

esis of interest. We operate conditionally on a realization of {(xi, yi)}Ni=1, denoted as ωN .
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Expression (8.16) in the mathematical appendix shows that

√
αN

ŵ(d)− w(d)

V
1/2
k (d)

=

1√
αNpk

N∑
i=1

K∑
k=1

vk(d)′Q̂−1
k X′kie0i1k(d)

V
1/2
k (d)

+ op (1) ,

where e0i are the residuals of the data generating process obtained under the null hy-

pothesis, e.g. e0i = yi −Xiλ̂, with λ̂ the OLS estimator of the regression model without

network effects obtained under the null hypothesis H0 : sup
d∈χ
|w(d)| = 0.

The objective is to construct independent replicas of the test statistic TN for this case.

Let G?
N be a conditional zero-mean Gaussian process with the same covariance kernel

as G(d). This process can be simulated by generating a vector of iid random variables

ε = (ε1, . . . , εN)′ to construct the simulated residuals e?0 = e0⊗ε, with ⊗ denoting element-

by-element multiplication. Then,

G?
N(d) =

1√
αNpk

N∑
i=1

K∑
k=1

vk(d)′Q̂−1
k X′kie?0i1k(d)

V
1/2
k (d)

, (5.3)

and T ?N = sup
d∈χ
|G?

N(d)|.

Using the same arguments as in Cattaneo, Farrell, and Feng (2020), we show without

proof that the p-value obtained from the simulated process G?
N converges to the asymp-

totic p-value of the test under the null hypothesis. More formally,

PωN {T ?N > TN} → PH0

{
TN > sup

d∈χ
|G(d)|

}
, as N →∞, (5.4)

with PωN denoting a probability distribution function conditional on the realization of the

sample ωN , and PH0 the probability distribution of sup
d∈χ
|G(d)|.

Although the distribution of T ?N is not directly observed, it can be approximated to

any degree of accuracy by conditionally operating on ωN . The algorithm to compute the

p-value of the test is described below.

Algorithm:

1. Construct a grid of K points Z̄ = [z1, . . . , zK ], with z1 = h and zk = zk−1 + 2h, for

k = 2, . . . , K. This grid characterizes a partition of the set χ = [0, C] that spans the

support of the network variable dij measuring the distance between the regressors xi
and xj, for i, j = 1, . . . , N , such that dij ∈ χ. For a given h, we choose the number

of intervals K as K = C/2h and satisfying the conditions in assumption A5.
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2. Compute the test statistic TN =
√
αN sup

d∈D

∣∣∣∣ ŵ(d)−f(d)

V̂
1/2
K (d)

∣∣∣∣, with f(d) denoting the null

hypothesis; D denotes a discrete set of equally-distant points inside χ. This set of

points characterizes a finer grid of the interval χ than Z̄.

3. For a given realization ωN = {xi, yi}Ni=1, execute the following steps for b = 1, . . . , B:

(a) Generate {ε(b)i }Ni=1 iid(0, 1) random variables independent of the data to con-

struct the simulated residuals e
?(b)
0 = e0 ⊗ ε(b), with e0 the vector of residuals

of regression model (2.3) under the null hypothesis H0. Then, compute the

simulated process (5.3).

(b) Store the bootstrap test statistic

T
?(b)
N = sup

d∈D
|G?(b)

N (d)|.

This algorithm yields a random sample ofB observations from the distribution of sup
d∈χ
|G?

N(d)|.

Using the Glivenko-Cantelli theorem and previous assumptions, the empirical p-value con-

ditional on ωN defined by

p̂?N,B =
1

B

B∑
b=1

1(T
?(b)
N > TN),

converges in probability to PωN

{
T
?(b)
N > TN

}
as B →∞.

5.2 Model selection

The estimation of the model parameters depends on the choice of h. This choice deter-

mines the number of intervals K covering the compact set χ and, hence, the quality of

the approximation of the function w(d). We do not propose a formal selection method for

choosing the bandwidth. Alternative methods for partitioning estimators are proposed

in Cattaneo and Farrell (2013) and Cattaneo, Farrell, and Feng (2020), as seminal ex-

amples. Instead, we suggest off-the-shelf methods for bandwidth selection developed for

nonparametric regression models. For illustrative purposes, we consider χ ≡ [0, C].

We first discuss two different methods proposed for series estimation, see Mallows

(1973), Li (1987), and Wahba (1985), adapted to our setting. A review of these methods

can be found in the monograph by Li and Racine (2007). Thus, Mallows (1973) selects ĥ

such that

ĥM = arg min
{h}

{
σ̂2
e

(
1 +

C

Nh

)}
, (5.5)

with σ̂2
e = 1

N

N∑
i=1

e2
i obtained under conditional homoscedasticity of the error term. Craven
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and Wahba (1978) propose a generalized cross-validation method3. These authors select

ĥ such that

ĥGCV = arg min
{h}

{
σ̂2
e(

1− C
Nh

)2

}
. (5.6)

We also want to explore the role of the order of the Taylor expansion q in the approx-

imation of the functional coefficient w(d). This tuning parameter has a non-negligible

effect on the accuracy of the approximation because it directly affects the number of re-

gressors in (2.9). To account for this, we adapt the Akaike (AIC) and Bayesian (BIC)

information criteria to the present context as

ĥAIC = arg min
{h,q}

{
ln σ̂2

e + 2
(q + 1)dC/2he+ 1

N

}
, (5.7)

ĥBIC = arg min
{h,q}

{
ln σ̂2

e +
((q + 1)dC/2he+ 1)ln N

N

}
. (5.8)

Another issue to be considered for model selection is the choice of the variable that

determines the proximity between units. The network model presented herein can be

extended to assume that the network variable d is not known and has to be selected from

a set of candidates. A possibility is to be guided by theory and use a variable with a clear

network interpretation. For example, in spatial econometrics models, a natural network

variable is the geographical distance between observations. More generally, we can rely

on statistical techniques to determine the most suitable variable d for model (2.9). A

natural approach is to choose the variable that minimizes the mean square error. This

analysis goes beyond the scope of this paper and is left for future research.

6 Monte-Carlo simulations

This section explores the finite-sample approximation of the asymptotic results using

Monte Carlo simulations. We present four different exercises that illustrate i) the consis-

tency of the parameter estimates, ii) the rejection rates associated to the marginal t-tests

using the asymptotic distribution in Theorem 2 , iii) the empirical size and power of the

uniform tests H0 and H0f obtained from Theorem 3, and iv) the model selection proce-

dure to determine the optimal value of the tuning parameter h and choice of the order of

the Taylor expansion q.

3Other more sophisticated model selection procedures for series estimators can be found in the liter-

ature, for example, the leave-one-out cross-validation method of Stone (1974).
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The data generating process (DGP) considered for the simulation exercise is

yi = xiλ+
N∑
j=1
j 6=i

w(dij)xj + εi, for i = 1, . . . , N, (6.1)

with xi being realizations of a single covariate X distributed as a N(0, 1). For simplicity,

the regressor also acts as the network variable Z establishing the proximity between

units in the cross section, such that dij = |xi − xj|. The error term εi is modelled as

a N(0, log2 |1 + xi|) random variable that is uncorrelated to X but exhibits conditional

heteroscedasticity.4

Although our estimation procedure does not require knowledge of the parametric form

of the functional parameter w(·), we do need to impose a specification to fully characterize

the DGP in the simulation exercise. With this aim, two alternatives have been consid-

ered; the first specification corresponds to the exponential function w(dij) = β exp (−θdij),
while the second one is the Gaussian kernel w(dij) = β exp

(
−1

2
(θdij)

2), with β, θ > 0.

Both formulations are standard in the spatial econometrics literature for describing neigh-

boring effects, see Fischer and Wang (2011). The first specification represents expo-

nentially decaying spillover effects of xj on yi as dij increases. The second formulation

corresponds to the standard Gaussian kernel used in the nonparametric econometrics lit-

erature (Li and Racine 2007), as well as in locally-weighted and geographically-weighted

regressions, see Cleveland and Devlin (1988) and Wheeler and Páez (2010), respectively.

Throughout the Monte Carlo exercise, we implement B = 500 simulations and the

compact set is χ = [0, 1], such that K = 1/2h. We consider the following values h =

0.05, 0.075, 0.1 to assess the sensitivity of the estimates to the choice of tuning parameters.

The sample size is equal to N = 100, 250, 500 but results for N = 1000 are also available

upon request. The parameters characterizing the functional form of w(d) are β = 0.1 and

θ = 5, 9. This choice of parameters results in small network effects, however, as shown

below, the test statistic (4.4) has considerable power to reject the null hypothesis under

the presence of such network effects. We also consider θ = 7 in the study of the asymptotic

coverage rate α corresponding to the (1− α)-confidence interval of w(d) constructed as[
ŵ(d)− z1−α/2V̂

1/2
K (d)/

√
αN , ŵ(d) + z1−α/2V̂

1/2
K (d)/

√
αN

]
, (6.2)

with V̂K(d) the estimator (3.6) for a given d, and zα the critical value of a standard Normal

distribution function at an α significance level.

6.1 Consistency of the parameter estimates

The consistency of the parameter estimators (3.1) and (3.3) is assessed through the analy-

sis of bias and root mean square error (RMSE). Table 1 reports the bias of the parameter

4For the sake of presentation, the simulation exercise only considers one covariate but results for a

model with several regressors are available from the authors upon request.
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estimator λ̂ and ŵ(d) for two regression models given by λ = 1, 0.25, respectively. The

left panel corresponds to the specification of w(d) given by an exponential function, while

the right panel considers w(d) given by a Gaussian kernel. Unreported simulations also

consider the case γ = 0.5. Table 2 reports the corresponding RMSE for the different

DGPs.

For the sake of presentation, we restrict our simulation exercise to show the influence of

the closest neighbors. To do this, only the parameter estimates for d = {h/2, h, 3h/2, 2h}
are reported. Results for the remaining values are available from the authors upon request.

The figures displayed in Table 1 do not show evidence of bias in any direction and decreases

as the sample size increases. The results in Table 2 are more conclusive; the RMSE

decreases monotonically to zero as the sample size increases providing strong empirical

evidence on the consistency of the parameter estimators of w(d), for different values of d

in the interval [0, 1].

6.2 Empirical coverage rate and rejection probabilities

This exercise studies the finite-sample coverage probability of the asymptotic confidence

intervals for λ and w(d), for a discrete grid of values d = {h/2, h, 3h/2, 2h}, under het-

eroscedasticity of the error term. To do this, we compute the empirical fraction of times

the true parameters λ and w(d) are outside the above (1 − α)-confidence intervals for

α = 0.05. Tables 3 and 4 report, respectively, the empirical coverage rates α̂ for the

regression models characterized by λ = 1, 0.25. In line with the previous subsection, the

left panel studies the exponential function and the right panel the functional specification

of w(d) given by the Gaussian kernel. The simulated results show empirical rates close

to 0.05 that, in most cases, are slightly above the nominal coverage rate. To study the

relationship between the empirical coverage probability, the sample size and the func-

tional form of w(d), we have also considered θ = 7 as an additional DGP. The empirical

coverage rates provide very satisfactory results across the two functional specifications of

w(d), different values of θ, and sample sizes. Further, the coverage rates converge to the

nominal ones at α = 0.05 as the sample size increases.

Tables 5 and 6 study the power of the marginal t-tests obtained from the asymp-

totic convergence result (4.4) for the pointwise null hypotheses H0 : λ = 0 against the

alternative HA : λ 6= 0, for λ = 1, 0.25, and H0 : w(d) = 0 vs. HA : w(d) 6= 0, for

d = {h/2, h, 3h/2, 2h}. We should note that the DGP is generated under the alternative

hypothesis given by w(d) following an exponential function (left panel) or a Gaussian

kernel function (right panel). To be consistent with the study of the empirical coverage

probability at α = 0.05, we consider β = 0.1 and θ = 5, 7, 9 as data generating processes

for both the exponential and Gaussian kernel functions. The results of this simulation

exercise show a strong performance of the t-tests to reject the null hypothesis across val-

ues of d in the grid and DGPs. The empirical power of the test is large in most instances
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and achieves values above 0.80 for N = 500 in most scenarios.

6.3 Size and power of the uniform test

The study of the power of the marginal t-tests confirms empirically their suitability for

detecting network effects for specific values of d given by d = {h/2, h, 3h/2, 2h}.5 This

subsection extends this analysis by evaluating the finite-sample size and power of the

uniform test presented in (5.1) and Theorem 3. We consider two different null hypotheses

given by i) the absence of network effects, and ii) a specific functional form for w(d) given

by the exponential function.

To assess the presence of network effects, data are generated under the null hypothesis

H0 : sup
[0,1]

|w(d)| = 0. This implies that the DGP is a standard cross-sectional regression

model. For the simulation exercise, we consider λ = 1 and β = 0.1. The top panel

of Table 7 reports empirical size and power for the null hypothesis for a nominal size

α = 0.05. Due to space constraints, we only consider θ = 5 and 9 but results for θ = 7

are also available upon request. The figures show reliable empirical size estimates for the

uniform test TN for different values of h across sample sizes. The same procedure has been

implemented to evaluate the specification of the functional coefficient w(d). In this case,

the null hypothesis of interest is H0f : w(d) = exp (−θd), for d ∈ [0, 1]. The empirical size

and power of the test are reported in the bottom panel of Table 7. We observe similar

findings as when testing for network effects; i.e., empirical power is extremely high even

when the test is slightly undersized.

6.4 Model selection

This subsection presents a Monte Carlo exercise that examines the suitability of the

loss functions discussed in Subsection 5.2 for model selection under different values of

the order of the Taylor expansion. We simulate 500 draws of the data generating pro-

cess for λ = 1 with w(d) given by an exponential function, and compute the optimal

values of h and q using different information criteria. We consider a grid given by

h = {0.05, 0.075, 0.10, 0.125, 0.15}, and q = 1, 2. For simplicity, we consider conditional

homoscedasticity of the error term in the DGP (6.1).

Table 8 reports the average optimal h over 500 simulations and its standard deviation

for five loss functions. The first column reports the optimal h obtained from minimizing

the RMSE in the regression model (2.9). The second and third columns display hM and

hGCV as defined in expressions (5.5) and (5.6), respectively. The last two columns show

the optimal values of the tuning parameter according to the Akaike and Bayesian infor-

mation criteria introduced, respectively, in (5.7) and (5.8). Sample standard deviations

are reported in parentheses.

5Results for other values of d ∈ [0, C] are available from the authors upon request.
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The results show overwhelming evidence on the suitability of h = 0.05 as tuning pa-

rameter. The standard deviation is very low, suggesting that this choice is optimal in

most simulations and across model selection methods. The Akaike and Bayesian infor-

mation criteria provide additional value to the model selection exercise. These criteria

explicitly consider the parameter q in the loss function, penalizing an increasing order in

the Taylor expansion of w(d). Table 8 shows that the quadratic approximation improves

over the linear one with respect to both information criteria.

7 Empirical application

This section extends the analysis carried out in Levinson and O’Brien (2019) by incorpo-

rating neighboring effects in the relationship between households’ income and the pollution

generated to produce the goods and services they consume. These authors construct a

rich dataset for studying environmental Engel curves (EECs) for the U.S. for each year

over the period 1984 and 2012. Levinson and O’Brien (2019) has two main objectives.

The first one is to find the shape of the relationship between income and pollution, the

magnitude of the slope, and study its curvature. The second aim is to analyze shifts in the

EEC in terms of income increases (movements along the curve), or in terms of regulation-

induced price increases (movements of the curve). By conducting the analysis separately

for each year, Levinson and O’Brien (2019) are able to control for prices, available prod-

ucts, and regulations. These authors find that the EECs are upward sloping, reflecting

that richer households are more pollutant, and that the rate at which pollution increases

with income is less than one-for-one. In addition, pollution increases at a decreasing rate

with income over time, i.e., EECs are concave. The latter result shows that households

consume a basket of goods that are less pollutant, both directly and indirectly, in recent

years.

Levinson and O’Brien (2019) construct two types of EECs: one using only income as

covariate, and a multivariate model that incorporates households’ characteristics (up to

18 regressors6). In the present application, we focus on their first model that explains

pollution as a function of after-taxed income and its square. These authors estimate sep-

arate curves for five major air pollutants – particulates smaller than 10 microns (PM10),

volatile organic compounds (VOCs), nitrogen oxides (NOx), sulfur dioxide (SO2), and

carbon monoxide (CO) – because they are not measured in the same units, and have dif-

ferent environmental consequences. By adopting this approach, and taking into account

the literature on peer effects in household consumption and energy behavior (Agarwal,

6See Table 2 in Levinson and O’Brien (2019) for a detailed description of these variables. As pointed

out by these authors, “adding those common demographic variables has little effect on the conclusions

about the shapes of EECs or how they have changed over time” (p.122). Furthermore, endogeneity

between household income and household pollution is not an issue in this context as discussed by these

authors in page 124.
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Qian, and Zou 2021; De Giorgi, Frederiksen, and Pistaferri 2020; Wolske, Gillingham,

and Schultz 2020), we estimate the following specification:

pit = λ1tyit +
N∑
j=1
j 6=i

w(dij,t)yjt + λ2ty
2
it + εit, (7.1)

where pit and yit are pollution and after-tax income, respectively; εit is the error term

that satisfies E[εit | Yt] = 0, with Yt = (y1t, . . . , yNt), see footnote 2 about the absence

of endogeneity in this context. The coefficients are indexed by t because we run separate

regressions for each year.

The network structure establishing the proximity between individuals is determined

by similaries in after-tax income and captured by the functional coefficient w(dij,t), with

dij,t = |yit − yjt|, for i, j = 1, . . . , Nt, with Nt the number of households included in

the sample for a given year. For simplicity, we restrict the network effects to the linear

relationship between pollution and income. The estimation equation can be extended, at

the expense of a larger regression model, by also assuming network effects on the quadratic

component. Thus, using the specification presented in expression (2.9), the above model

can be approximated by

pit = λ1tyit +
K∑
k=1

q∑
m=0

γkm,ty
(km)
it + λ2ty

2
it + εit, (7.2)

with y
(km)
it =

N∑
j=1
j 6=i

yjt(dij,t − zk)
m1k(dij,t), and 1k(dij,t) = 1(|dij,t − zk| ≤ h). The re-

gression coefficients are γkm,t = 1
m!
w

(m)
t (zk), corresponding to the Taylor expansion for

m = 0, 1, . . . , q, with q = 2 in this application.

The dynamics of the parameters associated to the relationship between the different

pollutants and households’ after-tax income (λ1t) and its square (λ2t) are plotted in Fig-

ure 1. Although these parameters display a different magnitude across pollutants, they

suggest a positive relationship between pollution and income that, in line with Levinson

and O’Brien (2019), tends to decrease over time. In fact, the magnitude of the estimated

coefficients is very similar to that obtained by these authors for the quadratic model, see

the first column of their Table 2. The estimated EEC for PM10 using household data

from 1984 is concave, with a linear coefficient associated to after-tax income of 1.95, and

a negative coefficient on income squared of -0.03; both are statistically significant. Our

estimates are of a similar magnitude and significant at the 1% level. For completeness, we

also report the results for the other pollutants under study. In all cases, they also indicate

a concave-shaped, and statistically significant at 1%, relationship with household income.

More importantly, Figure 2 reports the estimates of the functional coefficients w(d) in

(7.2) that capture network effects for selected values of d, defined in terms of the optimal
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value of the tuning parameter. The optimality of h is determined using the Bayesian

information criterion7 and slightly varies between 0.225 and 0.25. In this application,

the network effects describe the explanatory power of households with similar after-tax

income on the pollution generated to produce the goods and services that households

consume. These neighboring effects are of small magnitude but statistically significant

at the 5% level, according to the p-values of the marginal t-tests for each coefficient, in

most periods. The analysis of NOx and SO2 pollutants yields parameter estimates of

a larger magnitude. Interestingly, the sign of the functional coefficients varies across h:

while we find positive neighboring effects for w(hopt/2), they are negative for w(3hopt/2)

and w(2hopt). The statistical significance of these neighboring effects is illustrated in

Figure 3. This chart reports the p-values of the uniform test TN in expression (5.1) over

the evaluation period. Despite their fluctuation, the results provide ample support to the

significance of neighboring effects in this context, adding further evidence to that obtained

from the marginal t-tests for the different realizations of the function w(d) discussed above.

The analysis is completed by studying the adjusted coefficient of determination (R2)

of the network regression model (7.2). The presence of heterogeneity in the explanatory

power across models and over time is shown at the top of Figure 4. More specifically,

the adjusted R2 fluctuates between 0.25 and 0.45. We should note that these figures are

particularly high given that the number of regressors of model (7.2) is (q + 1)Kopt + 2,

with Kopt = C
2hopt

. This number varies with the choice of the optimal h in each period

and model but is between 10 and 15 regressors. To attach a statistical figure to these

values we compute the F-test for the difference of the unadjusted R2 between the network

regression model and its cross-sectional counterpart given by the quadratic regression

model estimated by Levinson and O’Brien (2019). The p-values of the F-test, plotted at

the bottom of Figure 4, show overwhelming evidence of the statistical significance of the

augmented model given by considering the network variables compared to the benchmark

model given by the cross-sectional quadratic regression model.

8 Conclusions

This paper proposes a network regression model that extends standard spatial regression

models in several dimensions. Importantly, the spatial effects are modelled as a functional

coefficient indexed by a spatial variable. Our model is approximated by local piecewise

polynomials estimated over disjoint intervals of a partition of the domain of the spatial

variable. By doing so, we avoid model misspecification issues produced by imposing cer-

tain parametric structure to the spatial dependence. The second innovation is to extend

the SLX model by considering network spillover effects. The geographical distance is re-

7Similar results, available from the authors upon request, are obtained when the Akaike information

criterion is used.
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placed by a broader definition in which neighboring observations are close according to

some metric. The technical implications of this model are not trivial because the network

variable is stochastic. The NLX model proposed in this paper is also extended to incor-

porate endogenous spatial effects. This is done nonparametrically by considering local

Taylor expansions approximating the unknown functional coefficient capturing network

effects in the dependent variable.

These results are formalized by studying their asymptotic properties and proposing a

test for assessing statistically the presence of spillover effects. This is done using pointwise

hypothesis tests and uniform tests where the presence of network effects is tested over the

whole domain of the network variable.

The proposed methodology is illustrated in an empirical application studying envi-

ronmental Engel curves discussed in a recent influential work by Levinson and O’Brien

(2019). We find strong empirical evidence of neighboring effects on the relationship be-

tween different forms of environmental pollution and after-tax household income.
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Mathematical Proofs

Proof of Lemma 1. Let Qk = E[X
′
k,ijXk,ij]/pk, for each k = 1, . . . , K, as K,N →∞,

and, under assumption A1, let Q̂k = 1
αN

N∑
i=1

N∑
j=1
j 6=i

X
′
k,ijXk,ij/pk, withXk,ij = (xj1k(dij), xj(dij−

zk)1k(dij), . . . , xj(dij − zk)q1k(dij)). To show the asymptotic convergence of Q̂k to Qk as

stated in Lemma 1, it is sufficient to show that E[||Q̂k −Qk||2] = op(1). Thus,

E[‖Q̂k −Qk‖2] =

q∑
r=0

q∑
s=0

E

 1
α2
N

 N∑
i=1

N∑
j=1
j 6=i

(
x2
j(dij − zk)r(dij − zk)s1k(dij)− E

[
x2
j(dij − zk)r(dij − zk)s1k(dij)

])
/pk

2 .
Under assumptions A1, A5 and A6, the covariance terms cov(xri , (dij − zk)s1k(dij)) con-

verge to zero for r ≤ 4 and s ≤ q, as h → 0, with K,N → ∞. Then, it is sufficient to

study the above convergence result assuming that the variables are asymptotically mean

independent. Thus after tedious algebra, the above expression can be written as

E[||Q̂k −Qk||2] =
1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

E[x4
j ]E[(dij − zk)2(r+s)1k(dij)]/p

2
k



+
N − 2

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

E[x4
j ]E[(dij − zk)2r(dji − zk)2s1k(dij)1k(dji)]/p

2
k



+
N − 1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

N∑
l=1
l 6=i

E[x2
jx

2
l ]E[(dij − zk)2r(dil − zk)2s1k(dij)1k(dil)]/p

2
k



− N − 1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

N∑
l=1
l6=i

E[x2
j ]E[x2

l ]E[(dij − zk)2r(dil − zk)2s1k(dij)1k(dil)]/p
2
k

 .

The iid cross-sectional assumption in A1 entails the condition E[x2
jx

2
l ] = E[x2

j ]E[x2
l ], such

that

E[||Q̂k −Qk||2] =
1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

E[x4
j ]E[(dij − zk)2(r+s)1k(dij)]/p

2
k


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+
N − 2

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

E[x4
j ]E[(dij − zk)2r(dji − zk)2s1k(dij)1k(dji)]/p

2
k


=

1

αN

q∑
r=0

q∑
s=0

E[x4
j ]E[(dij − zk)2(r+s) | 1k(dij)]/pk

+
1

N

q∑
r=0

q∑
s=0

E[x4
j ]E[(dij − zk)2r(dji − zk)2s | 1k(dij)1k(dji)]

≤ C0

αN

q∑
r=0

q∑
s=0

h2(r+s)/pk +
C0

N

q∑
r=0

q∑
s=0

h2(r+s) = C0

(
K

αN
+ o(1) +

1

N

)(
1− h2(q+1)

1− h2

)2

= O

(
K

αN
+

1

N

)
,

with C0 some positive constant that reflects the finite character of the fourth moment of

xi imposed in A1, pk � K−1 under assumption A6, and
q∑
r=0

q∑
s=0

h2(r+s) =
q∑
r=0

h2r
q∑
s=0

h2s =(
1−h2(q+1)

1−h2

)2

. Therefore, we obtain E[||Q̂k − Qk||2] = O
(

1
N

)
such that ||Q̂k − Qk|| =

Op

(
1√
N

)
.

The above expression simplifies under symmetry of the network variable. In this case

dij = dji for all i, j = 1, . . . , N , such that

E[||Q̂k −Qk||2] =
N − 1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

E[x4
j ]E[(dij − zk)2(r+s)1k(dij)]/p

2
k


=

1

N

q∑
r=0

q∑
s=0

E[x4
j ]E[(dij − zk)2(r+s) | 1k(dij)]/pk

≤ C0

N

(
1− h2(q+1)

1− h2

)2

/pk = O

(
K

N

)
.

Then, ||Q̂k −Qk|| = Op

(√
K√
N

)
.

Proof of Proposition 1. The orthogonality condition X̂ ′uX = X ′MXX = 0, with 0 a

(p+ 1)×K(q + 1) matrix of zeros, implies that

λ̂− λ = Φ̂−1 1

N
X ′MXε+ Φ̂−1 1

N
X ′MXR. (8.1)

The consistency of the vector of parameter estimators is obtained by showing (i) ‖Φ̂ −
Φ0‖ = op(1) with ‖Φ0‖ < ∞, (ii) ‖ 1

N
X ′MXε‖ = oP (1) and (iii) ‖ 1

N
X ′MXR‖ = op (1) as

N →∞.
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The proof of condition (i) follows from the law of large numbers for iid sequences under

assumption A1. For condition (ii), under assumption A1, it is sufficient to show that
1
N2E[‖X ′MXε‖2] = o(1). This is, however, naturally satisfied under assumptions A1

and A4 that entail the existence of finite second moments of xi and εi. More formally,

1
N2E

[(
N∑
i=1

X ′iMXiεi

)2
]

= 1
N2

N∑
i=1

N∑
j=1

E
[
X ′iMXiεiX

′
jMXjεj

]
= 1

N
E [X ′iMXiXiε

2
i ], with MXi

and MXj columns of matrix MX, under the mutual independence between the error terms

in assumption A4. Now, applying the Cauchy-Schwarz inequality:

1

N
E
[
X ′iMXiXiε

2
i

]
≤ 1

N
E
[
(X ′iMXiXi)

2
]1/2

E
[
ε4
i

]1/2
= O(1/N),

under assumptions A4 and B.

Similarly, for condition (iii), the iid assumption in A1 implies that it is sufficient to

show that E[‖ 1
N
X ′MXR‖2] = o(1) as N → ∞. To show this, we write the expression as

1
N2E

[(
N∑
i=1

X ′iMXiRi

)2
]

= 1
N2

N∑
i=1

N∑
j=1

E
[
X ′iMXiRiX

′
jMXjRj

]
. In contrast to the preceding

case, there is cross-sectional dependence between the observations such that, applying the

Cauchy-Schwarz inequality,

E
[
X ′iMXiRiX

′
jMXjRj

]
≤ E

[
(X ′iMXiM

′
XjXj)

2
]1/2

E
[
R

2

iR
2

j

]1/2

. (8.2)

Under assumptions A1 and B, the first term is O(1). To study the convergence of the

second term, we have

E[R
2

iR
2

j ] = E


 N∑

j=1
j 6=i

R(dij)xj


2 N∑

l=1
l 6=j

R(djl)xl


2 (8.3)

=
N∑
j=1
j 6=i

N∑
l=1
l 6=i

N∑
j′=1
j′ 6=j

N∑
l′=1
l′ 6=j

E[xjxlxj′xl′R(dij)R(dil)R(djj′)R(djl′)]. (8.4)

Under assumption A1 imposing the independence between the different units, and using

similar algebra to the proof of Lemma 1, the leading term is (N−1)2E[x2
j ]E[x2

l ]E[R(dij)
2]E[R(dil)

2],

with E[R(dij)
2] =

K∑
k=1

(
β(q+1)(ck)

)2
E[(dij − zk)2(q+1) | 1k(dij) = 1]pk, such that

E[R
2

iR
2

j ] = (N − 1)2E[x2
j ]

2E[R(dij)
2]2 + o((N − 1)2) ≤ C0(N − 1)2

K∑
k=1

h4(q+1)p2
k + o((N − 1)2)

= C0(N − 1)2K−4q−5 + o((N − 1)2),
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with C0 > 0 an upper bound of max
k=1,...,K

{(β(q+1)(ck))
2}, and pk � K−1 and h � K−1,

under assumption A6. Therefore, E
[
X ′iMXiRiX

′
jMXjRj

]
= O

(
N/K2q+5/2

)
such that

‖ 1
N
X ′MXR‖ = Op

(√
N/Kq+5/4

)
. Then,

|λ̂− λ| = Op

(
1√
N

+

√
N

Kq+5/4

)
= Op

(
1√
N

)
= op(1), (8.5)

under assumption A5.

For the second part of the proof, expression (3.2) implies that

Γ̂k − Γk = Q̂−1
k

1

αN
X′kX(λ− λ̂)/pk + Q̂−1

k

1

αN
X′kR/pk + Q̂−1

k

1

αN
X′kε/pk. (8.6)

We study each right hand side term in (8.6) separately. First, using Lemma 1, ‖Q̂−1
k ‖ =

Op(1). Also,

‖ 1

αN

N∑
i=1

X′kixi(λ− λ̂)/pk‖ = |λ̂− λ| ‖ 1

αN

N∑
i=1

X′kixi/pk‖. (8.7)

Note from the analysis above that |λ̂ − λ| = Op(1/
√
N). To analyze the asymptotic

convergence of the above expression we study 1
α2
N
E

[(
N∑
i=1

X′kixi/pk
)2
]

. Under assumption

A1, E[xjxk] = 0 and E[xjxkx
2
i ] = 0, for j, k, i different values, such that the previous

expression is equal to 1
αN
Bk/pk, with Bk = E

 1
αN

N∑
i=1

N∑
j=1
j 6=i

X
′
k,ijXk,ijx

2
i /pk

. Note that

Bk = E[X
′
k,ijXk,ij | 1k(dij)]E[x2

i ] , that is finite, under assumptions A1 and B1. Then,

1
αN
Bk/pk = O

(
K
N2

)
such that ‖ 1

αN

N∑
i=1

X′kixi/pk‖ = Op

(√
K
N

)
and ‖Q̂−1

k
1
αN

N∑
i=1

X′kiXi(λ −

λ̂)/pk‖ = Op

( √
K

N3/2

)
.

For the second expression on the right hand side, we use the Cauchy-Schwarz inequality

to obtain

‖ 1

αN

N∑
i=1

X′kiRi/pk‖2 = ‖ 1

αN

N∑
i=1

N∑
j=1
j 6=i

X
′
k,ijRi/pk‖2 ≤

[
‖Q̂k −Qk‖+ ‖Qk‖

] 1

αN

N∑
i=1

R
2

i /pk.

Using Lemma 1, ‖Q̂k − Qk‖ = Op(1/
√
N) and, by assumption B, Qk = O(1). We

now study 1
αN

N∑
i=1

R
2

i /pk to obtain the consistency of the network parameter estimators.

33



A sufficient condition to show this is 1
α2
N

N∑
i=1

N∑
j=1

E
[
R

2

iR
2

j/p
2
k

]
. This condition is, however,

shown in expression (8.3) such that 1
N2

N∑
i=1

N∑
j=1

1
(N−1)2

E
[
R

2

iR
2

j/p
2
k

]
= O(K−4q−3). Therefore,

1
αN

N∑
i=1

R
2

i /pk = Op

(
K−2q−3/2

)
such that

(
1
αN

N∑
i=1

R
2

i /pk

)1/2

= Op

(
K−q−3/4

)
. Thus,

‖Q̂−1
k

1

αN

N∑
i=1

X′kiRi/pk‖ = Op (1)
(
Op(1/

√
N) +O (1)

)1/2

Op

(
K−q−3/4

)
= Op

(
K−q−3/4

)
.

Finally, we prove that ‖Q̂−1
k

1
αN

N∑
i=1

X′kiεi/pk‖ = Op

(√
K/N

)
. To do this, it is sufficient

to show that 1
α2
N
E

[(
N∑
i=1

X′kiεi/pk
)2
]

= O (K/N2). Under assumption A4, E[xjεi] =

0 and E[xjxkε
2
i ] = 0, for j 6= k, such that the previous expression is 1

αNpk
Ak, with

Ak = E

 1
αN

N∑
i=1

N∑
j=1
j 6=i

X
′
k,ijXk,ijε

2
i /pk

. Note that Ak = E[X
′
k,ijXk,ijε

2
i ]/pk, that is finite,

under assumptions A4 and B. Then, 1
αNpk

Ak = O
(
K
N2

)
such that ‖Q̂−1

k
1
αN

N∑
i=1

X′kiεi/pk‖ =

Op

(√
K
N

)
.

Putting together the different expressions, and for q ≥ 1 fixed, we obtain

‖Γ̂k − Γk‖ = Op

(√
K

N3/2

)
+Op

(
K−q−3/4

)
+Op

(√
K

N

)
= Op

(√
K

N

)
, (8.8)

under the conditions in Assumption A5. More specifically, the above convergence rate

holds if K−q−3/4/(K1/2/
√
αN) → 0 as K,N → ∞. This condition is guaranteed by

assumption A5.

Proof of Proposition 2. First, we note that

λ̂− λ = Φ̂−1 1

N
X̂ ′uε+ Φ̂−1 1

N
X̂ ′uR, (8.9)

using the property X̂ ′uX = X ′MXX = 0 with 0 a (p + 1)×K(q + 1) matrix of zeros. To

derive the asymptotic normality of the standardized parameter estimator, note from (8.9)

that √
N
(
λ̂− λ

)
= Φ̂−1 1√

N
X ′MXε+ Φ̂−1 1√

N
X ′MXR.

Therefore, we need to show that ‖ 1√
N
X ′MXR‖ = op(1) as N →∞. For this, it is sufficient

to note from condition (iii) of Proposition 1 that ‖ 1
N
X ′MXR‖ = O

(√
N/Kq+5/4

)
, for q

fixed. Then, ‖ 1√
N
X ′MXR‖ = O

(
N/Kq+5/4

)
= op(1), under assumption A5.
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Now, applying the central limit theorem to the above expression, we obtain

1√
N

N∑
i=1

X ′iMXεi → N(0,Ψ0), (8.10)

with Ψ0 = E [(X ′iMXεi)
2]. Furthermore, under assumptions A1 and B, and applying the

law of large numbers, Φ̂ = 1
N

N∑
i=1

X ′iMXXi is a consistent estimator of Φ0 = E[X ′MXX] such

that ‖Φ̂ − Φ0‖ = oP (1), with ‖Φ0‖ < ∞. With these results, we obtain the asymptotic

convergence in distribution:

√
N
(
λ̂− λ

)
→ N(0,Φ−1

0 Ψ0Φ−1
0 ). (8.11)

Proof of Theorem 1. To prove this result we combine expressions (2.4) and (3.3), and

apply the triangular inequality, such that

sup
d∈χ
|ŵ(d)− w(d)| ≤ sup

d∈χ

∣∣∣∣∣
K∑
k=1

(
Γ̂k − Γk

)′
vk(d)1k(d)

∣∣∣∣∣+ sup
d∈χ
|R(d)| .

For the first term, we note that

sup
d∈χ

∣∣∣∣∣
K∑
k=1

(
Γ̂k − Γk

)′
vk(d)1k(d)

∣∣∣∣∣ ≤ max
{k=1,...,K}

{
sup
d∈χ

∣∣∣(Γ̂k − Γk)
′vk(d)1k(d)

∣∣∣} .
Furthermore, applying the triangular inequality and Proposition 1, this quantity is bounded

by

max
{k=1,...,K}

{
‖Γ̂k − Γk‖ sup

d∈χ
|vk(d)1k(d)|

}
≤ Op

(√
K√
N

)
q∑

m=0

hm = Op

(√
K√
N

)
1− hq+1

1− h

= Op

(√
K/
√
N
)
.

For the second term, R(d) =
K∑
k=1

w(q+1)(ck)(d−zk)q+11k(d). Then, sup
d∈χ
|R(d)| ≤ C0 max

{k=1,...,K}
{hq+1},

with C0 a positive constant satisfying that max
{k=1,...,K}

|w(q+1)(ck)| ≤ C0. Therefore, sup
d∈χ
|R(d)| =

Op(K
−(q+1)). Then,

sup
d∈χ
|ŵ(d)− w(d)| = Op

(√
K√
N

+K−(q+1)

)
.
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Proof of Lemma 2. We proceed to show the asymptotic convergence between the es-

timator Âk = 1
αN

N∑
i=1

N∑
j=1
j 6=i

X
′
ijX ije

2
i /pk and Ak = E

[
X
′
k,ijXk,ijε

2
i /pk

]
. To obtain the asymp-

totic convergence it is sufficient to show that E[‖Âk − Ak‖2] = op(1). Note that

E[‖Âk − Ak‖2] = E

‖ 1

αN

 N∑
i=1

N∑
j=1
j 6=i

X
′
k,ijXk,ije

2
i − E

[
X
′
k,ijXk,ijε

2
i

] /pk‖2

 .
Using the triangular inequality and further algebra, this expression is bounded by

E

‖ 1

αN

 N∑
i=1

N∑
j=1
j 6=i

X
′
k,ijXk,ij(e

2
i − ε2

i )

 /pk‖2

+E

‖ 1

αN

N∑
i=1

N∑
j=1
j 6=i

(
X
′
k,ijXk,ijε

2
i − E

[
X
′
k,ijXk,ijε

2
i

])
/pk‖2

 .

For the first expression, we note that ei = εi + xi(λ − λ̂) +
K∑
k=1

Xki(Γk − Γ̂k) + Ri,

such that applying the Cauchy-Schwarz inequality, the asymptotic convergence of Q̂k,

and the convergence of the parameter estimators in Proposition 1, the expression con-

verges to zero in probability as K,N → ∞. For the second expression, using the

same steps as in Lemma 1, the conditional zero-mean error term in A4 implies that

E

‖ 1
αN

N∑
i=1

N∑
j=1
j 6=i

(
X
′
k,ijXk,ijε

2
i − E

[
X
′
k,ijXk,ijε

2
i

])
/pk‖2

 =

q∑
r=0

q∑
s=0

E

 1
α2
N

 N∑
i=1

N∑
j=1
j 6=i

(
x2
jε

2
i (dij − zk)r+s1k(dij)− E

[
x2
jε

2
i (dij − zk)r+s1k(dij)

])
/pk

2 .
After tedious algebra, the preceding expression can be written as

1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

N∑
l=1
l 6=i

E[x2
jx

2
l ε

4
i ]E[(dij − zk)2r(dil − zk)2s1k(dij)1k(dil)]/p

2
k


+

1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

N∑
l=1
l 6=i

N∑
l′=1
l′ 6=j

E[x2
l x

2
l′ε

2
i ε

2
j ]E[(dil − zk)2r(dil′ − zk)2s1k(dil)1k(dil′)]/p

2
k


− 1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

N∑
l=1
l 6=i

N∑
l′=1
l′ 6=j

E[x2
l ε

2
i ]E[x2

l′ε
2
j ]E[(dil − zk)2r(dil′ − zk)2s1k(dil)1k(dil′)]/p

2
k

 .
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Under assumptions A1 and A4, E[x2
l x

2
l′ε

2
i ε

2
j ] = E[x2

l ε
2
i ]E[x2

l′ε
2
j ]. Then, the above expres-

sion is equal to

1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

E[x4
jε

4
i ]E[(dij − zk)2(r+s)1k(dij)]/p

2
k


+

1

N2(N − 1)2

q∑
r=0

q∑
s=0

 N∑
i=1

N∑
j=1
j 6=i

N∑
l=1
l 6=i,j

E[x2
jx

2
l ε

4
i ]E[(dij − zk)2r(dil − zk)2s1k(dij)1k(dil)]/p

2
k


=

1

N(N − 1)

q∑
r=0

q∑
s=0

E[x4
jε

4
i ]E[(dij − zk)2(r+s) | 1k(dij)1k(dil)]/pk

+
1

N

q∑
r=0

q∑
s=0

E[x2
jx

2
l ε

4
i ]E[(dij − zk)2r(dil − zk)2s | 1k(dij)1k(dil)]

≤ O

(
K

N2

)
+
C0

N

q∑
r=0

q∑
s=0

h2(r+s) = O

(
K

N2

)
+
C0

N

(
1− h2(q+1)

1− h2

)2

= O

(
1

N

)
,

with C0 some positive constant that reflects the finite character of the first four moments

of xi and εi imposed in A1 and A4. Note also that pk � K−1 under assumption A6.

Therefore, we obtain E[||Âk − Ak||2] = O
(

1
N

)
such that ||Âk − Ak|| = Op

(
1√
N

)
.

Proof of Lemma 3. Expression (8.6) implies that

Γ̂k − Γk = Q̂−1
k

1
αNpk

N∑
i=1

X′kiεi − Q̂−1
k

1
αNpk

N∑
i=1

X′kixi(λ̂− λ) +Op

(
K−q−3/4

)
.

Then,

E[(Γ̂k − Γk)
2] =

1

pk
Q̂−1
k

(
1

α2
N

N∑
i=1

E
[
X′kiXkiε

2
i

]
/pk

)
Q̂−1
k (8.12)

+
1

pk
Q̂−1
k

(
1

α2
N

N∑
i=1

E
[
X′kixi(λ̂− λ)2x′iXki

]
/pk

)
Q̂−1
k (8.13)

− 1

pk
Q̂−1
k

(
1

α2
N

N∑
i=1

E
[
X′kiεi(λ̂− λ)x′iXki

]
/pk

)
Q̂−1
k +Op

(
K−2q−3/2

)
.

(8.14)

Using Lemma 1 and the definition of Ak, expression (8.12) is equal to 1
αNpk

Q−1
k AkQ

−1
k +

Op (1/N). Similarly, we use the result in Proposition 2 such that expression (8.13) is
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1
Nα2

Npk
Q̂−1
k

 N∑
i=1

E

 N∑
j=1
j 6=i

X
′
k,ijxi

 Φ̂−1Ψ0Φ̂−1

 N∑
j=1
j 6=i

X
′
k,ijxi

′ /pk
 Q̂−1

k . Furthermore, us-

ing the consistency of Φ̂ to Φ0 and the definition of Bk in the proof of Proposition 1, we

note that 1
αN

N∑
i=1

E

 N∑
j=1
j 6=i

X
′
k,ijxi

 Φ̂−1Ψ0Φ̂−1

 N∑
j=1
j 6=i

X
′
k,ijxi

′ /pk = Φ−1
0 Ψ0Φ−1

0 Bk + op(1),

with ‖Bk‖ <∞ as shown above. Then,

‖Q̂−1
k

(
1

α2
Npk

N∑
i=1

E
[
X′kiXi(λ̂− λ)2X ′iXki

]
/pk

)
Q̂−1
k ‖ = Op

(
K

N3/2

)
.

The asymptotic convergence of expression (8.14) is studied in a similar fashion. More

specifically, replacing expression (8.9):

1

α2
Np

2
k

N∑
i=1

E
[
X′kiεi(λ̂− λ)x′iXki

]
=

1

α2
Npk

(
E
[
X′kiεiΦ̂−1X ′MXεx

′
iXki

]
/pk

)
+

1

α2
Np

2
k

(
E
[
X′kiεiΦ̂−1X ′MXRX

′
iXki

]
/pk

)
,

such that ‖ 1
α2
Np

2
k

N∑
i=1

E
[
X′kiεi(λ̂− λ)x′iXki

]
‖ = 0, with E

[
X′kiεiΦ̂−1X ′MXεx

′
iXki

]
/pk = 0,

under the assumption E[xi] = 0 in A1, and E
[
X′kiεiΦ̂−1X ′MXRX

′
iXki

]
/pk = 0, by as-

sumption E[εi] = 0 in A4.

Thus, putting together the above expressions, the variance of the network parameter

estimator is

E[(Γ̂k − Γk)
2] =

1

αNpk
Q−1
k AkQ

−1
k +Op

(
K

N3/2

)
.

Proof of Proposition 3. Let VK(d) ≡ αN
K∑
k=1

v′k(d)V (Γ̂k)vk(d)1k(d). Lemmas 1 and 2

imply that VK(d) =
K∑
k=1

v′k(d)Q−1
k AkQ

−1
k vk(d)1k(d)/pk + Op

(
K
N

)
. Similarly, using expres-

sion (3.6), we obtain V̂K(d) =
K∑
k=1

v′k(d)Q̂−1
k ÂkQ̂

−1
k vk(d)1k(d)/pk. Using the convergence

results in Lemmas 1 and 2, it follows that |V̂K(d) − VK(d)| = Op

(
K
N

)
, as N → ∞, that

proves result (i).

To show result (ii), we put together expressions (2.4) and (3.3), and obtain

√
αN(ŵ(d)− w(d)) =

K∑
k=1

√
αN

(
Γ̂k − Γk

)′
vk(d)1k(d)−

√
αNR(d). (8.15)
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Using the result in Lemma 3, we have

V (
√
αN(ŵ(d)− w(d))) = VK(d) + αN V (R(d))

− αN
K∑
k=1

v′k(d)Cov((Γ̂k − Γk)1k(d), R(d))vk(d),

with R(d) =
K∑
k=1

w(q+1)(ck)(d − zk)
q+11k(d). Thus, the variance of the remainder term

satisfies

V (R(d)) =
K∑
k=1

(w(q+1)(ck))
2
(
E[(d− zk)2(q+1) | 1k(d) = 1]pk − E[(d− zk)q+1 | 1k(d) = 1]2p2

k

)
=

K∑
k=1

(w(q+1)(ck))
2
[
V
(
(d− zk)q+1 | 1k(d) = 1

)
pk + E[(d− zk)q+1 | 1k(d) = 1]2pk(1− pk)

]
≤ 2C0

K∑
k=1

h2(q+1)pk − C0

K∑
k=1

h2(q+1)p2
k = O(K−2(q+1)) +O(K−2q−3),

given that pk � 1/K and max
k=1,...,K

(β(q+1)(ck))
2 ≤ C0.

Similar tedious calculations for the covariance term yield the same convergenceO(K−2(q+1))

as above, and we obtain

V (
√
αN(ŵ(d)− w(d))) = VK(d) +O(N2/K2(q+1)),

with αN/K
2(q+1) → 0 under assumption A5. Finally, we note that VK(d) = O(K), by

construction.

Proof of Theorem 2. To show the asymptotic distribution in this theorem, note from

expressions (8.6) and (8.8) that Γ̂k − Γk = Q̂−1
k

1
αN

N∑
i=1

X′kiεi/pk + Op

( √
K

N3/2

)
. Therefore,

using expression (8.15), we obtain

√
αN(ŵ(d)− w(d)) =

1
√
αN

N∑
i=1

K∑
k=1

vk(d)′Q̂−1
k X′kiεi1k(d)/pk +Op

(√
K√
N

)
−
√
αNR(d).

(8.16)

Let ziN(d) =

K∑
k=1

vk(d)′Q−1
k X′kiεi1k(d)/pk

α
1/2
N V

1/2
k

, with VK =
K∑
k=1

vk(d)′Q−1
k AkQ

−1
k vk(d)1k(d)/pk. The

process {ziN(d)}Ni=1 inherits the properties of the error term εi, by assumption A4, such

that E[ziN(d) | X,D] = 0 and E[z2
iN(d) | X,D] = 1. Thus,
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√
αN(ŵ(d)− w(d))

V
1/2
k

=
N∑
i=1

ziN(d)−
√
αNR(d)

V
1/2
k

+Op

(
1√
N

)
,

with V
1/2
K = O(

√
K), by Proposition 3. Furthermore, the proof of Theorem 1 shows that

|R(d)| = Op(K
−(q+1)) such that

√
αN |R(d)|
V

1/2
k

= Op

(
N/Kq+3/2

)
. Therefore, by assumption

A5, this quantity converges to zero in probability, such that

√
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V
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k

=
N∑
i=1

ziN(d) +Op

(
N
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)
+Op

(
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.

The quantity
N∑
i=1

ziN(d) is of order Op(1). To show this, note from the proof of Propo-

sition 1 that ‖Q̂−1
k

1
αN

N∑
i=1

X′kiεi/pk‖ = Op

(√
K
N

)
. Then,

N∑
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ziN(d) = Op(1), given that
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k

1√
αN
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i=1

X′kiεi/p2
k‖ = Op

(√
K
)

and V
1/2
K = O(

√
K).

It remains to see the asymptotic distribution of the standardized estimator. To do this

we note that ziN is a triangular array, and apply a Lindeberg-Levy central limit theorem

to
N∑
i=1

ziN(d). More formally, we need to verify the Lindeberg condition

N∑
i=1

E[z2
iN(d)1(|ziN(d)| > δ) | X,D]

p→ 0,

for any δ > 0. This condition can be represented as
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for any δ > 0. Applying Hölder’s inequality, the above expression is bounded by
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.

Now, using Markov’s inequality, we have the following upper bound:
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such that Akη/V
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k = O(1). Therefore, under assumption A5, the above expression
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� 1
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Therefore, the central limit theorem applies such that
√
αN (ŵ(d)−w(d))

V
1/2
k

d→ N(0, 1), for d ∈ χ

fixed. Furthermore, the result |V̂k(d) − Vk(d)| = op(1) in Proposition 3 implies that
V̂k(d)
Vk(d)

p→ 1, for all d ∈ χ such that for Vk(d) 6= 0, we obtain

√
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1/2
k

d→ N(0, 1), for d ∈ χ, as N →∞.
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Table 1: Bias of estimators of λ and w(d) in (3.1) and (3.3).

Model 1: Exponential function Model 2: Gaussian kernel function

λ h θ N λ w(h/2) w(h) w(3h/2) w(2h) λ w(h/2) w(h) w(3h/2) w(2h)

1 0.05 5 100 0.144 -0.006 0.011 0.018 0.017 0.004 0.002 0.001 0.003 0.007

250 0.095 0.010 0.014 0.015 0.014 0.046 0.005 0.003 0.003 0.005

500 0.064 0.007 0.010 0.011 0.012 0.078 0.005 0.004 0.005 0.006

9 100 0.011 0.000 -0.001 -0.005 -0.005 0.010 0.010 -0.002 -0.001 0.005

250 0.030 -0.005 0.004 0.003 0.002 -0.002 0.009 -0.002 -0.001 0.003

500 0.033 -0.003 0.003 0.001 -0.001 -0.002 0.005 -0.003 -0.001 0.003

0.075 5 100 0.055 -0.001 -0.001 -0.002 0.000 0.006 0.013 0.008 0.006 0.003

250 0.115 -0.005 0.000 -0.001 -0.002 0.001 0.003 -0.002 -0.001 0.001

500 0.016 -0.006 -0.002 -0.002 -0.003 0.004 0.003 -0.002 -0.001 0.002

9 100 0.008 -0.016 0.004 0.002 0.000 -0.019 0.024 -0.010 0.000 0.008

250 -0.001 -0.017 0.005 0.001 -0.005 -0.007 0.030 -0.009 -0.002 0.009

500 0.009 -0.012 0.005 -0.001 -0.005 0.000 0.023 -0.011 0.000 0.012

0.1 5 100 0.015 -0.010 0.003 0.002 -0.003 0.003 0.012 -0.004 -0.001 0.003

250 0.032 -0.007 0.001 -0.001 -0.004 0.008 0.009 -0.004 -0.001 0.004

500 0.058 -0.008 0.000 -0.002 -0.003 -0.001 0.009 -0.004 0.000 0.005

9 100 -0.020 -0.020 0.013 0.001 -0.008 0.000 0.058 -0.024 0.003 0.026

250 0.002 -0.021 0.011 -0.001 -0.010 -0.003 0.055 -0.026 0.001 0.024

500 0.002 -0.022 0.010 -0.001 -0.009 -0.008 0.054 -0.026 0.002 0.025

0.25 0.05 5 100 0.030 0.002 0.002 0.002 0.004 0.006 -0.005 0.001 0.004 0.003

250 0.075 0.003 0.003 0.003 0.004 0.013 0.004 0.001 -0.001 0.000

500 0.044 0.001 0.002 0.003 0.002 0.020 0.001 0.001 0.001 0.001

9 100 -0.006 0.000 0.002 0.001 0.002 -0.011 0.003 -0.001 -0.001 0.003

250 0.007 -0.003 0.000 0.001 0.001 0.000 0.003 0.001 0.000 0.000

500 0.009 0.002 0.001 -0.001 -0.001 -0.001 0.002 -0.001 -0.001 0.000

0.075 5 100 0.004 0.007 0.002 -0.001 0.000 0.006 0.006 0.002 0.000 -0.002

250 0.032 0.002 0.002 0.001 0.000 0.000 -0.002 -0.001 0.000 0.001

500 0.058 0.000 -0.001 -0.001 -0.001 -0.005 0.000 0.000 0.001 0.000

9 100 -0.001 -0.005 0.001 -0.001 -0.004 -0.002 -0.002 -0.003 0.004 0.006

250 0.002 -0.005 0.000 -0.001 -0.002 -0.002 0.007 -0.003 -0.001 0.001

500 0.002 -0.002 0.001 -0.001 -0.002 0.001 0.006 -0.003 -0.001 0.003

0.1 5 100 -0.013 -0.008 0.002 0.004 0.003 -0.003 0.002 0.000 0.001 -0.001

250 0.015 -0.006 0.000 0.001 0.001 -0.005 0.006 -0.001 -0.002 -0.001

500 0.013 0.000 0.000 -0.001 -0.001 -0.002 0.003 0.000 0.001 0.001

9 100 0.011 0.003 0.004 -0.003 -0.006 0.005 0.007 -0.007 0.004 0.012

250 0.001 -0.005 0.002 -0.001 -0.002 0.000 0.013 -0.006 0.002 0.006

500 0.005 -0.004 0.003 -0.001 -0.002 -0.008 0.015 -0.007 0.000 0.006

Note: This table reports the estimation bias under two specifications for the functional parameter for d ∈ [0, C],

with C = 1. The number of intervals is K = 1/2h. The number of simulations is 500.
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Table 2: Root mean square error of estimators of λ and w(d) in (3.1) and (3.3).

Model 1: Exponential function Model 2: Gaussian kernel function

λ h θ N λ w(h/2) w(h) w(3h/2) w(2h) λ w(h/2) w(h) w(3h/2) w(2h)

1 0.05 5 100 0.251 0.242 0.109 0.117 0.102 0.205 0.239 0.100 0.108 0.100

250 0.128 0.091 0.046 0.048 0.043 0.125 0.086 0.037 0.041 0.036

500 0.070 0.052 0.030 0.030 0.028 0.116 0.043 0.019 0.021 0.019

9 100 0.201 0.242 0.101 0.108 0.095 0.210 0.232 0.101 0.107 0.097

250 0.122 0.086 0.037 0.039 0.036 0.120 0.086 0.037 0.041 0.036

500 0.093 0.039 0.017 0.019 0.018 0.084 0.042 0.018 0.020 0.018

0.075 5 100 0.234 0.205 0.084 0.091 0.083 0.220 0.201 0.087 0.090 0.080

250 0.176 0.072 0.030 0.033 0.029 0.135 0.071 0.030 0.033 0.029

500 0.142 0.037 0.016 0.017 0.016 0.099 0.034 0.014 0.016 0.015

9 100 0.220 0.200 0.083 0.092 0.081 0.224 0.206 0.085 0.091 0.080

250 0.134 0.069 0.029 0.032 0.030 0.137 0.077 0.033 0.034 0.032

500 0.099 0.036 0.016 0.016 0.015 0.101 0.042 0.019 0.016 0.018

0.1 5 100 0.244 0.179 0.072 0.079 0.069 0.253 0.183 0.074 0.078 0.071

250 0.164 0.064 0.025 0.030 0.027 0.162 0.064 0.026 0.029 0.026

500 0.143 0.033 0.013 0.014 0.013 0.128 0.032 0.013 0.014 0.014

9 100 0.259 0.180 0.077 0.083 0.071 0.248 0.189 0.078 0.079 0.074

250 0.157 0.067 0.028 0.029 0.027 0.162 0.086 0.037 0.029 0.035

500 0.124 0.039 0.017 0.014 0.016 0.128 0.062 0.029 0.014 0.028

0.25 0.05 5 100 0.219 0.244 0.099 0.109 0.099 0.204 0.242 0.101 0.110 0.096

250 0.136 0.085 0.037 0.041 0.037 0.121 0.086 0.037 0.041 0.035

500 0.066 0.041 0.019 0.020 0.017 0.086 0.041 0.018 0.020 0.017

9 100 0.199 0.247 0.101 0.108 0.098 0.215 0.250 0.105 0.115 0.100

250 0.125 0.086 0.037 0.039 0.035 0.122 0.085 0.038 0.041 0.037

500 0.084 0.041 0.017 0.019 0.017 0.088 0.041 0.018 0.019 0.017

0.075 5 100 0.207 0.199 0.084 0.091 0.082 0.219 0.202 0.081 0.087 0.078

250 0.133 0.072 0.029 0.033 0.030 0.141 0.072 0.031 0.034 0.031

500 0.113 0.035 0.014 0.016 0.014 0.103 0.034 0.014 0.016 0.014

9 100 0.216 0.203 0.082 0.089 0.080 0.215 0.208 0.085 0.094 0.082

250 0.135 0.072 0.031 0.033 0.030 0.133 0.070 0.031 0.032 0.029

500 0.097 0.035 0.014 0.016 0.014 0.100 0.034 0.015 0.016 0.014

0.1 5 100 0.262 0.179 0.075 0.078 0.069 0.252 0.171 0.075 0.077 0.069

250 0.161 0.065 0.026 0.028 0.026 0.167 0.064 0.027 0.028 0.025

500 0.126 0.031 0.013 0.014 0.013 0.125 0.031 0.013 0.014 0.012

9 100 0.247 0.183 0.072 0.078 0.070 0.248 0.180 0.075 0.082 0.072

250 0.170 0.068 0.025 0.030 0.027 0.171 0.067 0.027 0.029 0.027

500 0.128 0.031 0.013 0.014 0.012 0.127 0.034 0.015 0.014 0.014

Note: This table reports the root mean square error under two specifications for the functional parameter for

d ∈ [0, C], with C = 1. The number of intervals is K = 1/2h. The number of simulations is 500.
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Table 3: Empirical coverage rates for confidence interval (6.2) at an α = 0.05 significance

level (coverage rate).

Model 1: Exponential function Model 2: Gaussian kernel function

h θ N λ w(h/2) w(h) w(3h/2) w(2h) λ w(h/2) w(h) w(3h/2) w(2h)

0.050 5 100 0.178 0.096 0.118 0.126 0.118 0.112 0.092 0.106 0.120 0.106

250 0.232 0.080 0.092 0.090 0.068 0.066 0.058 0.084 0.084 0.084

500 0.324 0.050 0.064 0.056 0.082 0.084 0.078 0.046 0.052 0.058

7 100 0.120 0.100 0.090 0.116 0.124 0.112 0.098 0.126 0.112 0.098

250 0.082 0.070 0.078 0.086 0.070 0.088 0.060 0.078 0.092 0.060

500 0.066 0.044 0.058 0.060 0.048 0.042 0.058 0.064 0.074 0.074

9 100 0.116 0.114 0.132 0.122 0.118 0.092 0.110 0.108 0.112 0.120

250 0.082 0.080 0.082 0.060 0.054 0.074 0.068 0.058 0.066 0.076

500 0.052 0.050 0.036 0.044 0.048 0.080 0.050 0.064 0.064 0.060

0.075 5 100 0.102 0.114 0.094 0.102 0.110 0.104 0.100 0.100 0.104 0.112

250 0.088 0.060 0.064 0.066 0.070 0.074 0.068 0.062 0.072 0.068

500 0.058 0.082 0.080 0.054 0.064 0.064 0.048 0.050 0.044 0.068

7 100 0.106 0.086 0.098 0.108 0.114 0.092 0.124 0.102 0.116 0.094

250 0.072 0.056 0.066 0.080 0.068 0.076 0.072 0.072 0.060 0.072

500 0.068 0.052 0.054 0.046 0.056 0.072 0.056 0.086 0.068 0.054

9 100 0.098 0.108 0.096 0.102 0.100 0.110 0.122 0.088 0.102 0.090

250 0.078 0.064 0.060 0.064 0.052 0.044 0.066 0.076 0.072 0.068

500 0.068 0.056 0.050 0.044 0.082 0.066 0.066 0.062 0.074 0.080

0.100 5 100 0.118 0.092 0.106 0.072 0.080 0.138 0.098 0.116 0.106 0.092

250 0.096 0.058 0.060 0.076 0.060 0.102 0.092 0.094 0.072 0.082

500 0.056 0.054 0.050 0.052 0.074 0.084 0.046 0.048 0.062 0.054

7 100 0.138 0.102 0.122 0.102 0.106 0.112 0.110 0.092 0.088 0.138

250 0.074 0.062 0.072 0.056 0.062 0.102 0.062 0.076 0.072 0.100

500 0.056 0.054 0.044 0.054 0.046 0.074 0.044 0.048 0.048 0.066

9 100 0.080 0.094 0.104 0.096 0.090 0.132 0.110 0.158 0.092 0.130

250 0.080 0.054 0.068 0.076 0.050 0.078 0.094 0.094 0.062 0.056

500 0.066 0.052 0.070 0.058 0.064 0.064 0.082 0.084 0.066 0.078

Note: This table reports the coverage probability of the confidence interval for the functional parameter

w(d) considering two specifications, for d ∈ [0, C], with C = 1. Hence, K = 1/2h. The DGP is given by

λ = 1, β = 0.1, and the number of simulations is 500.

44



Table 4: Empirical coverage rates for confidence interval (6.2) at an α = 0.05 significance

level (coverage rate).

Model 1: Exponential function Model 2: Gaussian kernel function

h θ N λ w(h/2) w(h) w(3h/2) w(2h) λ w(h/2) w(h) w(3h/2) w(2h)

0.050 5 100 0.186 0.100 0.090 0.096 0.110 0.094 0.098 0.112 0.112 0.128

250 0.260 0.078 0.062 0.068 0.094 0.090 0.068 0.088 0.072 0.062

500 0.328 0.054 0.076 0.070 0.056 0.052 0.068 0.052 0.052 0.070

7 100 0.104 0.108 0.094 0.098 0.112 0.104 0.122 0.118 0.120 0.114

250 0.062 0.056 0.060 0.054 0.066 0.058 0.050 0.062 0.064 0.062

500 0.068 0.060 0.052 0.046 0.060 0.056 0.056 0.062 0.042 0.052

9 100 0.116 0.128 0.084 0.130 0.130 0.096 0.128 0.114 0.100 0.108

250 0.068 0.060 0.066 0.078 0.086 0.056 0.066 0.074 0.062 0.064

500 0.062 0.058 0.070 0.056 0.064 0.052 0.048 0.054 0.048 0.060

0.075 5 100 0.106 0.092 0.082 0.112 0.090 0.122 0.106 0.104 0.108 0.144

250 0.082 0.078 0.072 0.060 0.062 0.080 0.070 0.054 0.048 0.060

500 0.092 0.058 0.064 0.066 0.054 0.048 0.060 0.084 0.072 0.062

7 100 0.088 0.100 0.118 0.110 0.118 0.122 0.104 0.098 0.088 0.118

250 0.070 0.068 0.072 0.064 0.056 0.072 0.074 0.068 0.068 0.072

500 0.076 0.054 0.060 0.056 0.066 0.068 0.068 0.072 0.056 0.064

9 100 0.112 0.108 0.096 0.114 0.082 0.122 0.106 0.124 0.148 0.120

250 0.072 0.068 0.072 0.074 0.064 0.084 0.064 0.066 0.066 0.066

500 0.056 0.060 0.062 0.084 0.070 0.042 0.072 0.064 0.060 0.038

0.100 5 100 0.124 0.092 0.090 0.086 0.112 0.110 0.096 0.110 0.100 0.088

250 0.076 0.078 0.072 0.080 0.070 0.084 0.068 0.072 0.072 0.068

500 0.074 0.046 0.052 0.040 0.050 0.098 0.066 0.068 0.072 0.070

7 100 0.104 0.100 0.114 0.154 0.112 0.102 0.104 0.112 0.102 0.100

250 0.080 0.068 0.068 0.066 0.058 0.078 0.054 0.060 0.070 0.080

500 0.082 0.048 0.068 0.060 0.080 0.046 0.064 0.072 0.052 0.056

9 100 0.112 0.104 0.114 0.108 0.110 0.096 0.102 0.128 0.062 0.092

250 0.118 0.090 0.066 0.070 0.066 0.078 0.080 0.074 0.082 0.082

500 0.068 0.054 0.062 0.064 0.066 0.052 0.074 0.086 0.054 0.074

Note: This table reports the coverage probability of the confidence interval for the functional parameter

w(d) considering two specifications, for d ∈ [0, C], with C = 1. Hence, K = 1/2h. The DGP is given by

λ = 0.25, β = 0.1, and the number of simulations is 500.
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Table 5: Empirical power of marginal t-test for H0 : w(d) = 0.

Model 1: Exponential function Model 2: Gaussian kernel function

h θ N λ w(h/2) w(h) w(3h/2) w(2h) λ w(h/2) w(h) w(3h/2) w(2h)

0.05 5 100 0.990 0.128 0.234 0.180 0.200 0.988 0.152 0.286 0.210 0.214

250 1.000 0.250 0.624 0.444 0.442 1.000 0.216 0.682 0.588 0.628

500 1.000 0.554 0.958 0.882 0.886 1.000 0.576 0.982 0.968 0.982

7 100 0.992 0.146 0.216 0.180 0.170 0.998 0.138 0.238 0.196 0.232

250 1.000 0.196 0.566 0.372 0.332 1.000 0.218 0.676 0.562 0.614

500 1.000 0.558 0.952 0.856 0.808 1.000 0.552 0.988 0.950 0.956

9 100 0.994 0.154 0.210 0.144 0.138 0.994 0.108 0.252 0.210 0.196

250 1.000 0.206 0.560 0.372 0.310 1.000 0.234 0.646 0.560 0.536

500 1.000 0.554 0.942 0.794 0.690 1.000 0.542 0.976 0.930 0.940

0.075 5 100 0.988 0.138 0.288 0.186 0.182 0.980 0.134 0.314 0.286 0.260

250 1.000 0.298 0.716 0.474 0.470 1.000 0.302 0.846 0.712 0.692

500 1.000 0.682 0.986 0.946 0.902 1.000 0.700 0.992 0.988 0.990

7 100 0.982 0.132 0.222 0.170 0.148 0.988 0.120 0.320 0.250 0.266

250 0.998 0.304 0.676 0.382 0.288 1.000 0.252 0.788 0.668 0.640

500 1.000 0.648 0.968 0.864 0.816 1.000 0.742 0.996 0.982 0.970

9 100 0.994 0.134 0.218 0.160 0.152 0.986 0.136 0.318 0.244 0.216

250 1.000 0.278 0.626 0.352 0.272 1.000 0.302 0.764 0.590 0.512

500 1.000 0.684 0.962 0.768 0.628 1.000 0.706 0.986 0.956 0.912

0.10 5 100 0.966 0.154 0.278 0.186 0.168 0.960 0.134 0.402 0.308 0.274

250 0.996 0.350 0.752 0.490 0.432 0.998 0.372 0.878 0.724 0.720

500 1.000 0.762 0.984 0.922 0.876 1.000 0.788 0.998 0.998 0.992

7 100 0.972 0.150 0.248 0.150 0.144 0.948 0.148 0.336 0.282 0.230

250 1.000 0.320 0.722 0.392 0.296 0.998 0.318 0.852 0.680 0.586

500 1.000 0.766 0.982 0.874 0.686 1.000 0.804 0.998 0.990 0.950

9 100 0.972 0.188 0.240 0.118 0.132 0.948 0.144 0.320 0.182 0.164

250 0.998 0.328 0.690 0.344 0.204 0.996 0.378 0.818 0.556 0.368

500 1.000 0.764 0.966 0.722 0.474 1.000 0.816 0.994 0.936 0.822

Note: This table reports rejection rates of marginal t-tests for the null hypothesis H0 : w(d) = 0 against

the alternative HA : w(d) 6= 0. The data has been generated under the alternative hypothesis considering

two specifications for the functional parameter: Exponential and Gaussian functions, for d ∈ [0, C], with

C = 1. The number of intervals characterizing the partition is K = 1/2h. The DGP is given by γ = 1

and the number of simulations is 500.
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Table 6: Empirical power of marginal t-test for H0 : w(d) = 0.

Model 1: Exponential function Model 2: Gaussian kernel function

h θ N λ w(h/2) w(h) w(3h/2) w(2h) λ w(h/2) w(h) w(3h/2) w(2h)

0.05 5 100 0.420 0.110 0.236 0.202 0.188 0.402 0.108 0.306 0.276 0.226

250 0.704 0.224 0.614 0.476 0.430 0.636 0.190 0.710 0.588 0.602

500 0.960 0.578 0.960 0.856 0.866 0.902 0.552 0.984 0.964 0.984

7 100 0.378 0.116 0.206 0.176 0.182 0.390 0.152 0.302 0.214 0.214

250 0.646 0.208 0.576 0.390 0.370 0.652 0.214 0.696 0.578 0.590

500 0.918 0.578 0.950 0.828 0.788 0.882 0.526 0.978 0.958 0.956

9 100 0.382 0.138 0.196 0.134 0.132 0.404 0.144 0.278 0.240 0.196

250 0.630 0.208 0.580 0.368 0.282 0.652 0.262 0.656 0.532 0.538

500 0.902 0.578 0.944 0.768 0.660 0.850 0.586 0.974 0.944 0.928

0.075 5 100 0.372 0.154 0.260 0.192 0.180 0.354 0.140 0.312 0.274 0.284

250 0.548 0.264 0.720 0.524 0.470 0.510 0.262 0.812 0.706 0.734

500 0.788 0.664 0.980 0.904 0.874 0.792 0.752 0.990 0.982 0.984

7 100 0.342 0.130 0.238 0.160 0.144 0.372 0.162 0.358 0.252 0.226

250 0.520 0.304 0.658 0.412 0.338 0.536 0.274 0.800 0.658 0.632

500 0.712 0.692 0.982 0.854 0.782 0.708 0.704 0.996 0.978 0.966

9 100 0.326 0.166 0.230 0.164 0.174 0.372 0.174 0.310 0.226 0.218

250 0.566 0.276 0.612 0.348 0.226 0.554 0.312 0.760 0.596 0.526

500 0.726 0.666 0.964 0.738 0.572 0.728 0.722 0.988 0.972 0.924

0.10 5 100 0.308 0.152 0.276 0.186 0.190 0.354 0.174 0.372 0.268 0.290

250 0.452 0.372 0.782 0.492 0.426 0.450 0.366 0.878 0.750 0.752

500 0.634 0.768 0.986 0.934 0.862 0.568 0.754 0.998 0.992 0.986

7 100 0.306 0.134 0.250 0.122 0.126 0.324 0.144 0.318 0.218 0.210

250 0.442 0.356 0.720 0.410 0.294 0.446 0.374 0.842 0.674 0.586

500 0.562 0.732 0.978 0.856 0.716 0.564 0.768 0.994 0.978 0.944

9 100 0.312 0.138 0.228 0.132 0.096 0.316 0.174 0.376 0.226 0.152

250 0.416 0.338 0.672 0.310 0.186 0.456 0.360 0.808 0.548 0.378

500 0.566 0.786 0.978 0.756 0.436 0.606 0.834 0.992 0.958 0.808

Note: This table reports rejection rates of marginal t-tests for the null hypothesis H0 : w(d) = 0 against

the alternative HA : w(d) 6= 0. The data has been generated under the alternative hypothesis considering

two specifications for the functional parameter: Exponential and Gaussian functions, for d ∈ [0, C], with

C = 1. The number of intervals characterizing the partition is K = 1/2h. The DGP is given by γ = 0.25

and the number of simulations is 500.
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Table 7: Empirical size and power of the uniform test (5.1).

H0: No network structure

Size Power

θ N h=0.05 0.075 0.1 h=0.05 0.075 0.1

5 100 0.071 0.056 0.065 0.998 0.998 1.000

250 0.049 0.052 0.036 1.000 1.000 1.000

500 0.073 0.032 0.040 1.000 1.000 1.000

9 100 0.065 0.062 0.071 0.985 0.997 0.998

250 0.039 0.042 0.054 1.000 1.000 1.000

500 0.035 0.036 0.052 1.000 1.000 1.000

H0f : Exponential function

Size Power

θ N h=0.05 0.075 0.1 h=0.05 0.075 0.1

5 100 0.056 0.058 0.046 0.994 1.000 0.999

250 0.024 0.042 0.041 1.000 1.000 1.000

500 0.030 0.030 0.034 1.000 1.000 1.000

9 100 0.055 0.057 0.071 0.980 0.994 0.998

250 0.037 0.042 0.028 1.000 1.000 1.000

500 0.038 0.033 0.034 1.000 1.000 1.000

Note: This table reports rejection rates of the uniform test for

two different DGPs under the null hypothesis. The nominal

size is α = 0.05, and the number of simulations is 500.
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Table 8: Optimal choice of the tuning parameter h.

θ N RMSE M GCV AIC BIC

5 100 0.051 0.051 0.051 0.051 0.051

(0.005) (0.005) (0.005) (0.005) (0.005)

250 0.051 0.051 0.051 0.051 0.051

(0.006) (0.006) (0.006) (0.006) (0.005)

500 0.051 0.051 0.051 0.051 0.051

(0.005) (0.005) (0.005) (0.005) (0.005)

9 100 0.051 0.051 0.051 0.051 0.051

(0.004) (0.004) (0.004) (0.004) (0.004)

250 0.051 0.051 0.051 0.051 0.051

(0.005) (0.005) (0.005) (0.005) (0.005)

500 0.051 0.051 0.051 0.051 0.051

(0.005) (0.005) (0.005) (0.005) (0.005)

Note: This table reports the optimal value of the tuning

parameter h under the different criteria described in

Subsection 5.2. The network regression model is (2.9),

with γ = 1, w(d) given by β = 0.1, and an exponential

function. Standard errors are shown in parentheses.

The number of simulations is 500.
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(a) Coefficient for after-tax household income (γ1t,net).

(b) Coefficient for squared after-tax household income (γ2t,net).

Figure 1: Network regression estimation of environmental Engel curves (EECs) in the

U.S., 1984-2012.
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(a) Adjusted coefficients of determination (R2).

(b) F-test for adjusted R2, p-values.

Figure 4: Network regression estimation of EECs in the U.S., 1984-2012.
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