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Abstract

An important class of structural models studies the determinants of skill formation and the

optimal timing of interventions. In this paper, I provide new identification results for these

models and investigate the effects of seemingly innocuous scale and location restrictions on

parameters of interest. To do so, I first characterize the identified set of all parameters

without these additional restrictions and show that important policy-relevant parameters

are point identified under weaker assumptions than commonly used in the literature. The

implications of imposing standard scale and location restrictions depend on how the model

is specified, but they generally impact the interpretation of parameters and can affect coun-

terfactuals. Importantly, with the popular CES production function, commonly used scale

restrictions are overidentifying and lead to biased estimators. Consequently, simply changing

the units of measurements of observed variables might yield ineffective investment strate-

gies and misleading policy recommendations. I show how existing estimators can easily be

adapted to solve these issues. As a byproduct, this paper also presents a general and formal

definition of when restrictions are truly normalizations.
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1 Introduction

Structural models are key tools of economists to simulate changes in the economic environ-

ment and evaluate and design policies. An important class of such models deals with skill and

human capital formation. Human capital formation is a main part of many structural models

and is an important driver of economic growth and inequality (Murphy and Topel 2016),

which makes policies targeting skill formation particularly critical. This growing literature

estimates production functions of various skills of children, studies how past skills, parental

skills, and investments affect future skills, and links the skills to outcomes in adulthood. The

results can, among others, be used to inform about determinants of skill formation, timing of

investments in children, and optimal interventions for disadvantaged children. Following the

seminal papers of Cunha and Heckman (2008) and Cunha, Heckman, and Schennach (2010),

a large literature has studied different specifications with data sets from several countries

and has provided many important policy recommendations.

A major challenge in these models is that skills are not directly observable, do not have

a natural scale, and can only be approximated through measurements, such as test scores.

Identification in these models is often achieved in two steps, where the distribution of skills

is identified from the measurements in the first step and the production function is identified

in the second step (see for example Cunha et al. (2010), Attanasio, Meghir, Nix, and Salvati

(2017), and Attanasio, Meghir, and Nix (2020)). To obtain point identification in the first

step, researchers have to impose restrictions that fix the unknown scales and locations of the

skills. While these restrictions are necessary to achieve point identification when studying

the first step in isolation, it is not clear whether these restrictions are needed once all other

restrictions of the model are combined.

In this paper, I present a new identification analysis for skill formation models and in-

vestigates the consequences of the seemingly innocuous normalizations. Instead of providing

sufficient conditions for point identification using multi-step arguments, I start by pooling

all parts of the model and characterize the identified set of all parameters without the scale

and location restrictions. This characterization highlights which parameters are point or

partially identified and how additional restrictions affect the identified set. In particular, I

show that many key features are invariant to these restrictions, are point identified without

them, and are identified under weaker assumptions than commonly used in the literature

(e.g. they do not require age-invariant measures). These identification results hold for both

parametric and nonparametric versions of the model.

The exact implications of imposing the additional scale and location restrictions on pa-
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rameters and counterfactuals depends on how the model is specified and what the object of

interest is. Specifically, a restriction could be a harmless normalization with one production

function, but could impose strong assumptions with a different one. I therefore analyze

two popular specifications, namely the trans-log production function (which includes Cobb-

Douglas as a special case) and the CES production function. For the trans-log production

function, it turns out that standard scale and location restrictions are necessary for point

identification of the parameters and are not overidentifying, but still affect production func-

tion parameter estimates and certain counterfactuals. Since these restrictions are often

arbitrary and depend on the units of measurement of the data, the estimates are hard to

interpret, difficult to compare across different studies, and policy recommendations based on

such counterfactuals can be misleading. For the CES case with different parametric assump-

tions, I show that commonly used scale restrictions are in fact overidentifying and imposing

them severely impacts the estimated parameters of the model. Simply changing the units

of measurements of one of the skill measures (for example from years to months) can then

lead to different estimated dynamics in the model, it can change the estimated persistence

of skills and the effects of parental investments on skill formation, and it can yield ineffective

optimal investment strategies.

Next to providing new identification results, I also show how existing estimators can

easily be adapted to solve these overidentification issues. While many parameters are still

hard to interpret, the estimates can then be used to calculate point identified features and

counterfactuals that are invariant to the scale and location restrictions and the units of

measurement of the data. I illustrate the results using Monte Carlo simulations based on

the setup and the estimator of Attanasio et al. (2020).

In this particular class of models, the scale and location restrictions are generally not

innocuous normalizations. More generally, to the best of my knowledge, there does not

exist a formal definition of when a restriction is truly a normalization, and I provide one

in this paper. Clearly, any restriction on the parameters of the model affects some of the

estimates and thus, a normalization has to be with respect to some function or feature of

interest, such as a subvector or a counterfactual prediction. I therefore define a restriction

as a normalization if imposing the restriction does not change the identified set of a function

of interest. I illustrate this definition in a simple and commonly used example and use it as

a basis for the analysis of skill formation models.

A broader takeaway from this paper is that researchers need to carefully check if imposed

restrictions are in fact normalizations, which is especially important in structural models
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where identification proceeds in multiple steps and supposedly innocuous restrictions in one

step might have unintended consequences in subsequent steps. Researchers should then focus

on features of the model that are invariant to the restrictions. If estimates depend the these

types of restrictions, as in skill formation models, resulting policy recommendations might

be ineffective and results might not be comparable across different studies. In addition, the

estimates might then not be suitable ingredients to calibrate larger models, as in Daruich

(2018), unless one can argue that all main conclusions are unaffected by the restrictions.

Literature: Following the influential work of Cunha and Heckman (2008) and Cunha

et al. (2010), a growing literature has emerged that studies the development of latent

variables. For example, Helmers and Patnam (2011) study the determinants of children’s

cognitive and non-cognitive skills using Indian data, Fiorini and Keane (2014) investigate

how the time allocation affects cognitive and noncognitive development using Australian

data, Attanasio et al. (2020) and Attanasio et al. (2017) estimate the effects of health and

cognition on human capital with data from India and Ethiopia and Peru, respectively, and

Attanasio et al. (2019) study which early childhood intervention led to significant gains in

cognitive and socio-emotional skills among disadvantaged children using Colombian data.

The literature has provided many important insights regarding the nature of persistence,

dynamic complementarities between the different components, and the optimal targeting of

interventions. See also Cunha and Heckman (2007), Cunha and Heckman (2009), Cunha

(2011), Heckman, Pinto, and Savelyev (2013), Aucejo and James (2016), Hernández-Alava

and Popli (2017), and references therein.

In these papers, the measurement system for the latent variables is assumed to have a

factor structure. Thus, to identify the joint distribution, certain restrictions on the measure-

ment system are needed, which typically fix the scale and the location of the latent variables,

either in the first period or by “anchoring” them to an adult outcome. In particular, Cunha

and Heckman (2008) study a model where the production function is log-linear. Their iden-

tification arguments proceed in two steps. First, they identify the distribution of skills using

the measurement system and an adult outcome anchor to obtain a well-defined scale and

location. Using that distribution, they identify the production function in the second step.

They also discuss which parameters depend on the anchor or its units of measurement. In

this particular model, I illustrate that certain policy relevant parameters, such as optimal

investment sequences, can depend on the specific scales and the specific units of the mea-

surements of the observed variables. Additionally, I show that a set of key features that

can be expressed in terms of quantiles of the skill distribution are identified under weaker
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restrictions on the measures and the production function and without anchoring the skills or

fixing their scales. Importantly, I also provide formal identification results for other produc-

tion technologies, such as the popular CES production function, where standard restrictions

have much more severe consequences. In particular, certain scale restrictions are not needed

for identification and imposing them through an initial period normalization or through

anchoring leads to inconsistent estimators.

Common restrictions are to fix the scales and locations of each latent factor in each

time period by setting parameters in the measurement system.1 If they are set to the

same values in all time periods, Agostinelli and Wiswall (2016a, 2016b, 2022) refer to this

restriction as an age-invariance assumption (see Assumption 3(a) for a formal definition or

Definition 1 of Agostinelli and Wiswall (2022)). In an important contribution, Agostinelli and

Wiswall (2016a, 2016b, 2022) show that imposing this age-invariance assumption can yield

overidentifying restrictions and inconsistent estimators when the production function has a

known scale and location. They then discuss relaxations of popular production functions

when the measures are age-invariant. They also show that without age-invariant measures,

production function restrictions can still yield point identification (see Corollary 1 below and

the related discussion). In both cases, they still impose scale and location restrictions on

the skill measures in the first period, and they argue that these restrictions are necessary for

point identification. While this is true for the trans-log production function that they use in

their empirical application, these scale restrictions are not required for the CES production

function and imposing them yields inconsistent estimators. Moreover, I show that, in general,

production function parameters and certain counterfactuals can depend on the specific scales

and the specific units of the measurements of the data. With restrictions on the production

function, I also show that changing the scales of the skills can yield misleading dynamics.

Again, many key parameters are invariant to these restrictions, including age-invariance, and

are in fact point identified without them.

In independent research, Del Bono, Kinsler, and Pavan (2020) have recently shown that,

1For example, Cunha and Heckman (2008) and Cunha et al. (2010) set the scale of the first skill measure

to 1 in each period - see the discussion around equations (7) – (8) of Cunha and Heckman (2008) and the

first paragraph on page 891 of Cunha et al. (2010). In addition, as discussed in footnote 17 of Cunha and

Heckman (2008) and in the first paragraph on page 891 of Cunha et al. (2010), their identification results

rely on either setting one of the location parameters to 0 in each time period or setting the mean of the skill

to 0 in each time period. These restrictions have also been used in subsequent papers such as Attanasio

et al. (2020). The nonparametric identification results in Cunha et al. (2010) impose analogous restrictions

in their Assumption (v) of Theorem 2.
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with a trans-log production function, anchored treatment effects are invariant to scale and

location normalizations and are identified without age-invariance. They also show in simu-

lations that standard restrictions lead to biased estimated treatment effects with the CES

production function. In the trans-log case, these results are similar to those in part 4 of

Theorem 2 below. While their proof is specific to the trans-log production function with a

log-linear measurement error system, my arguments can easily be extended to other cases.

In addition, my proof highlights that only skill measures in the first period are needed to

identify anchored treatment effects, which reduces the data requirements considerably and

consequently weakens the assumptions. I also consider additional policy-relevant features.

For the CES case, I show that standard restrictions are overidentifying, which explains why

their estimated treatment effects are biased, and describe how existing estimators can be

adapted to solve this issue.

Consequences resulting from normalizations have been discussed in various contexts. In

factor models, it is well known that restrictions are needed for point identification (see e.g.

Anderson and Rubin (1956), Madansky (1964), Jöreskog and Goldberger (1975), and Cunha

and Heckman (2008), among many others). Williams (2020) shows that these restrictions are

not needed for identification of certain features, such as the variance decomposition. I com-

bine a factor model with a production function, which can reduce the number of additional

restrictions needed. Many papers have argued that important features should not depend

on normalizations and have shown this in specific examples, such as Freyberger (2018) and

Komarova et al. (2018). Similar to this paper, but in a very different context, Aguirregabiria

and Suzuki (2014) show that restrictions that were thought of as a normalization can lead

to biases. Kalouptsidi, Scott, and Souza-Rodrigues (2020) show that certain counterfactuals

in dynamic discrete choice models are identified, even when the model is not nonparametri-

cally identified. Rubio-Ramı́rez, Waggoner, and Zha (2010) define a normalization in vector

autoreggressive models to pin down unidentified signs; see end of Section 2 for more de-

tails. Matzkin (1994, 2007) discusses several examples of normalizations that can be used to

achieve point identification, some of which are motivated by economic theory, but she does

not present a definition. Lewbel (2019) provides an informal discussion of normalizations,

which is conceptually very similar to the formal definition below.

When normalizing restrictions are needed to point identify the parameters, there are often

different ways of imposing them when estimating the model. Clever choice can then yield

particularly convenient restrictions on the parameter space (as in Gao and Li (2019)) or even

faster rates of convergence (as in Chiappori, Komunjer, and Kristensen (2015)). See also
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Hamilton, Waggoner, and Zha (2007) for a discussion on estimation with normalizations. In

skill formation models, different restrictions can also yield observationally equivalent models

with identical counterfactual, but certain specification might be easier to estimate.

Structure: In Section 2, I provide a formal definition of a normalization and a very

simple illustrative example. Section 3 contains the identification analysis of different skill

formation models and the Monte Carlo simulations. Section 4 extends some of the parametric

identification results to a more general nonparametric setting.

2 Normalizations

I begin by providing a formal definition of a normalization, which will serve as a basis for

the analysis of skill formation models. Suppose we have a model where θ0 ∈ Θ denotes

the true values of the parameters and Θ is the parameter space. Here θ0 could denote

the coefficients in a regression model or the parameters in a skill formation model. If the

model is nonparametric or semiparametric, θ0 could also contain unknown functions. Let

Z contain all observed random variables, such as Y and X, with distribution P (Z). For

any θ ∈ Θ, the model generates a joint distribution of the data Z, denoted by P (Z, θ).

Since the model is assumed to be correctly specified, the true distribution of Z is P (Z, θ0).

The model typically contains certain assumptions, such as functional form or independence

assumptions, but suppose that so far none of the normalizations are imposed. We then say

that θ1, θ2 ∈ Θ are observationally equivalent if they generate the same distribution of the

data: P (Z, θ1) = P (Z, θ2). The identified set for θ0 is

Θ0 = {θ ∈ Θ : P (Z, θ) = P (Z)}.

We say that θ0 is point identified if Θ0 is a singleton. Let g(θ0) be a (potentially vector-

valued) function of interest, such as a counterfactual. The identified set for g(θ0) is

Θg0 = {g(θ) : θ ∈ Θ0}.

We say that g(θ0) is point identified if Θg0 is a singleton. Notice that if θ0 is point identified,

then g(θ0) is point identified as well, but g(θ0) could be point identified even if θ0 is not.

In models with normalizations, Θ0 is typically not a singleton. A normalization is a

restriction of the form θ ∈ ΘN , where ΘN ⊆ Θ is a known set that does not depend on the

distribution of the data. Hence, the normalization restricts the feasible values of θ, such as

setting one element to 1. I define a restriction to be normalization if it does not change the

identified set for some function g(θ0).
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Definition 1. The restriction θ ∈ ΘN is a normalization with respect to g(θ0) if for all

θ0 ∈ Θ

{g(θ) : θ ∈ Θ0 ∩ΘN} = {g(θ) : θ ∈ Θ0}.

Typically, Θ0 ∩ ΘN is a singleton. That is, we achieve point identification once the

normalizations are imposed. Since θ0 ∈ Θ0, the definition then requires that

{g(θ0)} = {g(θ) : θ ∈ Θ0 ∩ΘN} = {g(θ) : θ ∈ Θ0}

and thus that g(θ0) is point identified, even without a normalization. In addition, since

normalizations are often arbitrary, θ0 is usually not in Θ0 ∩ ΘN . Thus, the restriction

θ ∈ ΘN is not a normalization with respect to θ0, but it can be a normalization with respect

to particular functions of interest. Moreover, the restriction can be a normalization for some

function and not for others. Hence, researchers need to argue that normalizations hold with

respect to all functions of interest, such as all counterfactuals in a structural model.

The definition also implies that a normalization cannot impose any additional overiden-

tifying restrictions in the sense that Θ0 ∩ΘN 6= ∅ if Θ0 6= ∅. That is, if there is a parameter

that is consistent with the model and the distribution of the data without the normalizations,

then there is also such a parameter with the normalizations.

As a very simple illustrative example, consider the probit model

Y = 1(β0,1 + β0,2X ≥ U),

where var(X) > 0, U | X ∼ N(µ0, σ
2
0) and σ2

0 > 0. The true parameter vector is θ0 =

(β0,1, β0,2, µ0, σ0)′ and Z = (Y,X). Now notice that

P (Y = 1 | X = x) = Φ

(
β0,1 − µ0

σ0

+
β0,2

σ0

x

)
,

where Φ denotes the standard normal cdf. Since var(X) > 0, β0,1−µ0

σ0
and β0,2

σ0
are point

identified. It is also well known and easy to see that

Θ0 =

{
θ ∈ R4 :

β1 − µ
σ

=
β0,1 − µ0

σ0

and
β2

σ
=
β0,2

σ0

}
because all values in Θ0 imply the same joint distribution of (Y,X).

Since θ0 is not point identified, a common normalization in this setting is µ = 0 and

σ = 1. Using the previous notation, this means that ΘN = R2 × 0× 1 and

Θ0 ∩ΘN =

(
β0,1 − µ0

σ0

,
β0,2

σ0

, 0, 1

)
.
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Clearly, this restriction is not a normalization with respect to β0,1 or β0,2, which are typically

not objects of interest. In fact, in general θ0 /∈ Θ0 ∩ΘN unless µ0 = 0 and σ0 = 1. However,

this restriction is a normalization with respect to (potentially counterfactual) probabilities

P (Y = 1 | X = x) = Φ

(
β0,1 − µ0

σ0

+
β0,2

σ0

x

)
or, when X is continuous, marginal effects

∂

∂x
P (Y = 1 | X = x) =

∂

∂x
Φ

(
β0,1 − µ0

σ0

+
β0,2

σ0

x

)
.

Clearly, these features are point identified even though θ0 is not. While this is a very simple

example, it highlights that normalizations affect parameters and, to get interpretable results,

one needs to focus on features that are invariant to the restrictions. See also Lewbel (2019)

for additional discussion on normalizations and some other examples.

In the context of vector autoregressive models, Rubio-Ramı́rez, Waggoner, and Zha (2010)

define a normalization as a restriction on the parameter space that pins down unidentified

signs of coefficients. These restrictions are imposed in addition to other assumptions, such

as long run restrictions. Just like above, their normalizations do not impose additional

overidentifying restrictions. Unlike my definition, it is not clear whether these restrictions

are without loss of generality in the sense that they do not affect functions of interest. If

they do, they play the same role as the other assumptions and one would have to argue why

they reasonable, in contrast to normalizations as defined in Definition 1.

3 Skill formation models

I now illustrate the subtle issues that can arise from normalizations in a model of skill

formation. I start by introducing the general model and then discuss the results for the

trans-log and the CES production functions.

3.1 Model

Let θt denote skills at time t and let It be investment at time t.2 We are interested in the

roles of investment and past skills in the development of future skills. A complication in

this setting is that skills and investment are not directly observed and we instead observe

measurements of them, denoted by Zθ,t,m and ZI,t,m.

2In the previous section θ contains all parameters of the model. In what follows, I adapt the common

notation in the skill formation literature and let θt denote the skills.
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Specifically, I consider the model:

θt+1 = f(θt, It, δt, ηθ,t) t = 0, . . . , T − 1(1)

Zθ,t,m = µθ,t,m + λθ,t,m ln θt + εθ,t,m t = 0, . . . , T,m = 1, 2(2)

ZI,t,m = µI,t,m + λI,t,m ln It + εI,t,m t = 0, . . . , T − 1,m = 1, 2(3)

The first equation describes the production technology with a production function f that

depends on skills and investment at time t, a parameter vector δt, and an unobserved shock

ηθ,t. The second and the third equations describe the measurement system for unobserved

(latent) skills θt and unobserved investment It, respectively. Observed investment is a special

case with µI,t,m = 0, λI,t,m = 1, and εI,t,m = 0 for all m and t in which case ZI,t,m = ln It.

Next, I introduce two additional equations to allow for endogenous investment and to

anchor the measures at an adult outcome. If investment is exogenous, in the sense that ηθ,t is

independent of It, then these additional equations are not needed for the main identification

results. That is, let

ln It = β0t + β1t ln θt + β2t lnYt + ηI,t t = 0, . . . , T − 1(4)

Q = ρ0 + ρ1 ln θT + ηQ(5)

Here Yt is parental income (or another exogenous variable that affects investment) and Q

is an adult outcome, such as earnings or education. An adult outcome does not necessarily

have to be available and we can simply use a skill measure in period T in its place.

To summarize, the observed variables are the measures {Zθ,t,m, ZI,t,m}t=0,...,T,m=1,2, in-

come {Yt}T−1
t=0 and the adult outcome Q, but we neither observe skills {θt}Tt=0 nor invest-

ment {It}T−1
t=0 . We also do not observe the measurement errors {εθ,t,m, εI,t,m}t=0,...,T,m=1,2

or ηθ,t, {ηI,t}T−1
t=0 , and ηQ. The parameters of the model are {µθ,t,m, λθ,t,m}t=0,...,T,m=1,2,

{µI,t,m, λI,t,m}t=0,...,T−1,m=1,2, {δt}T−1
t=0 , {β0t, β1t, β2t}T−1

t=0 , and (ρ0, ρ1).

In the following analysis, I consider two forms for the production technology (1). These

two forms have been the most extensively used and estimated in the empirical literature:

� Trans-log:

ln θt+1 = at + γ1t ln θt + γ2t ln It + γ3t ln θt ln It + ηθ,t

with δt = (at, γ1t, γ2t, γ3t).

� Constant Elasticity of Substitution (CES):

θt+1 = (γ1tθ
σt
t + γ2tI

σt
t )ψt/σt exp(ηθ,t)

with δt = (γ1t, γ2t, σt, ψt).
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When γ3t = 0, the trans-log reduces to the Cobb-Douglas production function. I now

state several additional assumptions that are common in the literature.

Assumption 1.

(a) {{εθ,t,m}t=0,...,T,m=1,2, {εI,t,m}t=0,...,T−1,m=1,2, ηQ} are jointly independent and independent

of {{θt}Tt=0, {It}T−1
t=0 } conditional on {Yt}T−1

t=0 .

(b) All random variables have bounded first and second moments.

(c) E[εθ,t,m] = E[εI,t,m] = E[εQ] = 0 for all t and m.

(d) λθ,t,m, λI,t,m 6= 0 for all t and m.

(e) For all t ∈ {0, . . . , T}, cov(ln θt, ln Is) 6= 0 for some s ∈ {0, . . . , T−1} or cov(ln θt, ln θs) 6=
0 for some s ∈ {0, . . . , T}\t . For all t ∈ {0, 1, . . . , T − 1}, cov(ln It, ln θs) 6= 0 for some

s ∈ {0, . . . , T} or cov(ln It, ln Is) 6= 0 for some s ∈ {0, . . . , T − 1}\t.

(f) For all t and m the real zeros of the characteristic functions of εθ,t,m are isolated and

are distinct from those of its derivatives. Identical conditions hold for the characteristic

functions of εI,t,m and ηQ.

(g) The support of (θt, It, Yt) includes an open ball in R3 for all t.

(h) E[ηθ,t | θt, Yt] = 0 and E[ηθ,t | θt, ηI,t, Yt] = κtηI,t for all t.

Part (a) imposes common independence assumptions on the measurement errors. Im-

portantly, It and θt are not independent and It may be endogenous and contemporaneously

correlated with ηθ,t. Part (b) is a standard restriction, part (c) is needed because all mea-

surement equations contain an intercept, and part (d) ensures that the skills actually affect

the measures. Part (e) requires that skills and investment are correlated in some time pe-

riods. Sufficient conditions are that cov(ln θt+1, ln θt) 6= 0 and cov(ln It+1, ln It) 6= 0 for all

t. Notice that under parts (a) and (d) zero covariances of the latent variables are identified

because, for example, cov(ln θt, ln θs) = 0 if and only if cov(Zθ,t,1, Zθ,s,1) = 0. Notice that I

only require two measures in each period. One can drop this assumption by assuming that

three measures are available. Part (f) contains weak regularity conditions needed for non-

parametric identification of the distributions of skills and investment and that hold for most

common distributions. Part (g) is a mild support condition that ensures sufficient variation

of (θt, It, Yt) and rules out colinarity. Part (h) implies that Yt can serve as an instrument
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and identification can be achieved using a control function argument as in Attanasio et al.

(2020). Linearity of the conditional mean function can be relaxed and one could allow for

more flexible functional forms. Exogenous investment is a special case with κt = 0.

Under parts (a)–(e) of Assumption 1 we get the following result.

Lemma 1. Suppose that parts (a)–(e) of Assumption 1 hold. Then the joint distribution of

({µθ,t,m + λθ,t,m ln θt}t=0,...,T,m=1,2, {µI,t,m + λI,t,m ln It}t=0,...,T−1,m=1,2, ρ0 + ρ1 ln θT )

is point identified conditional on {Yt}T−1
t=0 .

The proof follows from an extension of Kotlarski’s Lemma due to Evdokimov and White

(2012). Lemma 1 shows that under Assumption 1, we can identify the distribution of a linear

combination of the log skills and investments, but not the parameters in equations (1)–(3),

and therefore also not δt. Below I discuss additional assumptions, which have been used

in the literature, to achieve point identification of two sets of parameters: (i) the primitive

parameters of the model (1)–(5): {µθ,t,m, λθ,t,m}t=0,...,T,m=1,2, {µI,t,m, λI,t,m}t=0,...,T−1,m=1,2,

{δt}T−1
t=0 , {β0t, β1t, β2t}T−1

t=0 , and (ρ0, ρ1) and (ii) “policy relevant” parameters, such as how

changes in investment or income affect the adult outcome Q. I consider various combinations

of assumptions and I discuss whether certain restrictions are normalizations.

There are two separate issues concerning identification and normalizations in this model.

First, the previous literature has focused on sufficient conditions for point identification,

which includes scale and location restrictions. However, it is unclear whether these restric-

tions are necessary or potentially overidentifying. If so, estimators are generally inconsis-

tent. Second, once we have a set of restrictions that is non-overidentifying, it is important

to understand which parameters and features are invariant to arbitrary scale and location

restrictions. Although the implications in the CES case are more interesting, I start with

the more transparent trans-log case in which only the second issue arises. As pointed out

before, whether or not a restriction is a normalization depends on the specifics of the model,

and we will see that certain parameters are invariant in some settings, but not in others.

3.2 Trans-log production function

In this section I consider the production function

ln θt+1 = at + γ1t ln θt + γ2t ln It + γ3t ln θt ln It + ηθ,t.

I now introduce additional assumptions that are commonly used in the literature.
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Assumption 2. λθ,0,1 = 1 and µθ,0,1 = 0.

Assumption 3.

(a) λθ,t,1 = λθ,t+1,1 and µθ,t,1 = µθ,t+1,1 for all t = 0, . . . , T − 1

(b) at = 0 and γ1t + γ2t + γ3t = 1 for all t = 0, . . . , T − 1.

Assumption 4.

(a) λI,t,1 = λI,t+1,1 = 1 and µI,t,1 = µI,t+1,1 = 0 for all t = 0, . . . , T − 2.

(b) β0t = 0 and β1t + β2t = 1 for all t = 0, . . . , T − 1.

Assumption 2 is usually thought of as a normalization, which is commonly imposed since

log skills are only identified up to scale and location. Here, I impose the restrictions on

the first measure, which is without loss of generality. Instead of fixing the intercept and

the slope coefficient in equation (2) for t = 0, one could set ρ0 = 0 and ρ1 = 1 and thus

“anchor” the skills at Q. Assumption 2 anchors the skills at Zθ,0,1, but analogous issues

discussed here also arise with anchoring at Q (see Section 3.2.4 for details). Without such

an assumption, the parameters are not point identified. Assumptions 3(a) states that the

skill measures are age-invariant (using the terminology of Agostinelli and Wiswall (2022) –

see their Definition 1 and footnote 10). Assumption 3 imposes restrictions on the technology,

which Agostinelli and Wiswall (2022) refer to as a known scale and location assumption in a

more general context. Assumption 4(a) states that an investment measure is age-invariant.

Assumption 4(b) imposes constant return to scale of investment, which is a strong assumption

needed for point identification of all parameters without age-invariant investment measures.

If investment was observed (i.e. ZI,t,m = ln It), Assumption 4(a) is automatically satisfied.

I now characterize the identified set of the primitive parameters of the model under As-

sumption 1 only. I then discuss point identification under different combinations of Assump-

tions 1 – 4 and show that several policy relevant parameters are invariant to the restrictions

in Assumption 2 and are in fact point identified under Assumption 1 only. Finally, I illus-

trate why Assumption 2 is in general not a normalization for the primitive parameters of

the model as well as some policy relevant parameters.

3.2.1 Identification

Define

θ̃t = exp(µθ,t,1)θ
λθ,t,1
t
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so that

ln θ̃t = µθ,t,1 + λθ,t,1 ln θt and ln θt =
ln θ̃t − µθ,t,1

λθ,t,1
.

Similarly, define

Ĩt = exp(µI,t,1)I
λI,t,1
t

We can then rewrite the trans-log production technology in terms of θ̃t and Ĩt because

ln θ̃t+1 − µθ,t+1,1

λθ,t+1,1

= at + γ1t
ln θ̃t − µθ,t,1

λθ,t,1
+ γ2t

ln Ĩt − µI,t,1
λI,t,1

+ γ3t
ln θ̃t − µθ,t,1

λθ,t,1

ln Ĩt − µI,t,1
λI,t,1

+ ηθ,t.

After rearranging, we can then rewrite equations (1)–(5) as

ln θ̃t+1 = ãt + γ̃1t ln θ̃t + γ̃2t ln It + γ̃3t ln θ̃t ln It + η̃θ,t t = 0, . . . , T − 1(6)

Zθ,t,m = µ̃θ,t,m + λ̃θ,t,m ln θ̃t + εθ,t,m t = 0, . . . , T,m = 1, 2(7)

ZI,t,m = µ̃I,t,m + λ̃I,t,m ln Ĩt + εI,t,m t = 0, . . . , T − 1,m = 1, 2(8)

ln Ĩt = β̃0t + β̃1t ln θ̃t + β̃2t lnYt + η̃I,t t = 0, . . . , T − 1(9)

Q = ρ̃0 + ρ̃1 ln θ̃T + ηQ(10)

where the parameters in equation (6) are

ãt = λθ,t+1,1at + µθ,t+1,1 −
λθ,t+1,1

λθ,t,1
µθ,t,1γ1t −

λθ,t+1,1

λI,t,1
µI,t,1γ2t +

λθ,t+1,1

λθ,t,1λI,t,1
µI,t,1µθ,t,1γ3t

γ̃1t =
λθ,t+1,1

λθ,t,1

(
γ1t −

µI,t,1
λI,t,1

γ3t

)
, γ̃2t =

λθ,t+1,1

λI,t,1

(
γ2t −

µθ,t,1
λθ,t,1

γ3t

)
, γ̃3t =

λθ,t+1,1

λθ,t,1λI,t,1
γ3t

with unobservable η̃θ,t = λθ,t+1,1ηθ,t, the parameters in the measurement equations (7) and

(8) are µ̃θ,t,1 = 0, λ̃θ,t,1 = 1, µ̃I,t,1 = 0, λ̃I,t,1 = 1,

λ̃θ,t,m = λθ,t,m/λθ,t,1, µ̃θ,t,1 = µθ,t,m − (λθ,t,m/λθ,t,1)µθ,t,1

λ̃I,t,m = λI,t,m/λI,t,1, µ̃I,t,1 = µI,t,m − (λI,t,m/λI,t,1)µI,t,1,

the parameters in equation (9) are

β̃0t = λI,t,1β0t + µI,t,1 − (λI,t,1/λθ,t,1)µθ,t,1β1t, β̃1t = (λI,t,1/λθ,t,1)β1t, β̃2t = λI,t,1β2t

with unobservable η̃I,t = λI,t,1ηI,t, and the parameters in equation (10) are

ρ̃0 = ρ0 −
ρ1µθ,t,1
λθ,t,1

, ρ̃1 =
ρ1

λθ,t,1
.

The following theorem characterizes the identified set of the finite dimensional parameters

of the model.
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Theorem 1. Suppose Assumption 1 holds.

1. The identified set of {µθ,t,m, λθ,t,m}t=0,...,T,m=1,2, {µI,t,m, λI,t,m}t=0,...,T−1,m=1,2, (ρ0, ρ1),

{β0t, β1t, β2t}T−1
t=0 , {at, γ1t, γ2t, γ3t}T−1

t=0 consists of all vectors that yield the same values

of {µ̃θ,t,m, λ̃θ,t,m}t=0,...,T,m=1,2, {µ̃I,t,m, λ̃I,t,m}t=0,...,T−1,m=1,2, (ρ̃0, ρ̃1), {β̃0t, β̃1t, β̃2t}T−1
t=0 ,

and {ãt, γ̃1t, γ̃2t, γ̃3t}T−1
t=0 as the true parameter vectors.

2. Let {µ̄θ,t,1, λ̄θ,t,1}Tt=0, {µ̄I,t,1, λ̄I,t,1}T−1
t=0 , be fixed constants with λ̄θ,t,1, λ̄I,t,1 6= 0 for all t. If

in addition {µθ,t,1, λθ,t,1}Tt=0 = {µ̄θ,t,1, λ̄θ,t,1}Tt=0 and {µI,t,1, λI,t,1}T−1
t=0 = {µ̄I,t,1, λ̄I,t,1}T−1

t=0 ,

then the identified set is a singleton.

The identified set of the primitive parameters consists of all parameters that satisfy cer-

tain restrictions, analogous to the probit model. The second part of the theorem shows that

the parameters are indeed not point identified and that the sources of underidentification

are the ambiguous scales and locations of skills and investments. For example, without addi-

tional assumptions, equations (1)–(5) and (6)–(10) are observationally equivalent. That is,

we cannot distinguish between the skills θt and θ̃t and the corresponding production function

parameters. Even if investment was observed (and µI,t,1 = 0 for all t), we can then only

identify (λθ,t+1,m/λθ,t,m)γ1t, but not λθ,t,m and γ1t separately. Hence, we cannot distinguish

between changes in the quality of the measurements (λθ,t+1,m/λθ,t,m) and changes in the

technology (γ1t). For example, suppose Zθ,t,m are test scores. We then cannot distinguish

between all kids getting smarter or tests becoming easier. Similarly, we can at best identify

γ2t up to scale, even with observed investment.

The theorem implies that all parameters are point identified under additional assump-

tions. These results are an extension of those in Agostinelli and Wiswall (2022), who assume

that investment is exogenous (in the sense that it is uncorrelated with ηθ,t).

Corollary 1. Suppose Assumptions 1 and 2 hold. Suppose either Assumption 3(a) or As-

sumption 3(b) holds. Suppose either Assumption 4(a) or Assumption 4(b) holds. Then all

parameters are point identified.

The corollary also immediately implies that Assumptions 3(a) and 3(b) together impose

overidentifying restrictions, which is one of the main contributions of Agostinelli and Wiswall

(2016a, 2016b, 2022). As shown in Theorem 6 in the appendix and illustrated in examples

below, if the model is correctly specified and Assumption 1 holds, then there always exist

sets of parameters which are consistent with the data and satisfy Assumptions 1, 2, either

3(a) or 3(b), and either 4(a) or 4(b). These different sets of assumptions therefore impose
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no additional restrictions on the distribution of observables. While different sets of assump-

tions yield point identification and are observationally equivalent, the estimated primitive

parameters are usually quite different, as illustrated in Section 3.2.3. Moreover, these results

show that the primitive parameters are not point identified without Assumption 2. However,

setting the initial scales and locations to other values changes the identified values.

3.2.2 Invariant parameters

I now show that while the primitive parameters are generally very sensitive to the scale and

location restrictions, many objects of interest are in fact point identified under Assumption

1 only. To state the formal results below, let Qα(θt) be the α quantile of the skill distribution

at time t and let Fln(θt+1)(·) be the distribution function of log-skills at time t+ 1.

Theorem 2. Suppose Assumption 1 holds.

1. Fln θt+1(at + γ1t lnQα1(θt) + γ2t lnQα2(It) + γ3t lnQα1(θt) lnQα2(It) +Qα3(ηθ,t)) is point

identified for all α1, α2, α3 ∈ (0, 1).

2. Let

ln It(Y ) = β0t + β1t lnQα1(θt) + β2t lnY +Qα4(ηI,t)

Then Fln θt+1(at+γ1t lnQα1(θt)+γ2t ln It(Y )+γ3t lnQα1(θt) ln It(Y )+Qα3(ηθ,t)) is point

identified for all α1, α3, α4 ∈ (0, 1).

3. P
(
Q ≤ q | θs = Qα1(θs), {It = Qα2t(It)}T−1

t=0 , {ηθ,t = Qα3t(ηθ,t)}T−1
t=s

)
is point identified

for all α1, {α2t, α3t}T−1
t=s ∈ (0, 1).

4. P
(
Q ≤ q | θs = Qα(θs), {Yt = yt}T−1

t=s

)
is point identified for all α ∈ (0, 1).

5. Suppose Assumption 3(a) also holds. Then γ1t + γ3t lnQα(It) is point identified for all

α and P (γ1t + γ3t ln It ≤ q) is point identified for all q ∈ R.

The function Fln θt+1(at+γ1t lnQα1(θt)+γ2t lnQα2(It)+γ3t lnQα1(θt) lnQα2(It)+Qα3(ηθ,t))

measures how changes in investment changes the relative standing in the skill distribution.

For example, consider an individual with θt = Q0.1(θt), which means that the person is in

the lowest 10% of the skill distribution at time t. Then, given investment It = Q0.25(It) and

a median production function shock, ηθ,t = Q0.5(ηθ,t),

Fln θt+1(at + γ1t lnQ0.1(θt) + γ2t lnQ0.25(It) + γ3t lnQ0.1(θt) lnQ0.25(It) +Q0.5(ηθ,t))
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tells us the relative rank (or the quantile) in the skill distribution at time t+ 1. Also notice

that if investment was directly observed, then Qα2(It) is also identified and belongs to a

particular level of investment. We can then for example vary the investment quantile/level

and analyze how future skill ranks are affected. Once we know the rank at time t+ 1 and fix

investment and production function shock quantiles in that period, we can also identify the

skill rank at time t+ 2. Thus, using these recursive arguments, we can identify the relative

rank in period T , given investment and production function shock quantiles in all period and

a skill quantile in period 0. We could then make statements such as: “A person at lowest

10% of the initial skill distribution would end up at the 30% quantile in the final period skill

distribution with a particular investment strategy and median production function shocks.”

These statements would allow comparisons of investment strategies, assessing heterogeneous

effects, and choosing optimal investments depending on the skill level. Instead of fixing the

unobservables at particular quantiles, we can also average them out because∫
Fln θt+1(at + γ1t lnQα1(θt) + γ2t lnQα2(It) + γ3t lnQα1(θt) lnQα2(It) +Qα3(ηθ,t))dα3

=

∫
Fln θt+1(at + γ1t lnQα1(θt) + γ2t lnQα2(It) + γ3t lnQα1(θt) lnQα2(It) + η)dFηθ,t(η)

which is then point identified for all α1, α2 ∈ (0, 1).

One advantage of focusing on the relative rank (and the other features in Theorem 2)

is that we do not require scale and location restrictions, additional restrictions on the pro-

duction function, or age-invariant measures. As opposed to the primitive parameters, these

features are thus invariant to the units of measurement of the data and would be comparable

across different studies. Section 3.4 contains several illustrative numerical examples.

In this model, investment is affected by changes in Yt. The second part of the theorem

shows that, given a skill quantile at time t and quantiles of the observables, we can identify

how changes in Yt affect the rank in the skill distribution at time t. Again, using recursive

arguments, one can then also identify the rank in the final period. If one performs this

exercise for all initial quantiles of the skill distribution, one obtains a distribution of ranks of

final skills that can be compared for different income sequences. These results can then show

if changes to income (or investment) increase the overall skill level or reduce the variance

- see Section 3.4 for numerical illustrations. Again, instead of fixing the quantiles of skills

and/or the other unobservables, one could also average over them. That is, let

ln It(Y, ηI,t) = β0t + β1t lnQα1(θt) + β2t lnY + ηI,t.
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Then∫ ∫
Fln θt+1(at+γ1t lnQα1(θt)+γ2t ln It(Y, ηI)+γ3t lnQα1(θt) ln It(Y, ηI)+ηθ)dFηθ,t(ηθ)dFηI,t(ηI)

is point identified for all α1 ∈ (0, 1), which shows the average effect of investment for different

quantiles of the skill distribution. We could average over skills as well and identify∫ ∫ ∫
Fln θt+1(at+γ1t ln θ+γ2t ln It(Y, ηI)+γ3t ln θ ln It(Y, ηI)+ηθ)dFθt(θ)dFηθ,t(ηθ)dFηI,t(ηI)

and its derivative with respect to lnY , which then tells us how a percentage changes in

income changes the quantile of the skill distribution on average.

Instead of considering the skill rank in the final period, we could also look at the dis-

tribution of the adult outcome Q (or, alternatively, one of the skill measures in the final

period). Notice that it is important to condition on the production function shocks, because

investment in endogenous. As before, we can consider averages and identify∫
· · ·
∫
P
(
Q ≤ q | θs = Qα2t(θs), {It = Qα2t(It)}T−1

t=s , {ηθ,t = ηt}T−1
t=s

)
dFηθ,s(ηs) · · · dFηθ,T−1

(ηT−1)

for all {α2t}T−1
t=s ∈ (0, 1), and we may average over θs as well. Identification of the distribution

also implies identification of features, such as∫
· · ·
∫
E
(
Q | θs = θ, {Is = Qα2s(Is)}T−1

s=t , {ηθ,s = ηs}T−1
s=t

)
dFθs(θ)dFηθ,s(ηs) · · · dFηθ,T−1

(ηT−1)

We could then pick a sequence of investment that maximizes this mean adult outcome.

The fourth part focuses on the effect of income on skills, where income is exogenous

conditional on the initial skills. Again, we can point identify averages and features of the

distribution such as ∫
P
(
Q ≤ q | θs = θ, {Yt = yt}T−1

t=s

)
fθs(θ)dθ

and ∫
E
(
Q | θs = θ, {Yt = yt}T−1

t=s

)
fθs(θ)dθ

The last expression differs from E
(
Q | {Yt = yt}T−1

t=s

)
due to a potential dependence between

{Yt = yt}T−1
t=s and skills. Also notice that∫

E
(
Q | θs = θ, {Yt = yt}T−1

t=s

)
fθs(θ)dθ = ρ0 + ρ1

∫
E
(
ln θT | θs = θ, {Yt = yt}T−1

t=s

)
fθs(θ)dθ
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Thus, we can identify the sequence {Yt = yt}T−1
t=s that maximizes the conditional expected

value of ln θT . For this sequence, we do not necessarily need to observe an adult outcome

because we can use one of the skill measures in the final period in its place. To identify these

features, one only has to identify the joint distribution of (Q, Y1, . . . , YT−1, θ̃s). For example,

when s = 0, we can identify this sequence without any skill measures in periods 1, 2, . . . , T .3

It is important to note that objects such as
∫
E
(
θT | θs = θ, {Yt = yt}T−1

t=s

)
fθs(θ)dθ are not

point identified without the scale and location restrictions and therefore sensitive to the

specific values used (see Example 2 below).

Remark 1. To summarize the production technology, Del Bono, Kinsler, and Pavan (2020)

show that standardizing skills can lead to features that are invariant to scale and location

normalizations and age-invariance. In particular, they show identification of the distribution

of
(
∂ ln θt+1

∂ ln It

)
/std(ln θt+1). One can then make statements such as “increasing investment

by 1%, increases log-skills by x × std(ln θt+1)” or “increasing investment by 1%, increases

θ
std(ln θt+1)
t+1 by x%”. Such statements can be hard to interpret, especially when the skill

and measures only have an ordinal interpretation. My results in part 1 of Theorem 2 offer

an alternative interpretation in terms of ranks that are not specific to linear measurement

systems and the trans-log production functions.

Remark 2. Identification is based on a two-step approach, where the distribution of a

linear combination of skills and investment is identified in the first step. Agostinelli and

Wiswall (2022) instead substitute measures into the production function equation and use

IV arguments with exogenous investment (i.e. investment is determined as in (4), but It and

ηθ,t are independent). Aside from exogenous investment, there are no substantial differences

between the required assumptions, as both approaches are based on the joint distribution of

the measures; see also Freyberger (2018) for IV type arguments in linear and nonlinear factor

models. My main contributions are to study the roles of the scale and location restrictions

3Part 4 of Theorem 2 also implies identification of∫ ∫ (
∂

∂ys
E(Q | θs = θ, {Yt = yt}T−1

t=s )

)
fθs,Ys,...,YT−1

(θ, ys, . . . , yT−1)dθdys · · · dyT−1

which Del Bono, Kinsler, and Pavan (2020) refer to as “anchored treatment effects”. Del Bono, Kinsler,

and Pavan (2020) show that these effects are identified without age-invariant measures. My results show

that not only is it irrelevant whether the measures are age-invariant, but one in fact does not even need any

measures of investments or measures of skills in periods s+1, 2, . . . , T (and therefore also no assumptions on

the measurement systems). In addition, my arguments are not specific to the trans-log production function

and carry over to other settings.
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on the parameters of the model, prove which of the restrictions are necessary for point

identification, and show that many features are invariant to them and are identified without

age-invariant measures and restrictions on the production function. In the trans-log case, the

restrictions of Agostinelli and Wiswall (2022) are in fact necessary for identification, but in

the CES case, I show that commonly used scale restrictions, that are also used by Agostinelli

and Wiswall (2022), are overidentifying and imposing them yields biased estimators.

3.2.3 Non-invariant parameters

The arguments leading to Theorem 1 show that we can define skills θ̃t such that Assump-

tions 1, 2, 3(a), and 4(a) hold. Theorem 6 in the appendix states an analogous result for

Assumptions 1, 2, and different combinations of Assumptions 3 and 4: for any given set of

parameters and a distribution of skills satisfying Assumption 1, there exist an alternative set

of parameters and distributions which satisfy Assumption 2, either 3(a) or 3(b), and either

4(a) or 4(b) and which is observationally equivalent to the original set of parameters.

I now illustrate with a simple example that the estimated primitive parameters are very

different under the two sets of assumptions and that Assumption 2 is in general not a nor-

malization. Specifically, for simplicity, I assume that investment is observed and exogenous.

In this case, Assumption 4(a) holds. I then consider a data generating process (DGP) satis-

fying Assumptions 1, 3(a), and 3(b), but not Assumption 2. I then construct two alternative

sets of parameters, both of which are observationally equivalent to the original DGP. One

of these sets of parameters satisfies Assumptions 1, 2, and 3(a) and the other set satisfies

Assumptions 1, 2, and 3(b). All sets of parameters imply very different production functions

which shows that Assumption 2 is in general not a normalization with respect to those pa-

rameters, that the estimates are hard to interpret in practice, and that one has to be careful

about which counterfactuals to consider.

Example 1. I consider a model where investment is directly observed and Assumptions 1,

3(a), and 3(b) are satisfied for all t:

ln θt+1 =
1

2
ln θt +

1

2
ln It + ηθ,t

Z̃θ,t,1 = ln θt + ε̃θ,t,1

Zθ,t,2 = λθ,t,2 ln θt + εθ,t,2

ln It =
1

2
ln θt +

1

2
lnYt + ηI,t

Q = ln θT + ηQ
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For simplicity, in this example I set at = µθ,t,m = ρ0 = 0 and focus on the scale restriction

in Assumption 2 only. Notice that Assumption 3(b) holds because γ1t and γ2t sum to 1,

the two slope coefficients are identical, and they do not change over time. In addition, λθ,t,1

does not change over time and Assumption 3(b) holds. If we estimate the model using the

measures {Z̃θ,t,1, Zθ,t,2}Tt=0, we will get consistent estimators of all parameters.

However, the measures often do not have a natural scale. For example, we could divide

all test scores by 10 or we could measure education in months rather than years. One would

then hope that changing the units of measurement does to affect the interpretation of the

results. As a specific example, suppose we estimate the model using a scaled version of the

measures, namely Zθ,t,1 = 12Z̃θ,t,1. Then for all t

ln θt+1 =
1

2
ln θt +

1

2
ln It + ηθ,t

Zθ,t,1 = 12 ln θt + εθ,t,1

Zθ,t,2 = λθ,t,2 ln θt + εθ,t,2

ln It =
1

2
ln θt +

1

2
lnYt + ηI,t

Q = ln θT + ηQ

where εθ,t,1 = 12ε̃θ,t,1. Without knowing the true DGP, one would typically impose assump-

tions that yield point identification when estimating the model. By Corollary 1, one could

use either Assumption 3(a) or 3(b) next to Assumptions 1 and 2. Both sets of restrictions

yield models that are observationally equivalent to the true DGP, but imply different esti-

mated parameters and potentially different interpretations of the results. Moreover, Example

2 below illustrates that counterfactuals can be affected as well.

I first construct an observationally equivalent set of parameters satisfying Assumptions

1, 2, and 3(b). In particular, Theorem 6 (and its proof) in the appendix shows that there

are {θ̄t}Tt=0 such that

ln θ̄t+1 = γ̄1t ln θ̄t + (1− γ̄1t) ln It + η̄θ,t

Zθ,t,m = λ̄θ,t,m ln θ̄t + εθ,t,m

ln It =
λ̄θ,t,1
12

1

2
ln θ̄t +

1

2
lnYt + ηI,t

Q =
λ̄θ,t,1
12

ln θ̄T + ηQ

where

(γ̄10, γ̄11, γ̄12, γ̄13, γ̄14, . . .) = (0.077, 0.351, 0.435, 0.470, 0.485, . . .)
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and

(λ̄θ,0,1, λ̄θ,1,1, λ̄θ,2,1, λ̄θ,3,1, λ̄θ,4,1, . . .) = (1, 6.5, 9.25, 10.625, 11.3125, . . .).

Moreover γ̄1t → γ1t = 1/2 and λ̄θ,t,1 → λθ,t,1 = 12 as t → ∞. Imposing the restriction

λ̄θ,0,1 = 1 then means that we estimate a model with alternative skills ln θ̄0 = 12 ln θ0 and

that we consequently obtain different parameters and different skill distributions. Although

these two models suggest very different dynamics, they generate identical measurements,

which illustrates that the parameters are not point identified under Assumptions 1 and 3(b)

only (and without Assumption 2). Imposing Assumption 2 then means that we estimate the

parameters of the second model, even though the first model might be the true DGP. Clearly,

this restriction is not a normalization for any of the primitive parameters of the model,

implying that these parameters are hard to interpret. For example the slope coefficient in

front of investment in the original model might be interpreted as: “increasing investment by

1%, increases skills in the next period by 0.5% and the effect is the same for all time periods”

(see for example Agostinelli and Wiswall (2022) for these interpretations). Contrarily, one

might interpret the coefficients in the alternative model with Assumption 2 as: “increasing

investment by 1% in period 0, increases skills in period 1 by 0.923% and increasing investment

by 1% in period 4, increases skills in period 5 by 0.515%”, suggesting that investment is more

beneficial in early periods. Similarly, the parameters in the investment equation are hard to

interpret. An immediate consequence is that once Assumption 2 is imposed, simply changing

the units of measurements of Zθ,t,1 affects the dynamics of the estimated parameters of the

model and could lead to very different interpretations of the model. Intuitively, the reason

is that the restriction λθ,0,1 = 1 fixes the scale of the log skills, but the relative scale of

investments and skills is crucial when γ1t + γ2t = 1.

Next suppose that we impose Assumptions 1, 2 and 3(a) to achieve point identification.

Theorem 1 shows that with ln θ̃t = 12 ln θt we can write

ln θ̃t+1 =
1

2
ln θ̃t + 6 ln It + η̃θ,t

Zθ,t,m = λ̃θ,t,m ln θ̃t + εθ,t,m

ln It =
1

24
ln θ̃t +

1

2
lnYt + ηI,t

Q =
1

12
ln θ̃T + ηQ

with λ̃θ,t,1 = 1 for all t. Therefore, while the slope coefficient in the production function

in front of ln θ̃t does not change, the slope coefficient of log investment changes. Thus,

statements such as “increasing investment by 1%, increases skills in the next period by

0.5%”, depend on the scale of the skills or the units of measurements of Zθ,t,1.
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To summarize, under Assumptions 1, 2, and 3(b), none of the primitive parameters

are invariant to the scale and location restrictions, which makes them hard to interpret.

Contrarily, under Assumptions 1, 2, and 3(a), Theorem 1 shows that the restrictions in

Assumption 2 are normalizations with respect to γ1t. However, the restrictions are not

normalizations with respect to γ2t. See also Cunha and Heckman (2008) for this observation.

The next example illustrates that counterfactuals that depend on the level of skills can

be sensitive to the scale restrictions as well.

Example 2. As a specific numerical example, I use the DGP from Section 3.4, which is

based on the Monte Carlo simulations of Attanasio et al. (2020).4 In this setup T = 2

and Assumptions 1, 2, 3(a), and 4(a) hold. Importantly, one of the skill measures and one

of the investment measures has a loading of 1. Now suppose Yt represents income, we can

exogenously increase the sum of income in periods 0 and 1 of each individual by two standard

deviations, and we want to distribute the additional income optimally across the two periods.

Denote the skills in period 2 as a function of income by θ2(Y0 + wx, Y1 + (1 − w)x), where

Y0 and Y1 are the original incomes, x is the additional amount to be distributed, and w is

the share that is invested in period 0.

The left panel of Figure 1 shows

E[θ2(Y0 + wx, Y1 + (1− w)x)]− E[θ2(Y0, Y1)]

sd(θ2(Y0, Y1))

as a function of w. That is, the y-axis shows the increase in the mean measured in standard

deviations of the distribution. The black line shows the effect using the true parameters,

which suggests an optimal investment share of around 31% in period 0. Next, I multiply

all skill measures Zθ,t,1 by sθ, which simply changes the units of measurements. We then

estimate a model where the skills are ln θ̃t = sθ ln θt = ln θsθt . The implied effects of increasing

income for sθ = 0.25 and sθ = 4 can be seen in the left panel of Figure 1 as well. The optimal

investment shares are estimated to be 45% and 0%, respectively, which are both inefficient

choices. Additionally, they imply erroneous benefits of investment. For example, when

sθ = 4 the estimated increase in the expected skill level is close to 0 standard deviations,

while with the original scale, the increase is around 0.5 standard deviations. Scaling the

measures has identical effects to imposing λθ,0,1 = 1, when the data is generated with a

loading of 0.25 or 4. Thus, the scale restriction is not a normalization for this optimal income

sequence. Intuitively, the reason is that we now maximize E[θ̃t(Y0 + wx, Y1 + (1 − w)x)] =

4In Section 3.4 I use a CES production function, as do Attanasio et al. (2020), but for this numerical

examples I use a trans-log production function that leads to similar observed data.
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Figure 1: Mean response for different weights
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E[θt(Y0 +wx, Y1 +(1−w)x)sθ ] which is not invariant to sθ. While such counterfactuals could

be relevant if a welfare function is a function of the skill level, they are not identified without

fixing the scales and locations, and then depend on the units of measurements of the data.

The right panel contains analogous results, but now considers log-skills rather than the

level. As discussed below Theorem 2, in this case, the optimal income sequence does not

depend on the scale of the measures. In addition, dividing by the standard deviation, implies

that the objective (E[ln θ2(Y0 + wx, Y1 + (1− w)x)]− E[ln θ2(Y0, Y1)])/sd(ln θ2(Y0, Y1)) =

(E[ln θ̃2(Y0 + wx, Y1 + (1− w)x)]− E[ln θ̃2(Y0, Y1)])/sd(ln θ̃2(Y0, Y1)) is invariant to the scale.

3.2.4 Anchoring

Recall that we can write

ln θ̃t+1 = ãt + γ̃1t ln θ̃t + γ̃2t ln It + γ̃3t ln θ̃t ln It + η̃θ,t

Zθ,t,m = µ̃θ,t,m + λ̃θ,t,m ln θ̃t + εθ,t,m

ZI,t,m = µ̃I,t,m + λ̃I,t,m ln Ĩt + εI,t,m

ln Ĩt = β̃0t + β̃1t ln θ̃t + β̃2t lnYt + η̃I,t

Q = ρ̃0 + ρ̃1 ln θ̃T + ηQ

with µ̃θ,t,0 = µ̃I,t,0 = 0 and λ̃θ,t,0 = λ̃I,t,0 = 1, and the parameters in this system of equations

are point identified by Theorem 1. Now define ϑ̃t such that

ln ϑ̃t = ρ̃0 + ρ̃1 ln θ̃t.
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We then get

ln ϑ̃t+1 = ρ̃0 + ρ̃1ãt − ρ̃0γ̃1t + γ̃1t ln ϑ̃t + ρ̃1γ̃2t ln It + γ̃3t ln ϑ̃t ln It + ρ̃1η̃θ,t

Zθ,t,m = µ̃θ,t,m −
ρ̃0λ̃θ,t,m
ρ̃1

+
λ̃θ,t,m
ρ̃1

ln ϑ̃t + εt

ZI,t,m = µ̃I,t,m + λ̃I,t,m ln Ĩt + εI,t,m

ln Ĩt = β̃0t −
ρ̃0β̃1t

ρ̃1

+
β̃1t

ρ̃1

ln ϑ̃t + β̃2t lnYt + η̃I,t

Q = ln ϑ̃T + ηQ

Cunha and Heckman (2008) estimate a model for ln ϑ̃t which anchors the skills at the adult

outcome. In particular, they first identify the model with ln θ̃t by using Assumptions 2 and

3(a). They then identify ρ̃0 and ρ̃1, redefine the skills as ln ϑ̃t, and estimate the production

function parameters. This strategy is equivalent to imposing the restrictions ρ0 = 0 and

ρ1 = 1 instead of Assumption 2. Anchoring can help with the interpretation of certain

parameters of the model. For example, when E(Q | ln ϑ̃T ) = ln ϑ̃T , then an increase of ln ϑ̃T

by one corresponds to a one unit increase in the conditional expectation of Q. Moreover,

the observed variable Q can be used to study counterfactuals, such as income transfers,

under Assumption 1 only, as shown in Theorem 2. However, as illustrated in Example 2,

investment or income sequences that maximize the levels of the skills depend on the units of

measurements of the anchor and are therefore hard to interpret. Instead on should focus on

the log skill in which case such optimal sequences are invariant to the units of measurements.5

As noted by Cunha and Heckman (2008), γ̃1t is invariant to the anchor. However, notice

that Assumption 3(a) is an assumption and not a normalization with respect to γ1t. Specifi-

cally, even with observed investment, γ̃1t is only equal to γ1t if λθ,t,1 = λθ,t+1,1. The coefficient

in front of investment is hard to interpreted because it depends on the specific anchor and its

units of measurements (as also noted by Cunha and Heckman (2008)). Moreover, notice that

skills are anchored at the adult outcome, but investment is not, and many of the estimated

parameters also depend on the units of the investment measures. While anchoring makes

most sense under Assumption 3(a), in which case the skills in all periods are in the units

of Q, we could instead use Assumption 3(b) to achieve point identification. In this case

5The identification arguments are fundamentally different if the anchoring equations was in levels instead

of logs of the skills. That is, if Q = ρ0 + ρ1θT + ηQ = ρ0 + ρ1

exp(µθ,t,1)
1/λθ,t,1

θ̃
1/λθ,t,1
t + ηQ. In this case it can

be shown that the joint distribution of (Q, θ̃T ) is identified, which identifies λθ,t,1. Thus, the distribution

of θT is identified up to a scaling factors, which implies that even sequences of income or investment that

maximize the level of skills are identified.
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different adult outcomes or different units of measurements lead to different coefficients that

possibly suggest very different dynamics, just as in Example 1.

3.2.5 Estimation

To estimate these features, one can use any existing estimator that relies on either Assump-

tions 1, 2, 3(a) and 4(a) or another set of identifying assumptions of Corollary 1. For example

the estimator of Agostinelli and Wiswall (2022) (if investment is exogenous) is computation-

ally attractive. All of these sets of assumptions yield observationally equivalent models with

potentially very different primitive parameters, but all features described in Theorem 2 will

be identical. It is typically most convenient to set µθ,t,1 = µI,t,1 = 0 and λθ,t,1 = λI,t,1 = 1,

estimate the implied primitive parameters, and then calculate the features in Theorem 2.

Agostinelli and Wiswall (2022) use Assumption 4(b) instead of 4(a) because they are con-

cerned that their investment measures are not age-invariant. However, the restrictions in

Assumption 4(b) are hard to interpret economically (in terms of constant returns to scale)

because the parameters depend on the units of measurement of the data, as illustrated in

Example 1. For the features described in Theorem 2, these assumptions are not required

and the estimates do not depend on which set of assumptions is employed.

An alternative could be to use Assumption 1 only and an estimator that allows for

partial identification. However, these methods can be computationally demanding with

many parameters and seem to offer little benefits in this setting, because under Assumption

1 only, the identified sets are typically unbounded. Moreover, the features in Theorem 2 are

point identified and can be recovered from an estimator in a point identified model.

3.3 CES production function

I now discuss the CES production technology where

θt+1 = (γ1tθ
σt
t + γ2tI

σt
t )

ψt
σt exp(ηθ,t) t = 0, . . . , T − 1(11)

Zθ,t,m = µθ,t,m + λθ,t,m ln θt + εθ,t,m t = 0, . . . , T,m = 1, 2(12)

ZI,t,m = µI,t,m + λI,t,m ln It + εI,t,m t = 0, . . . , T − 1,m = 1, 2(13)

ln It = β0t + β1t ln θt + β2t lnYt + ηI,t t = 0, . . . , T − 1(14)

Q = ρ0 + ρ1 ln θT + ηQ(15)

In this case, it is also common that the measurement system is linear in ln θt, as in Cunha

et al. (2010) or Attanasio et al. (2020), to ensure that estimated skills are positive.

26



3.3.1 Identification

Similar to the trans-log case, define θ̃t = exp(µθ,t,1)θ
λθ,t,1
t so that

θt = exp

(
−µθ,t,1
λθ,t,1

)
θ̃

1
λθ,t,1

t .

Similarly, let Ĩt = exp(µI,t,1)I
λI,t,1
t . We can then rewrite the production technology in terms

of θ̃t and Ĩt. That is, we can rewrite equations (11)–(15) to

θ̃t+1 =

(
γ̃1tθ̃

σt
λθ,t,1

t + γ̃2tĨ
σt

λI,t,1

t

)λθ,t+1,1ψt
σt

exp(η̃θ,t) t = 0, . . . , T − 1(16)

Zθ,t,m = µ̃θ,t,m + λ̃θ,t,m ln θ̃t + εθ,t,m t = 0, . . . , T,m = 1, 2(17)

ZI,t,m = µ̃I,t,m + λ̃I,t,m ln Ĩt + εI,t,m t = 0, . . . , T − 1,m = 1, 2(18)

ln Ĩt = β̃0t + β̃1t ln θ̃t + β̃2t lnYt + η̃I,t t = 0, . . . , T − 1(19)

Q = ρ̃0 + ρ̃1 ln θ̃T + ηQ(20)

where

γ̃1t = γ1t exp

(
σt

(
µθ,t+1,1

λθ,t+1,1

− µθ,t,1
λθ,t,1

))
and γ̃2t = γ2t exp

(
σt

(
µθ,t+1,1

λθ,t+1,1

− µI,t,1
λI,t,1

))
and the other parameters are defined as in the trans-log case. The following theorem char-

acterizes the identified set of the finite dimensional parameters.

Theorem 3. Suppose Assumption 1 holds.

(a) The identified set of {µθ,t,m, λθ,t,m}t=0,...,T,m=1,2, {µI,t,m, λI,t,m}t=0,...,T−1,m=1,2, (ρ0, ρ1),

{β0t, β1t, β2t}T−1
t=0 , {γ1t, γ2t, σt, ψt}T−1

t=0 consists of all vectors that yield the same values of

{µ̃θ,t,m, λ̃θ,t,m}t=0,...,T,m=1,2, {µ̃I,t,m, λ̃I,t,m}t=0,...,T−1,m=1,2, (ρ̃0, ρ̃1), {γ̃1t, γ̃2t,
σt

λθ,t,1
, σt
λI,t,1
}T−1
t=0 ,

{ σtψt
λθ,t+1,1

}T−1
t=0 , and {β̃0t, β̃1t, β̃2t}T−1

t=0 as the true parameter vectors.

(b) Let {µ̄θ,t,1}Tt=0, {µ̄I,t,1}T−1
t=0 , and {λ̄θ,t,1}Tt=0 be fixed constants with λ̄θ,t,1 6= 0 for all t.

Under the additional restrictions {µθ,t,1}Tt=0 = {µ̄θ,t,1}Tt=0 and {µI,t,1}T−1
t=0 = {µ̄I,t,1}T−1

t=0

and {λθ,t,1}Tt=0 = {µ̄θ,t,1}Tt=0 the identified set is a singleton.

An important implications of part (a) is that the fraction
λθ,t,1
λI,t,1

=
λθ,t,1
σt

σt
λI,t,1

is point

identified for all t = 1, . . . , T − 1. Hence, if we restrict λθ,t,1 to a constant, λI,t,1 is identified,

which is very different to the trans-log case. Intuitively, since skills and investment have

the same exponent in the CES production functions, the relative scale is identified by the

functional form restrictions.

As before, I now introduce additional assumptions to achieve point identification.
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Assumption 2’. λθ,0,1 = 1 and µθ,0,1 = 0.

Assumption 3’.

(a) µθ,t,1 = µθ,t+1,1 for all t = 0, . . . , T − 1

(b) γ1t + γ2t = 1 for all t = 0, . . . , T − 1.

Assumption 4’.

(a) µI,t,1 = µI,t+1,1 = 0 for all t = 0, . . . , T − 2.

(b) β0t = 0 for all t = 0, . . . , T − 1.

Assumption 5’.

(a) λθ,t,1 = λθ,t+1,1 for all t = 0, . . . , T − 1.

(b) ψt = 1 for all t = 0, . . . , T − 1.

The following result shows how point identification can be established.

Corollary 2. Suppose Assumptions 1 and 2’ hold. Suppose either Assumption 3’(a) or As-

sumption 3’(b) holds. Suppose either Assumption 4’(a) or Assumption 4’(b) holds. Suppose

either Assumption 5’(a) or Assumption 5’(b) holds. Then all parameters are point identified.

A common restriction with the CES production function is to set ψt = 1 for all t (see

e.g. Cunha et al. (2010) and Attanasio et al. (2020)). In this case, Theorem 3 implies

that
λθ,t+1,1

λθ,t,1
is point identified. Hence, assuming age-invariance (i.e.

λθ,t+1,1

λθ,t,1
= 1) is not

required, and it is in fact a testable implication. Moreover, with this additional restriction,

Corollary 2 implies that the only scale restriction needed is λθ,0,1 = 0.6 Nevertheless, it is

common practice to set λθ,t,1 = λI,t,1 = 1 for all t, which are not normalizations, but in

fact very restrictive assumptions (even if ψt 6= 1). Setting the scales to different numbers

or changing the units of measurement of the data then affects all estimated parameters,

optimal investment sequences, and other counterfactuals. The exact consequences depend

on the estimation methods used. As an illustration I consider the estimator of Attanasio

et al. (2020) in Section 3.4.

Again, these sets of assumptions are not only sufficient, but also necessary for point

identification. In particular, as shown in Theorem 7 in the appendix and illustrated in

6Since
λθ,t,1
λI,t,1

is identified, one could also fix λI,0,1 instead.
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examples below, if the model is correctly specified and Assumption 1 holds, then there

always exist sets of parameters which are consistent with the data and satisfy Assumptions

1, 2’, either 3’(a) or 3’(b), and either 4’(a) or 4’(b), and either 5’(a) or 5’(b). Again, different

sets of assumptions yield observationally equivalent models, but potentially very different

primitive parameters.

Remark 3. There is also a large macroeconomic literature on normalized CES production

functions; see for example Klump and Grandville (2000), Klump, McAdam, and Willman

(2012), Temple (2012) and references therein. They note that one can always write

(γ1tθ
σt
t + γ2tI

σt
t )

1
σt = Āt

(
γ̄t

(
θt
θ̄t

)σt
+ (1− γ̄t)

(
It
Īt

)σt) 1
σt

where θ̄t and Īt are fixed constants to be chosen by the researcher to standardize the inputs,

γ̄t =
γ1tθ̄

σt
t

γ1tθ̄
σt
t + γ2tĪ

σt
t

and Āt =
(
γ1tθ̄

σt
t + γ2tĪ

σt
t

) 1
σt .

Estimating the production function with these two different specifications yields observation-

ally equivalent models with the same elasticity of substitution. By standardizing the inputs,

we can evaluate the production function at θt = θ̄t and It = Īt to get the output Āt. If

the units of measurements of the inputs are known, such standardizations can help interpret

the parameters and calibrate the model, while without an implicit normalization γ1t and γ2t

are harder to interpret. Moreover, the consequences of changing σt, while holding the other

parameters fixed, on functions of interest might depends on how the model is parameterized

because γ̄t and Āt depend on σt.

One potential choice of standardizations could be θ̄t = E[θt] and Īt = E[It] (see Embrey

(2019) for this standardization). However, since the inputs are not observed, E[θt] and E[It]

are not identified. Instead, we can write

θt+1 = Āt

(
γ̄t

(
θt

E[θt]

)σt
+ (1− γ̄t)

(
It

E[It]

)σt) 1
σt

exp(ηθ,t)

as

θ̃t+1 = exp(µθ,t+1,1)Āt

γ̄t( θ̃t

E[θ̃
1/λθ,t,1
t ]λθ,t,1

) σt
λθ,t,1

+ (1− γ̄t)

(
Ĩt

E[Ĩ
1/λI,t,1
t ]λI,t,1

) σt
λI,t,1


λθ,t+1,1ψt

σt

exp(η̃θ,t)

To achieve the desired standardization, we would have to standardize the inputs in equation

(16) by E[θ̃
1/λθ,t,1
t ]λθ,t,1 and E[Ĩ

1/λI,t,1
t ]λI,t,1 , respectively, which are not identified. We could
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instead standardize by E[θ̃t] and E[Ĩt], but is not clear if such a standardization would yield

a useful interpretation of the parameters. Finally, notice that the most important issue with

the current specification of the CES production function is overidentification and biased

estimators due to setting the scales, which is not mitigated by standardizing inputs.

3.3.2 Invariant parameters

As in the trans-log case, important policy relevant parameters are point identified under

Assumption 1 only. The interpretation of these features has been discussed in Section 3.2.2.

Theorem 4. Suppose Assumption 1 holds.

1. Fθt+1

(
(γ1tQα1(θt)

σt + γ2tQα2(It)
σt)

ψt
σt exp(Qα3(ηθ,t))

)
is point identified for all α1, α2, α3 ∈

(0, 1)

2. Let

ln It(Y ) = β0t + β1t lnQα1(θt) + β2t lnY +Qα4(ηI,t)

Then

Fθt+1

(
(γ1tQα1(θt)

σt + γ2tIt(Y )σt)
1
σt exp(Qα3(ηθ,t))

)
is point identified for all α1, α3, α4 ∈ (0, 1).

3. P
(
Q ≤ q | θt = Qα1(θt), {Is = Qα2s(Is)}T−1

s=t , {ηθ,s = Qα3s(ηθ,s)}T−1
s=t

)
is point identified

for all α1, {α2s, α3s}T−1
s=t ∈ (0, 1).

4. P
(
Q ≤ q | θ0 = Qα(θ0), {Yt = yt}T−1

t=0

)
is point identified for all α ∈ (0, 1).

5. If in addition either Assumption 5’(a) or Assumption 5’(b) holds, then the distributions

of
∂ ln θt+1

∂ ln θt
=

∂

∂ ln θt
ln (γ1tθ

σt
t + γ2tI

σt
t )

1
σt

and
∂ ln θt+1

∂ ln It
=

∂

∂ ln It
ln (γ1tθ

σt
t + γ2tI

σt
t )

1
σt

are point identified and

∂ ln θt+1

∂ ln θt

∣∣∣∣
ln θt=Qα1 (ln θt),ln It=Qα2 (ln It)

=
∂

∂ ln θt
ln (γ1tθ

σt
t + γ2tI

σt
t )

1
σt

∣∣∣∣
ln θt=Qα1 (ln θt),ln It=Qα2 (ln It)

and

∂ ln θt+1

∂ ln It

∣∣∣∣
ln θt=Qα1 (ln θt),ln It=Qα2 (ln It)

=
∂

∂ ln It
ln (γ1tθ

σt
t + γ2tI

σt
t )

1
σt

∣∣∣∣
ln θt=Qα1 (ln θt),ln It=Qα2 (ln It)

are point identified for all α1, α2 ∈ (0, 1).
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The features in parts (1)–(4) are analogous to those in the trans-log case and can be

used to calculate optimal investment/income strategies and anchored treatment effects, as

discussed after Theorem 2. As opposed to the trans-log case, now the relative scales of

skills and investment are point identified. Consequently, elasticities are identified under

Assumption 1 and either age-invariant skill measures or ψt = 1 only.

3.3.3 Non-invariant parameters

To achieve point identification of all parameters, we need to fix the levels of the log skills

and investment, for example by setting µθ,0,1 and µ0,I,1 to 0. I now discuss whether these

restrictions are normalizations with respect to any of the primitive parameters. Again, I

assume that investment is observed and focus on the location of the skills. Notice that

with the age-invariance assumption µθ,t,1 = µθ,t+1,1, Theorem 3 implies that µθ,0,1 = 0 is in

general not a normalization with respect to γ1t and γ2t. An exception is the special case

where λθ,t,1 = λθ,t+1,1. Then µθ,0,1 = 0 is a normalization with respect to γ1t, but not γ2t.

Next, consider the restriction γ1t + γ2t = 1. In this case µθ,0,1 = 0 is in general not

a normalization with respect to γ1t or γ2t and different scales can lead to very different

dynamics, which I illustrate in the example below. Here µθ,0,1 (and not λθ,0,1) affects the

scale because we can identify the distribution of θ̃θ,t,1 = exp(µθ,t,1)θ
λθ,t,1
t and the production

function is in levels rather than logs of θt.

Example 3. The issues with the restriction µθ,0,1 = 0 in the CES case are analogous to the

issues with the restriction λθ,0,1 = 1 in the trans-log case discussed in Example 1. I now

consider a numerical example analogous to Example 1 and focus on the measurement and

the production function only. That is, suppose that

θt+1 =

(
1

2
θt +

1

2
It

)
exp(ηθ,t)

Zθ,t,m = ln(12) + ln θt + εθ,t,m

Hence, γ1t and γ2t sum to 1, they are identical and they do not change over time. Moreover,

λθ,t,m = σt = 1 for all t. Notice that

Zθ,t,m = ln(12θt) + εθ,t,m.

Let θ̃t = 12θt. Just as in Example 1, we get

θ̃t+1 =
(
γ̃1tθ̃t + (1− γ̃1t)It

)
exp(η̃θ,t)

Zθ,t,m = µ̃θ,t,m + ln θ̃t + εθ,t,m
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where

(γ̃10, γ̃11, γ̃12, γ̃13, . . .) = (0.077, 0.351, 0.435, 0.470, . . .)

and

(exp(µ̃0,θ,m), exp(µ̃1,θ,m), exp(µ̃2,θ,m), exp(µ̃3,θ,m), . . .) = (1, 6.5, 9.25, 10.625, . . .).

These two models are observationally equivalent, but the two sets of parameters might

suggest very different dynamics.

3.3.4 Anchoring

Again we can write the measurement system and the adult outcome as

Zθ,t,m = µ̃θ,t,m −
ρ̃0λ̃θ,t,m
ρ̃1

+
λ̃θ,t,m
ρ̃1

ln ϑ̃t + εt

Q = ln ϑ̃T + ηQ

where the joint distribution of {ln ϑ̃t}Tt=1 and ρ̃0 and ρ̃1 are point identified. In general, the

implications of anchoring are similar to those in the trans-log case and it replaces Assump-

tion 2’. However, recall that the relative scale of investment and skills is identified and we

therefore cannot anchor both variables to a measure or adult outcome. Moreover, if invest-

ment was observed and either Assumption 5’(a) or Assumption 5’(b) holds, then {λθ,t,1}Tt=0

is point identified and the model can only be consistent with one particular (identified) scale

of the skills. Thus, we can only have a CES production technology for {ϑ̃t}Tt=0 if α1 = 1 and

the model cannot be consistent with different anchors or different units of measurement.

3.3.5 Estimation

As in the trans-log case, we can estimate the model using any combinations of assumptions in

Corollary 2 that yield point identification. No matter which combination is used, estimates

of the features in Theorem 3, including elasticities when ψt = 1, will be identical. In this

section I outline one particular way to do so based on equations (16)–(20) together with

Assumptions 1, 2’, 3’(a), and 4’(a), and 5’(b) and an adaptation of the estimation approach

of Attanasio et al. (2020).

In the first step, we can use the restriction λ̃θ,t,1 = λ̃I,t,1 = 1 for all t and µ̃θ,t,m = µ̃I,t,m = 0

for all t and m to estimate the joint distribution of ({θ̃t}Tt=0, {Ĩt, Yt}Tt=0, Q) as well as λ̃θ,t,m,

λ̃I,t,m for all t and m > 1, ρ̃0, and ρ̃1. For example, Attanasio et al. (2020) assume that the

measures, log-skills, and log-investment, log-income, have a normal mixture distribution. In
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the second step, we can take draws from the estimated joint distribution and estimate the

remaining parameters. To do so, let {{θ̃t,j}Tt=0, {Ĩt,j, Yt,j}Tt=0, Qj}Jj=1 be these draws and let

( ˆ̃β0t,
ˆ̃β1t,

ˆ̃β2t) = arg min
{β̃0t,β̃1t,β̃2t}

J∑
j=1

(
ln Ĩt,j − β̃0t − β̃1t ln θ̃t,j − β̃2t lnYt,j

)2

and ˆ̃ηI,t,j = ln Ĩt,j − ˆ̃β0t − ˆ̃β1t ln θ̃t,j − ˆ̃β2t lnYt,j. Next set λ̂θ,0,1 = λθ,0,1 = 1 and let

({λ̂θ,t,1}T−1
t=1 , {λ̂I,t,1, σ̂t, γ̂1t, γ̂2t, ˆ̃κt}T−1

t=0 )

= arg min
{λθ,t,1}T−1

t=1 ,{λI,t,1,σt,γ1t,γ2t,κ̃t}T−1
t=0

T∑
t=1

J∑
j=1

(
ln θ̃t+1,j −

λθ,t+1,1

σt
ln

(
γ1tθ̃

σt
λθ,t,1

t,j + γ2tĨ
σt

λI,t,1

t,j

)
− κ̃t ˆ̃ηI,t,j

)2

Using these estimates, we can the recover λ̂θ,t,m = ˆ̃λθ,t,mλ̂θ,t,1, λ̂I,t,m = ˆ̃λI,t,mλ̂I,t,1, β̂0t = β̃0t

λ̂I,t,1
,

ρ̂0 = ˆ̃ρ0, ρ̂1 = ˆ̃ρ1λ̂θ,t,1, β̂1t = β̃1t
λ̂θ,t,1

λ̂I,t,1
, and β̂2t = β̃2t

λ̂I,t,1
, as well as the estimated distributions

of skills and investment using the relationship ln θt = ln θ̃t
λθ,t,1

and ln It = ln Ĩt
λI,t,1

. The estimation

procedure also easily allows imposing additional assumptions, such as age-invariance of the

first skill measure in which case λθ,1,1 = λθ,t,1 for all t.

The parameter estimates generally depend on the scale and location restrictions imposed

and are therefore are very hard to interpret. However, using these estimates, we can calculate

the features in Theorem 3, which are invariant to the restrictions.

3.4 Monte Carlo simulations

I use a very similar data generating process as Attanasio et al. (2020). In particular, I use

θt+1 = At (γtθ
σt
t + (1− γt) Iσtt )

1
σt exp(ηθ,t)

for t = 1, 2. Allowing for At 6= 1 is equivalent to not imposing the restriction that the coeffi-

cients in front of θt and It sum to 1. Since I want to study income transfers as counterfactuals,

I augment the setup of Attanasio et al. (2020) and add the equation

ln It = β1t ln θt + β2t lnYt + ηI,t

where Yt is the same in all periods. To simulate data, I first draw (ln(θ0), ln(Y )) from a

normal mixture distribution. Given (ln(θ0), ln(Y )) and normally distributed ηθ,t and ηI,t I

then generate I0, θ1, I1, and θ2 using the model. If ln It was equal to lnYt, the setup would

be exactly equal to that of Attanasio et al. (2020) with parameters as in their Table 9,
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which are based on their empirical results, and I use σ0 = σ1 = −0.5.7 I deviate slightly

from their setting by using the additional investment equation with β1t = 0.1, β2t = 0.9,

and ηI,t ∼ N(0, 0.12). I simulate three measures each for θt and It, which have a factor

structure with µt,θ,m = µt,I,m = 0 for all m, t. In addition λt,θ,1 = λt,I,1 = 1 for all t,

which imposes the scale restrictions and the age-invariance assumptions. These loadings

are then also “normalized” to 1 in the estimation procedure. Specifically, following Attana-

sio et al. (2020) I first estimate the distribution of the measures and of log-income using

a normal mixture model. Then, assuming that (ln(θ0), ln(θ1), ln(θ2), ln(I0), ln(I1), ln(Y ))

also has a normal mixture distribution, one can use the factor structure and the restric-

tions to estimate that joint distribution.8 Once we have the estimated joint distribution of

(ln(θ0), ln(θ1), ln(θ2), ln(I0), ln(I1), ln(Y )), we can draw a sample from that distribution and

estimate all production function parameters by nonlinear least squares.

I use the estimation procedure explained in Section 3.3.5, which simplifies in this setup

because investment is exogenous (and thus, κt = 0). Moreover, to focus on the scale re-

striction only, I set µθ,t,m = µI,t,m = 0 for all m and t. Finally, I impose that the first skill

measures is age-invariant, set λθ,t,1 = 1 for all t, and estimate λI,t,1. I therefore impose As-

sumptions 2’, 3’(a), and 4’(a), as well as both parts of Assumption 5’. While only one part

of the last assumption is needed (i.e. age-invariance of the skill measures could be dropped),

they are both satisfied in this setup. That is, I estimate λI,t,1 along with the production

function parameters by solving

(λ̂I,t,1, σ̂1, σ̂2, γ̂11, γ̂21, γ̂11, γ̂21)

= arg min
λI,1,σ1,σ2,γ11,γ21,γ11,γ21

T∑
t=1

J∑
j=1

(
ln θ̃t+1,j −

1

σt
ln

(
γ1tθ̃

σt
t,j + γ2tĨ

σt
λI,t,1

t,j

))2

where θ̃t,j and Ĩt,j are draws from the estimated distribution. Similarly, we can estimate β1t

and β2t from a regression of Ĩt,j on θ̃t,j and Yj. In addition, I use the estimator of Attanasio

et al. (2020), which also imposes the overidentifying restriction λI,t,1 = 1 for all t.

In the following, I will investigate the effect of multiplying the skill measures by a single

constant sθ in all periods, which changes the loadings, but not the age-invariance assumption.

7I use slightly different notation to be consistent with the notation above. Specifically, the periods are

t = 0, 1, 2 instead of t = 1, 2, 3, I use It instead of Xt for the second latent variable, and I use σt instead of

ρt to denote the elasticity of substitution. The distribution of (ln(θ0), ln(Y )) is the same as the distribution

of (ln(θ0), ln(X)) in Attanasio et al. (2020).
8Interestingly, one can see from the DGP that (ln(θ0), ln(θ1), ln(θ2)) does not have a normal mixture

distribution due to the nonlinear production function, but this misspecification bias seems to be relatively

small in this simulation setup.
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For example, the first measure, say Z̃θ,t,1, is generated by

Z̃θ,t,1 = log(θt) + εθ,t,1

but when I estimate the model, I use

Zθ,t,1 = sθZ̃θ,t,1 = sθ log(θt) + sθεθ,t,1,

which is also an age-invariant measure. The estimators still impose that the loadings are

equal to 1 (λθ,t,1 = 1 for all t with my estimator and λθ,t,1 = 1 and λI,t,1 = 1 for all t with

the estimator of Attanasio et al. (2020)). Of course, in practice, we do not know the DGP

and there is no reason to believe that the true loading is 1. Ideally, the restriction should be

a normalization in which case the results would be invariant to scaling the data or changing

its units of measurement. However, Corollary 2 implies that the estimator of Attanasio

et al. (2020) is inconsistent. I look at the implications for elasticities and counterfactual

predictions, which are point identified (as shown in Theorem 4) and are invariant to the

scaling when using the new estimator. I take sθ = 1, which is the correctly specified model,

as well as sθ = 2/3 and sθ = 2, which are small changes of the units of measurement that

have a large impact on the results. I report average estimates from 200 simulated data sets.

To summarize the production function estimates I report ∂ ln(θ1)/∂ ln(θ0) as a function of

quantiles of ln(θ0) and evaluated at the median value of I0 and ∂ ln(θ2)/∂ ln(I1) as a function

of quantiles of ln(I1) and evaluated at the median value of θ1, which are point identified,

as shown in the last part of Theorem 4. Figure 2 shows these partial derivatives for the

true parameters, the 2-step estimator of Attanasio et al. (2020) with different values of sθ,

and the invariant estimator that also estimates the scale. In this and the following figures,

the results obtained with the invariant estimator are always almost identical to those with

the 2-step estimator and sθ = 1 and very similar to those with the true parameter values.

However, the figure also demonstrates that small changes in the units of measurements can

have a large effect on the results when using the 2-step estimator. The invariant estimator,

on the other hand, can adapt to the scale change and yields identical results for the reported

features (but not the parameter estimates) no matter what the scale is. One interesting

finding is that the 2-step estimator underestimates the partial derivative with respect to

ln(θ0) for small values of the inputs and overestimates it for large values when sθ = 2/3.

As a first counterfactual, consider an individual, whose value of θ0 equals Q0.1(θ0) and all

unobservables are 0. I then exogenously change the income sequence of that individual and

check the implied quantile in the skill distribution in period 2. Of course, the larger income,
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Figure 2: Partial derivatives
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the higher the relative rank/quantile in the last period. I report results where a feasible

choice of income in each period is a given quantile (that will be varied). Instead of using the

feasible choices, I distribute the total income among the two periods to maximize the skill

quantile in the last period. The second part of Theorem 4 implies that these counterfactuals

are point identified, can be consistently estimated with the invariant estimator, but the

results with the 2-step estimator of Attanasio et al. (2020) will depend on sθ.

The left panel of Figure 3 shows the quantile as a function of the feasible income quantile

(0.5 is the median, etc.). Using the true parameters, we can see that, even for large income,

the quantile in period 2 is at most around 0.22 and does not go much below the initial value

of 0.1 for low income. The right panel of Figure 3 shows the corresponding optimal income

shares in period 0. With the true parameters, income should be similar in both periods.

The 2-step estimator with sθ = 1 and the invariant estimator (irrespective of the scale) yield

almost identical conclusions for the optimal income sequence, but have a small bias for the

estimated quantile in period 2 (due the approximation error of the joint distribution of the

measures/skills as mixtures of normals).

Figure 3 also demonstrates that changing the units of measurement can lead to inefficient

income transfers when using the 2-step estimator. For example, with sθ = 2/3 the results

suggest that we should mainly invest at t = 0, and with sθ = 2 it appears that we should

mainly invest at t = 1. Moreover, the estimated gains of income transfers are misleading
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Figure 3: Response to income changes and optimal shares
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in this case. As can be seen from the left panel, the inconsistent estimates suggest that

large income transfers can increase the quantile to around 0.4 in period 2 when sθ = 2/3.

Contrarily, with sθ = 2 we would underestimate the effect. Importantly, the results for the

new estimator are invariant to changes in the units of measurements.

As the last illustration, I consider how exogenous income changes affect the skill distri-

bution. To do so, I take draws from the estimated joint distribution of income and skills

in period 0 (based on the average of the estimated parameters to get representative results)

and consider four counterfactual marginal income distributions. First, I increase everyone’s

income by two standard deviations in period 0. Second, I increase everyone’s income by two

standard deviations in period 2. Third, I set income to the median for everyone in both

periods. Fourth, I increase income by two standard deviations in both periods, but only if

the initial skill and income quantiles are below 0.5. I set all unobservables to their median

values. I report results for the invariant estimator only.9

I report the results in two ways. Figure 4 compares the final period skill quantiles implied

by the different counterfactual income distributions with the original quantiles (one panel

9These results are based on a slightly different DGP where initial log skills and log income have a bivariate

mixture normal distribution with means of the two components equal to (−4,−2) and (2, 1) (instead of (6, 3)

for the second component). The original DGP basically consists of two completely separated normals, which

might not be a good representation for most applications.
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for each of the four cases). These results are invariant to sθ. Figure 5 shows the implied

distribution of one of the skill measures in the final period (which could be a test score or an

adult outcome in an application). These results depend on and should be interpreted relative

to the units of measurements of that measures. Figure 5 is based on sθ = 1. One can see

that increasing income in either of the first two periods has very similar effects and leads to

an increase in skills. Since everyone’s income increases, everyone is better off. If everyone

receives the mean income, the variance of the final skill or outcome distribution decreases

considerably. If we only increase income for people with low initial skills and income, then

predictably, mainly the lower tail of the distribution will be affected.

Figure 4: Skill quantiles under different investment sequences
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Figure 5: Outcome distributions under different investment sequences
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4 Nonparametric identification

I now extend these results to a general nonparametric model where

θt+1 = ft(θt, It, ηI,t, ςθ,t) t = 0, . . . , T − 1(21)

Zθ,t,m = gθ,t,m(θt, εθ,t,m) t = 0, . . . , T, m = 1, 2, 3(22)

ZI,t,m = gI,t,m(It, εI,t,m) t = 0, . . . , T − 1, T, m = 1, 2, 3(23)

It = ht(θt, Yt, ηI,t) t = 0, . . . , T − 1(24)

Q = r(θT , ηQ)(25)
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Similar to Cunha et al. (2010) and Agostinelli and Wiswall (2022), in the nonparametric

model, we need three measures in each period. I adapt Assumption 1 as follows.

Assumption 5.

(a) {{εθ,t,m}t=0,...,T,m=1,2, {εI,t,m}t=0,...,T−1,m=1,2, ηQ} are jointly independent and independent

of {{θt}Tt=0, {It}T−1
t=0 } conditional on {Yt}T−1

t=0 .

(b) All random variables are continuously distributed with strictly increasing cfds and have

bounded first and second moments.

(c) The joint density of {{Zθ,t,m}t=0,...,T,m=1,2,3, {ZI,t,m}t=0,...,T−1,m=1,2,3, Q, {θt}Tt=0, {It}Tt=0}
is bounded conditional on {Yt}T−1

t=0 and so are all their marginal and conditional den-

sities. {{Zθ,t,1}Tt=0, {ZI,t,1}T−1
t=0 } is bounded complete for {{Zθ,t,2}Tt=0, {ZI,t,2}T−1

t=0 } and

{{θt}Tt=0, {It}Tt=0} is bounded complete for {{Zθ,t,1}Tt=0, {ZI,t,1}T−1
t=0 }.

(d) gθ,t,m, gI,t,m, and r are strictly increasing in both arguments for all m and t. ft and ht

are strictly increasing the last argument for all t.

(e) θt and It have strictly positive support for all t.

(f) ηI,t is independent of (θt, Yt) for all t and ςθ,t is independent of (Iθ, tt, Yt) for all t.

These assumptions are similar to those Cunha et al. (2010), where now ηI,t enters the

production function directly. As a special case, suppose ft(θt, It, ηI,t, ςθ,t) = ft(θt, It, κtηI,t +

ςθ,t). Then with ηθ,t = κtηI,t + ςθ,t, we have E[ηθ,t | θt, ηI,t, Yt] = κtηI,t, which is part (h) of

Assumption 1. Here, the unobservables are allowed to enter much more flexibly. Parts (a) –

(c) are analogous to assumptions made in Cunha et al. (2010) and I build on their results

to identify the joint distribution of

{{Zθ,t,m}t=0,...,T,m=1,2, {ZI,t,m}t=0,...,T−1,m=1,2, Q, {g̃θ,t(θt)}Tt=0, {g̃I,t(It)}T−1
t=0 }

up to unknown and strictly increasing functions g̃θ,t and g̃I,t. This result is similar to the

identification result in Lemma 1, which shows identification up to linear transformations.

Cunha et al. (2010) make an additional assumption, which ensures that the functions g̃θ,t and

g̃I,t can be pinned down (i.e. condition (v) of their Theorem 2). This assumption is similar to

Assumption 2 and it is not a normalization with respect to ft. I do not use this assumption

and instead focus on features that are invariant to these monotone transformations.

Theorem 5. Suppose Assumption 5 holds. Then
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1. Fθt+1(ft(Qα1(θt), Qα2(It), Qα3(ηI,t), Qα4(ςθ,t))) is point identified for all α1, α2, α3, α4 ∈
(0, 1) such that (Qα1(θt), Qα3(It), Qα2(ηI,t), Qα4(ςθ,t)) is on the support of (θt, It, ηI,t, ςθ,t).

2. Let

It(Y ) = ht(Qα1(θt), Y,Qα3(ηI,t))

Then Fθt+1(ft(Qα1(θt), It(Y ), Qα3(ηI,t), Qα4(ςθ,t))) is point identified for all α1, α3, α4 ∈
(0, 1).

3. P
(
Q ≤ q | θs = Qα1(θs), {It = Qα2t(It)}T−1

t=0 , {ηI,t = Qα3t(ηI,t)}T−1
t=s , {ςθ,t = Qα4t(ςθ,t)}T−1

t=s

)
is point identified for all α1, {α2t, α3t, α4t}T−1

t=s ∈ (0, 1) such that the quantiles are on

the joint support of the random variables.

4. P
(
Q ≤ q | θs = Qα(θs), {Yt = yt}T−1

t=s

)
is point identified for all α ∈ (0, 1).

Just as before, we can identify how investment/income and shocks affect the relative

standing in the skill distribution. We can also identify the effect of a sequence of invest-

ment/income on adult outcomes, given a quantile of the initial skills. Notice that these

parameters are point identified without any normalizations and they neither require scale

and location restrictions on the production function nor age-invariant measures. These

feature are now not only invariant to changes in the units of measurement, but to any

monotone transformations of the measures. Notice that we can only identify a nonlin-

ear transformation of the skills. Therefore, the sequence of investment that maximizes

E(θT | θs = Qα(θs), {Yt = yt}T−1
t=s ) is not point identified and choosing a particular transfor-

mation can yield erroneous conclusions regarding the role of investment. It is also important

to mention that in nonadditive models, support conditions play an important role because

we cannot extrapolate using the functional form. The results also implicitly contain an

instrument relevancy condition because if ht is constant in Yt, then Qα2(It) is completely

determined by (Qα1(θt), Qα3(ηI,t)).

Another advantage of stating results without any seemingly innocuous normalizations

is that one can easily impose more structure on the model without having to check and

potentially adjust the normalization. For example, to reduce the dimensionality of the

model, we might want to simplify the measurement system to

Zθ,t,m = gθ,t,m(θt + εθ,t,m) t = 0, . . . , T,m = 1, 2, 3

ZI,t,m = gI,t,m(It + εI,t,m) t = 0, . . . , T − 1,m = 1, 2, 3
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A normalization in the more general model might then not be a normalization in the more

restrictive model. Also here, the results from Theorem 5 apply and we can identify features

that are invariant to monotone transformations of the measures.

5 Conclusion

This paper is concerned with normalizations in general and skill formation models in par-

ticular. As a methodological contribution, the paper provides a formal definition of when a

restriction is truly a normalization. Since restrictions typically affect many of the estimated

parameters of the model, a normalization has to be with respect to some function or feature

of interest, such as a subvector or a counterfactual prediction. Therefore, a restriction could

be a normalization with respect to some functions, but not others. Specifically, I define a

restriction as a normalization if imposing the restriction does not change the identified set of

a function of interest. Normalizations are specific to a model and slight changes in the model

can affect if a restriction is a normalization. When a normalization yields point identifica-

tion, which is common in applications, the definition implies that all functions of interest

need to be identified without normalizations. To ensure that the results are interpretable,

researchers should argue that this is the case. When it is complicated to show this property

formally, a standard robustness check could be to fix normalized parameters to alternative

values and check how the conclusions change. It is also important that estimated parameters

that depend on arbitrary normalizations might not be suitable to calibrate other models,

unless one can argue that all main conclusions are unaffected by the restrictions.

In an important class of skill formation models, the paper shows that seemingly innocuous

scale and location restrictions are not normalizations, can be overidentifying, and can affect

parameters and counterfactuals. In particular, simply changing the units of measurements

can yield ineffective investment strategies and misleading policy recommendations. The ex-

act implications depend on the feature of interest, the production function, the measurement

system, and the estimation method. To tackle these issues, the paper presents a new iden-

tification analysis, which pools all restrictions of the model and characterizes the identified

set without normalizations. These results clarify which features depend on the scale and

location restrictions. Importantly, many key features are invariant to these restrictions, are

identified under weaker assumptions, provide robust policy implications, and are comparable

across different studies.
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A Additional results

A.1 Identification

Theorem 6. Suppose Assumption 1 holds and consider the model

ln θt+1 = at + γ1t ln θt + γ2t ln It + γ3t ln θt ln It + ηθ,t t = 0, . . . , T − 1

Zθ,t,m = µθ,t,m + λθ,t,m ln θt + εθ,t,m t = 0, . . . , T,m = 1, 2

ZI,t,m = µI,t,m + λI,t,m ln It + εI,t,m t = 0, . . . , T − 1

ln It = β0t + β1t ln θt + β2t lnYt + ηI,t t = 0, . . . , T − 1

Q = ρ0 + ρ1 ln θT + ηQ

Then there always exist sets of observationally equivalent parameters which are consistent with the

data and satisfy Assumptions 1, 2, either 3(a) or 3(b) and either 4(a) or 4(b).

Theorem 7. Suppose Assumption 1 holds and consider the model

θt+1 = (γ1tθ
σt
t + γ2tI

σt
t )

ψt
σt exp(ηθ,t) t = 0, . . . , T − 1

Zθ,t,m = µθ,t,m + λθ,t,m ln θt + εθ,t,m t = 0, . . . , T,m = 1, 2

ZI,t,m = µI,t,m + λI,t,m ln It + εI,t,m t = 0, . . . , T − 1

ln It = β0t + β1t ln θt + β2t lnYt + ηI,t t = 0, . . . , T − 1

Q = ρ0 + ρ1 ln θT + ηQ

where σt 6= 0 and γ1t, γ2t > 0 for all t. Then there always exist sets of observationally equivalent

parameters which are consistent with the data and satisfy Assumptions 1, 2’, either 3’(a) or 3’(b)

and either 4’(a) or 4’(b) and either 5’(a) or 5’(b).

B Proofs

Proof of Lemma 1. We have(
cov(Zθ,s,1, Zθ,t,1)

cov(Zθ,s,1, Zθ,t,2)

)
=

(
λθ,s,1λθ,t,1cov(ln θs, ln θt)

λθ,s,1λθ,t,2cov(ln θs, ln θt)

)

and (
cov(ZI,s,1, Zθ,t,1)

cov(ZI,s,1, Zθ,t,2)

)
=

(
λI,s,1λθ,t,1cov(ln Is, ln θt)

λI,s,1λθ,t,2cov(ln Is, ln θt)

)
Since λθ,t,m 6= 0 and λI,t,m 6= 0 for all m and t and cov(ln Is, ln θt) 6= 0 or cov(ln θs, ln θt) 6= 0 for

some s, it follows that λθ,t,1/λθ,t,2 is identified for all t. Analogously, λI,t,1/λI,t,2 is identified for all
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t. It now follows that for m 6= m′

µθ,t,m −
λθ,t,m
λθ,t,m′

µθ,t,m′ = E

[
Zθ,t,m −

λθ,t,m
λθ,t,m′

Zθ,t,m′

]
is identified as well. Now write

Zθ,t,m = µθ,t,m + λθ,t,m ln θt + εθ,t,m

λθ,t,m
λθ,t,m′

Zθ,t,m′ + µθ,t,m −
λθ,t,m
λθ,t,m′

µθ,t,m′ = µθ,t,m + λθ,t,m ln θt +
λθ,t,m
λθ,t,m′

εθ,t,m′

Lemma 1 of Evdokimov and White (2012) implies that the distributions of µθ,t,m + λθ,t,m ln θt

and εθ,t,m are identified conditional on Y1, . . . YT−1. Since Q is another measure in period T , the

distribution of ηQ is identified as well. Similarly, the distributions of µI,t,m + λI,t,m ln It and εI,t,m

are identified conditional on Y1, . . . YT−1.

Next, condition on Y1, . . . YT−1 and for any random variable X, let ϕX be its conditional

characteristic function. Then

ϕ{Zθ,t,m}t=0,...,T,m=1,2,{ZI,t,m}t=0,...,T−1,m=1,2,Q(s)

= ϕ{µθ,t,m+λθ,t,m ln θt}t=0,...,T,m=1,2,{µI,t,m+λI,t,m ln It}t=0,...,T−1,m=1,2,ρ0+ρ1 ln θT (s)

× ϕ{εθ,t,m}t=0,...,T,m=1,2,{εI,t,m}t=0,...,T−1,m=1,2,η(s)

Since the measurement errors are independent and the marginal distributions are identified, the

joint distribution is identified. That is, ϕ{εθ,t,m}t=0,...,T,m=1,2,{εI,t,m}t=0,...,T−1,m=1,2,η(s) is identified.

It follows that ϕ{µθ,t,m+λθ,t,m ln θt}t=0,...,T,m=1,2,{µI,t,m+λI,t,m ln It}t=0,...,T−1,m=1,2,ρ0+ρ1 ln θT (s) is identified

for all nonzeros of ϕ{εθ,t,m}t=0,...,T,m=1,2,{εI,t,m}t=0,...,T−1,m=1,2,η(s). Since the zeros of this function are

isolated and since characteristics functions are continuous, the characteristic function of {µθ,t,m +

λθ,t,m ln θt}t=0,...,T,m=1,2, {µI,t,m + λI,t,m ln It}t=0,...,T−1,m=1,2, ρ0 + ρ1 ln θT and therefore its joint

distribution is identified.

Proof of Theorem 1. I first show that {µ̃θ,t,m, λ̃θ,t,m}t=0,...,T,m=1,2, {µ̃I,t,m, λ̃I,t,m}t=0,...,T−1,m=1,2,

{ãt, γ̃1t, γ̃2t, γ̃3t}T−1
t=0 , {β̃0t, β̃1t, β̃2t}T−1

t=0 , and (ρ̃0, ρ̃1) are identified. By Lemma 1 the joint distribution

of ({ln θ̃t}t=0,...,T,m=1,2, {ln Ĩt}t=0,...,T−1,m=1,2, Q) is point identified conditional on (Y0, . . . , YT−1).

The proof of that lemma also implies that we can identify the distributions of εθ,t,m and εI,t,m and

thus, also µ̃θ,t,m, λ̃θ,t,m, µ̃I,t,m, and λ̃I,t,m for all m and t. From the identified joint distribution, we

also know

E[ln Ĩt | θ̃t, Yt] = β̃0t + β̃1t ln θ̃t + β̃2t lnYt

and thus, we can identify β̃0t, β̃1t, and β̃2t. Similarly, E[ln Ĩt | Q] and therefore ρ̃0 and ρ̃1 are

identified.
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We can also identify E[ln θ̃t+1 | θ̃t, Ĩt, Yt] we can write as

E[ln θ̃t+1 | θ̃t, Ĩt, Yt] = ãt + γ̃1t ln θ̃t + γ̃2t ln Ĩt + γ̃3t ln θ̃t ln Ĩt + E[η̃θ,t | θ̃t, Ĩt, Yt]

= ãt + γ̃1t ln θ̃t + γ̃2t ln Ĩt + γ̃3t ln θ̃t ln Ĩt + λθ,t+1,1E[ηθ,t | θ̃t, η̃I,t, Yt]

= ãt + γ̃1t ln θ̃t + γ̃2t ln Ĩt + γ̃3t ln θ̃t ln Ĩt + λθ,t+1,1E[ηθ,t | η̃I,t]

= ãt + γ̃1t ln θ̃t + γ̃2t ln Ĩt + γ̃3t ln θ̃t ln Ĩt + (λθ,t+1,1/λI,t,1)κtη̃I,t

The second line follows because θ̃t, Ĩt, Yt is identical to conditioning on θ̃t, η̃I,t, Yt due to the line

relationship in equation (9). The third and fourth line follow from Assumption 1(b) and the

relationship η̃I,t = λI,t,1ηI,t. Hence, we can identify ãt, γ̃1t, γ̃2t, γ̃3t, and (λθ,t+1,1/λI,t,1)κt by

regressing ln θ̃t+1 on ln θ̃t, ln Ĩt, ln Ĩt, and η̃I,t = ln Ĩt − β̃0t − β̃1t ln θ̃t − β̃2t lnYt.

Now suppose we have an alternative set of parameters, denoted by {µ̄θ,t,m, λ̄θ,t,m}t=0,...,T,m=1,2,

{µ̄I,t,m, λ̄I,t,m}t=0,...,T−1,m=1,2, {āt, γ̄1t, γ̄2t, γ̄3t}T−1
t=0 , {β̄0t, β̄1t, β̄2t}T−1

t=0 , and (ρ̄0, ρ̄1) that yields the

same values of {µ̃θ,t,m, λ̃θ,t,m}t=0,...,T,m=1,2, {µ̃I,t,m, λ̃I,t,m}t=0,...,T−1,m=1,2, {β̃0t, β̃1t, β̃2t}T−1
t=0 , (ρ̃0, ρ̃1),

and {ãt, γ̃1t, γ̃2t, γ̃3t}T−1
t=0 . Define θ̄t and Īt such that

µ̄θ,t,1 + λ̄θ,t,1 ln θ̄t = µθ,t,1 + λθ,t,1 ln θt = ln θ̃t

and

µ̄I,t,1 + λ̄I,t,1 ln Īt = µI,t,1 + λI,t,1 ln It = ln Ĩt

For m 6= 1, we then have

µ̄θ,t,m + λ̄θ,t,m ln θ̄t = µ̄θ,t,m + λ̄θ,t,m

(
ln θ̃t − µ̄θ,t,1

)
/λ̄θ,t,1

= µ̄θ,t,m −
λ̄θ,t,m

λ̄θ,t,1
+
λ̄θ,t,m

λ̄θ,t,1
ln θ̃t

= µ̃θ,t,m + λ̃θ,t,m ln θ̃t

and similarly

µ̄I,t,m + λ̄I,t,m ln Īt = µ̃I,t,m + λ̃I,t,m ln Ĩt.

Then the two models generate the same distribution of the measures. In addition, the parameters

and θ̄t are consistent with the production technology because

µ̄θ,t+1,1 + λ̄θ,t+1,1 ln θ̄t+1

= ln θ̃t+1

= ãt + γ̃1t ln θ̃t + γ̃2t ln It + γ̃3t ln θ̃t ln It + η̃θ,t

= ãt + γ̃1t(µ̄θ,t,1 + λ̄θ,t,1 ln θ̄t) + γ̃2t ln It + γ̃3t ln(µ̄θ,t,1 + λ̄θ,t,1 ln θ̄t) ln It + η̃θ,t

= ãt + γ̃1t(µ̄θ,t,1 + λ̄θ,t,1 ln θ̄t) + γ̃2t ln It + γ̃3t ln(µ̄θ,t,1 + λ̄θ,t,1 ln θ̄t) ln It + η̃θ,t
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Since

ãt = λ̄θ,t+1,1āt + µ̄θ,t+1,1 −
λ̄θ,t+1,1

λ̄θ,t,1
µ̄θ,t,1γ̄1t −

λ̄θ,t+1,1

λ̄I,t,1
µI,t,1γ̄2t

γ̃1t = λ̄θ,t+1,1

(
1

λ̄θ,t,1
γ̄1t −

µ̄I,t,1

λ̄I,t,1
γ̄3t

)
, γ̃2t = λ̄θ,t+1,1

(
γ̄2t

λ̄I,t,1
−
µ̄θ,t,1

λ̄θ,t,1
γ̄3t

)
, γ̃3t =

λ̄θ,t+1,1

λ̄θ,t,1λ̄I,t,1
γ̄3t

and η̃θ,t = λθ,t+1,1ηθ,t, it is easy to show that

ln θ̄t+1 = āt + γ̄1t ln θ̄t + γ̄2t ln It + γ̄3t ln θ̄t ln It + η̄θ,t

with η̄θ,t =
λθ,t+1,1

λ̄θ,t+1,1
ηθ,t.

Analogously, one can show that

ln Īt = β̄0t + β̄1t ln θt + β̄2t lnYt + η̄I,t

Q = ρ̄0 + ρ̄1 ln θ̄T + η̄Q

For the last part first notice that once {λθ,t,1, λI,t,1, µθ,t,1, µI,t,1}t=1,...,T are fixed, the vector

{λθ,t,m, λI,t,m, µθ,t,m, µI,t,m}t=1,...,T is uniquely determined for all m 6= 1 due to the restrictions the

parameters in the identified set have to satisfy. From these restrictions, we can then uniquely deter-

mine γ3t and with that parameter also γ1t and γ2t. Similarly, all the other parameters are uniquely

determined. We then found the unique parameter vector for which {λθ,t,1, λI,t,1, µθ,t,1, µI,t,1}t=1,...,T

are fixed and that yields the same values of {µ̃θ,t,m, λ̃θ,t,m}t=0,...,T,m=1,2, {µ̃I,t,m, λ̃I,t,m}t=0,...,T−1,m=1,2,

{ãt, γ̃1t, γ̃2t, γ̃3t}T−1
t=0 , (ρ̃0, ρ̃1), and {β̃0t, β̃1t, β̃2t}T−1

t=0 .

Proof of Corollary 1. The last part of Theorem 1 immediately implies that all parameters are point

identified under Assumptions 1, 2, 3(a), and 4(a). Now suppose Assumptions 1, 2, 3(b), and 4(a)

hold. Then, since at = µI,t,1 = 0, µθ,t+1,1 − µθ,t,1
λθ,t+1,1

λθ,t,1
γ1t is identified. In addition

λθ,t+1,1

λθ,t,1
γ1t is

identified. We also know that µθ,0,1 = 0, which identifies µθ,1,1 and then we can recursively identify

µθ,t,1 for all t. In addition, we can identify λθ,t+1,1γ2t because λθ,t+1,1

(
γ2t −

µθ,t,1
λθ,t,1

γ3t

)
,
λθ,t+1,1

λθ,t,1
γ3t,

and µθ,t,1 are identified. Next notice that, we can also identify

λθ,t+1,1

λθ,t,1
γ1t =

λθ,t+1,1

λθ,t,1
(1− γ2t − γ3t) =

λθ,t+1,1

λθ,t,1
−
λθ,t+1,1

λθ,t,1
γ2t −

λθ,t+1,1

λθ,t,1
γ3t

Since λθ,0,1 = 1, we can identify λθ,1,1 and then, using the previous equation, λθ,t,1 recursively for

all t. Once we know µθ,t,1 and λθ,t,1 for all t, identification of the production function parameters

follows immediately. In addition, since
λθ,t,m
λθ,t,1

and µθ,t,m + (λθ,t,m/λθ,t,1)µθ,t,1 are identified, we can

identify λθ,t,m and µθ,t,m for all m. It then also immediately follows that β0t, β1t, β2t, ρ0, and ρ1

are identified.

Now suppose Assumptions 1, 2, 3(a), and 4(b) hold. Then, using the argument as in the proof

of Theorem 1, {λθ,t,m, µθ,t,m, }t=1,...,T is uniquely determined. Next, using the expressions for β̃1t
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and β̃2t and β1t+β2t = 1, we can identify β1t, β2t, and λI,t,1. With β̃0t and β0t = 0, we can uniquely

determine µI,t,1. Once the coefficients in the measurement error equation are identified for one of

the measures, the second part of Theorem 1 implies that all other parameters are identified as well.

Finally suppose Assumptions 1, 2, 3(b), and 4(b) hold. Then, using β0t = 0 and β1t + β2t = 1

we can write β̃0t = µI,t,1 − β̃1tµθ,t,1 and λθ,t,1β̃1t + β̃2t = λI,t,1. Now assume that µθ,t,1 and λθ,t,1,

are identified. Then µI,t,1 and λI,t,1 are also identified. Notice that since γ1t + γ2t + γ2t = 1, we

have
γ̃1t

λI,t,1
+

γ̃2t

λθ,t,1
+ γ̃3t =

λθ,t+1,1

λθ,t,1λI,t,1
− µI,t,1

λθ,t,1
λI,t,1

γ̃3t − µθ,t,1
λI,t,1
λθ,t,1

γ̃3t

and thus, λθ,t+1,1 and λI,t+1,1 = λθ,t+1,1β̃1,t+1 + β̃2,t+1 are identified. Then γ1t, γ2t, and γ3t are also

identified. Using the expression for ãt together with at = 0 then identifies µθ,t+1,1 and µI,t+1,1 =

β̃0,t+1 + β̃1,t+1µθ,t+1,1. Since µθ,0,1 = 0 and λθ,0,1 = 1, these arguments imply that µθ,t,1, µI,t,1,

λθ,t,1, and λI,t,1, are identified for all t. Once the coefficients in the measurement error equation are

identified for one of the measures, the second part of Theorem 1 implies that all other parameters

are identified as well.

Proof of Theorem 2. For the first part, notice that

Fln θ̃t+1
(ãt + γ̃1t lnQα1(θ̃t) + γ̃2t lnQα2(Ĩt) + γ̃3t lnQα1(θ̃t) lnQα2(Ĩt) +Qα3(η̃θ,t))

= Fln θ̃t+1
(ãt + γ̃1tQα1(µθ,t,1 + λθ,t,1 ln θt) + γ̃2tQα2(µI,t,1 + λI,t,1 ln It)

+ γ̃3tQα1(µθ,t,1 + λθ,t,1 ln θt)Qα2(µI,t,1 + λI,t,1 ln It) +Qα3(λθ,t+1,1ηθ,t))

= Fln θ̃t+1
(ãt + γ̃1t(µθ,t,1 + λθ,t,1Qα1 ln(θt)) + γ̃2t(µI,t,1 + λI,t,1Qα2(ln It))

+ γ̃3t(µθ,t,1 + λθ,t,1Qα1 ln(θt))(µI,t,1 + λI,t,1Qα2(ln It)) + λθ,t+1,1Qα3(ηθ,t))

= Fln θ̃t+1
(µt+1 + λt+1 (at + γ1tQα1 ln(θt) + γ2tQα2(ln It) + γ3tQα1 ln(θt)Qα2(ln It) +Qα3(ηθ,t)))

= Fln θt+1 (at + γ1tQα1 ln(θt) + γ2tQα2(ln It) + γ3tQα1 ln(θt)Qα2(ln It) +Qα3(ηθ,t))

Since the joint distribution of
(
{ln θ̃t}t=0,...,T , {ln Ĩt}t=0,...,T−1

)
and ãt, γ̃1t, γ̃2t, and γ̃3t are identified

and since η̃θ,t = ln θ̃t+1 −
(
ãt + γ̃1t ln θ̃t + γ̃2t ln It + γ̃3t ln θ̃t ln It

)
, it follows that

Fln θ̃t+1
(ãt + γ̃1t lnQα1(θ̃t) + γ̃2t lnQα2(Ĩt) + γ̃3t lnQα1(θ̃t) lnQα2(Ĩt) +Qα3(η̃θ,t))

and therefore

Fln θt+1 (at + γ1tQα1 ln(θt) + γ2tQα2(ln It) + γ3tQα1 ln(θt)Qα2(ln It) +Qα3(ηθ,t))

is point identified.

For the second part notice that

ln Ĩt(Y ) = β̃0t + β̃1t lnQα1(θ̃t) + β̃2t lnY +Qα4(η̃I,t)
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= β̃0t + β̃1t(µθ,t,1 + λθ,t,1Qα1 ln(θt)) + β̃2t lnY +Qα4(λI,t,1ηI,t)

= µI,t,1 + λI,t,1 (β0t + β1tQα1(ln(θt)) + β2t lnY +Qα4(ηI,t))

= µI,t,1 + λI,t,1 ln It(Y )

is identified. Then using the same arguments as above, it follows

Fln θ̃t+1
(ãt + γ̃1t lnQα1(θ̃t) + γ̃2t ln Ĩt(Y ) + γ̃3t lnQα1(θ̃t) ln Ĩt(Y ) +Qα3(η̃θ,t))

= Fln θt+1(at + γ1t lnQα1(θt) + γ2t ln It(Y ) + γ3t lnQα1(θt) ln It(Y ) +Qα3(ηθ,t))

is point identified for all α1, α3, α4 ∈ (0, 1).

For the third part we have

P
(
Q ≤ q | θt = Qα1(θt), {Is = Qα2s(Is)}T−1

s=t , {ηθ,s = Qα3s(ηθ,s)}T−1
s=t

)
= P

(
Q ≤ q | θ̃t = Qα1(θ̃t), {Ĩs = Qα2s(Ĩs)}T−1

s=t , {η̃θ,s = Qα3s(η̃θ,s)}T−1
s=t

)
and hence, the left hand is identified.

The fourth part follows from identification of the joint distribution of (Q, θ̃t, {Ys}T−1
s=t )

Finally, notice that

γ̃1t + γ̃3t ln Ĩt =
λθ,t+1,1

λθ,t,1
(γ1t + γ3t ln It)

whose distribution is identified under Assumption 3(a).

Proof of Theorem 3 . The same arguments as in the proof of Theorem 1 implies that β̃0t, β̃1t, β̃2t,

ρ̃0 and ρ̃1 are identified. Moreover, we can also identify E[ln θ̃t+1 | θ̃t, Ĩt, Yt] which we can write as

E[ln θ̃t+1 | θ̃t, Ĩt, Yt] =
λθ,t+1,1ψt

σt
ln

(
γ̃1tθ̃

σt
λθ,t,1

t + γ̃2tĨ

σt
λI,t,1

t

)
+ E[η̃θ,t | θ̃t, Ĩt, Yt]

=
λθ,t+1,1ψt

σt
ln

(
γ̃1tθ̃

σt
λθ,t,1

t + γ̃2tĨ

σt
λI,t,1

t

)
+ (λθ,t+1,1/λI,t,1)κtη̃I,t

Hence

∂E[ln θ̃t+1|θ̃t,Ĩt,Yt]
∂θ̃t

∂E[ln θ̃t+1|θ̃t,Ĩt,Yt]
∂Ĩt

=
λI,t,1
λθ,t,1

γ̃1t

γ̃2t
θ̃

σt
λθ,t,1

−1

t Ĩ
1− σt

λI,t,1

t

which identifies
λI,t,1
λθ,t,1

γ̃1t

γ̃2t
, σt
λθ,t,1

and σt
λI,t,1

. Hence, γ̃1t

γ̃2t
is identified. In addition (λθ,t+1,1/λI,t,1)κt is

identified. Now write

E[ln θ̃t+1 | θ̃t, Ĩt, Yt] =
λθ,t+1,1ψt

σt
ln

(
γ̃1t

γ̃2t
θ̃

σt
λθ,t,1

ψt

t + Ĩ

σt
λI,t,1

t

)
+
λθ,t+1,1ψt

σt
ln γ̃2t + (λθ,t+1,1/λI,t,1)κtη̃I,t

which is linear in ln

(
γ̃1t

γ̃2t
θ̃

σt
λθ,t,1

t + Ĩ

σt
λI,t,1

t

)
and therefore

λθ,t+1,1ψt
σt

and
λθ,t+1,1ψt

σt
ln γ̃2t are identified.

Hence γ̃1t and γ̃2t are identified.
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Now suppose we have an alternative set of parameters, denoted by {µ̄θ,t,m, λ̄θ,t,m}t=0,...,T,m=1,2,

{µ̄I,t,m, λ̄I,t,m}t=0,...,T−1,m=1,2, {āt, γ̄1t, γ̄2t, γ̄3t, ψ̄t}T−1
t=0 , {β̄0t, β̄1t, β̄2t}T−1

t=0 , and (ρ̄0, ρ̄1) that yields

the same values of {µ̃θ,t,m, λ̃θ,t,m}t=0,...,T,m=1,2, {µ̃I,t,m, λ̃I,t,m}t=0,...,T−1,m=1,2, {β̃0t, β̃1t, β̃2t}T−1
t=0 ,

{γ̃1t, γ̃2t,
σt

λθ,t,1
, σt
λI,t,1

,
λθ,t+1,1ψt

σt
}T−1
t=0 , and (ρ̃0, ρ̃1). Define θ̄t and Īt such that

µ̄θ,t,1 + λ̄θ,t,1 ln θ̄t = µθ,t,1 + λθ,t,1 ln θt = ln θ̃t

and

µ̄I,t,1 + λ̄I,t,1 ln Īt = µI,t,1 + λI,t,1 ln It = ln Ĩt

For m 6= 1, the arguments of the proof of Theorem 1 imply that

µ̄θ,t,m + λ̄θ,t,m ln θ̄t = µ̃θ,t,m + λ̃θ,t,m ln θ̃t

and

µ̄I,t,m + λ̄I,t,m ln Īt = µ̃I,t,m + λ̃I,t,m ln Ĩt

Then the two models generate the same distribution of the measures. In addition, the parameters

and θ̄t are consistent with the production technology because

exp(µ̄θ,t+1,1)θ̄
λ̄θ,t+1,1

t+1 = θ̃t+1

=

(
γ̃1tθ̃

σt
λθ,t,1

t + γ̃2tĨ

σt
λI,t,1

t

)λθ,t+1,1ψt
σt

exp(η̃θ,t)

=

γ̃1t exp

(
σt
µ̄θ,t,1
λθ,t,1

)
θ̄

λ̄θ,t,1
λθ,t,1

σt

t + γ̃2t exp

(
σt
µ̄I,t,1
λI,t,1

)
Ī

λ̄I,t,1
λI,t,1

σt

t


λθ,t+1,1ψt

σt

exp(η̃θ,t)

and thus

θ̄t+1 = exp

(
−
µ̄θ,t+1,1

λ̄θ,t+1,1

)γ̃1t exp

(
σt
µ̄θ,t,1
λθ,t,1

)
θ̄

λ̄θ,t,1
λθ,t,1

σt

t + γ̃2t exp

(
σt
µ̄I,t,1
λI,t,1

)
Ī

λ̄I,t,1
λI,t,1

σt

t


λθ,t+1,1ψt

λ̄θ,t+1,1σt

exp(η̃θ,t/λ̄θ,t+1,1)

Since λ̄θ,t,1/σ̄t = λθ,t,1/σt, λ̄I,t,1/σ̄t = λI,t,1/σt and λ̄θ,t+1,1ψ̄t/σ̄t = λθ,t+1,1ψt/σt we get

θ̄t+1 =

(
γ̃1t exp

(
σ̄t

(
µ̄θ,t,1

λ̄θ,t,1
−
µ̄θ,t+1,1

λ̄θ,t+1,1

))
θ̄σ̄tt + γ̃2t exp

(
σ̄t

(
µ̄I,t,1

λ̄I,t,1
−
µ̄θ,t+1,1

λ̄θ,t+1,1

))
Ī σ̄tt

) ψ̄t
σ̄t

exp(η̃θ,t/λ̄θ,t+1,1)

=
(
γ̄1tθ̄

σ̄t
t + γ̄2tĪ

σ̄t
t

) ψ̄t
σ̄t exp(η̄θ,t)

with η̄θ,t =
λθ,t+1,1

λ̄θ,t+1,1
ηθ,t.

Analogously, one can show that

ln Īt = β̄0t + β̄1t ln θt + β̄2t lnYt + η̄I,t
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Q = ρ̄0 + ρ̄1 ln θ̄T + η̄Q

For the second part, notice that identification of σt
λθ,t,1

, σt
λI,t,1

, and σt
λθ,t+1,1ψt

implies identification

of
λI,t,1
λθ,t,1

. Hence, once λθ,t,1 is fixed, we can identify λI,t,1 and σt for all t = 1, . . . , T −1 and then also

ψt. Using the expression for γ̃1t and γ̃2t, it is easy to see that γ1t and γ2t are identified, once µθ,t,1

and µθ,t,2 are fixed for all t. Identification of the remaining parameters follows from arguments as

those in the proof of Theorem 1

Proof of Corollary 2 . The first part of Theorem 3 implies that can identify σt, λθ,t,1, λI,t,1, and ψt

for all t under Assumptions 1 and 2’ and either Assumption 5’(a) or Assumption 5’(b).

Now suppose that in addition Assumptions 3’(a) and 4’(a) hold. The last part of Theorem 3

immediately imply that all parameters are then point identified.

Next suppose that in addition to Assumptions 1, 2’, and either 5’(a) or 5’(b) Assumptions 3(a)

and 4(b) hold. Then {µθ,t,m, }t=1,...,T is uniquely determined. Moreover, we have β̃0t = µI,t,1 −
β̃1tµθ,t,1, implying that {µI,t,m, }t=1,...,T−1 is identified. Once the coefficients in the measurement

error equation are identified for one of the measures, the second part of Theorem 3 implies that all

other parameters are identified as well.

Next suppose that in addition to Assumptions 1, 2’, and either 5’(a) or 5’(b) Assumptions3’(b)

and 4’(a) hold. Notice that

γ̃1t = γ1t exp

(
σt

(
µθ,t+1,1

λθ,t+1,1
−
µθ,t,1
λθ,t,1

))
and γ̃2t = γ2t exp

(
σt

(
µθ,t+1,1

λθ,t+1,1

))
and

1 = γ1t + γ2t = exp

(
−σt

µθ,t+1,1

λθ,t+1,1

)(
exp

(
σt
µθ,t,1
λθ,t,1

)
γ̃1t + γ̃2t

)
Since µθ,0,1 = 0 and the right hand side is strictly monotone in µθ,1,1, we can identify µθ,1,1 and then

recursively µθ,t,1 for all t. Once the coefficients in the measurement error equation are identified for

one of the measures, the second part of Theorem 3 implies that all other parameters are identified

as well.

Finally, suppose that in addition to Assumptions 1, 2’, and either 5’(a) or 5’(b) Assumptions

3’(b) and 4’(b) hold. Notice that

β̃0t = µI,t,1 − β̃1tµθ,t,1

and

1 = exp

(
−σt

µθ,t+1,1

λθ,t+1,1

)(
exp

(
σt
µθ,t,1
λθ,t,1

)
γ̃1t + exp

(
σt
µI,t,1
λI,t,1

)
γ̃2t

)
Using µθ,0,1 = 0 and the first equation, we can determine µ0,I,1. Given µθ,0,1 = 0 and µ0,I,1 and the

second equation, we can determine µθ,1,1. Then using recursion, we can identify µθ,t,1 and µI,t,1 for
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all t. Once the coefficients in the measurement error equation are identified for one of the measures,

the second part of Theorem 3 implies that all other parameters are identified as well.

Proof of Theorem 4. The first four parts proof is analogous to the proof of Theorem 2. For the last

part notice that can identify λθ,t+1,1/λθ,t,1 and λθ,t,1/λI,t,1 for all t under Assumption 1 and either

Assumption 5’(a) or Assumption 5’(b). Moreover,

∂ ln θt+1

∂ ln θt
=

λθ,t,1
λθ,t+1,1

∂ ln θ̃t+1

∂ ln θ̃t
=

λθ,t,1
λθ,t+1,1

∂

∂ ln θ̃t

(
γ̃1tθ̃

σt
λθ,t,1

t + γ̃2tĨ

σt
λI,t,1

t

)λθ,t+1,1ψt
σt

and

∂ ln θt+1

∂ ln It
=

λI,t,1
λθ,t+1,1

∂ ln θ̃t+1

∂ ln Ĩt
=
λI,t,1
λθ,t,1

λθ,t,1
λθ,t+1,1

∂

∂ ln Ĩt

(
γ̃1tθ̃

σt
λθ,t,1

t + γ̃2tĨ

σt
λI,t,1

t

)λθ,t+1,1ψt
σt

whose distributions are then identified.

Proof of Theorem 5. The joint distribution of

{{Zθ,t,m}t=0,...,T,m=1,2,3, {ZI,t,m}t=0,...,T−1,m=1,2,3, Q, {g̃θ,t(θt)}Tt=0, {g̃I,t(It)}T−1
t=0 }

is identified by Theorem 1 of Cunha et al. (2010) up to unknown and strictly increasing functions

g̃θ,t and g̃I,t conditional on {Y1, . . . , YT−1}. Moreover, let

η̃I,t = FηI,t(ηI,t) ∼ U [0, 1]

Then we can write

It = ht(θt, Yt, F
−1
ηI,t

(η̃I,t))

and thus,

g̃I,t(It) = g̃I,t(ht(g̃
−1(g̃θ,t(θt)), Yt, F

−1
ηI,t

(η̃I,t)))

or

g̃I,t(It) = h̃t(g̃θ,t(θt), Yt, η̃I,t)

Now notice that

Qα(g̃I,t(It) | g̃θ,t(θt), Yt) = h̃t(g̃θ,t(θt), Yt, α)

which implies that h̃t is identified. We can now write

η̃I,t = h̃−1
t (g̃I,t(It), g̃θ,t(θt), Yt)
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and therefore the joint distribution of (g̃I,t(It), g̃θ,t(θt), Yt, η̃I,t) is point identified.

Now write

θt+1 = ft(θt, It, ηI,t, ςθ,t) ⇔ g̃θ,t+1(θt+1) = g̃θ,t+1(ft(g̃
−1
θ,t (g̃θ,t(θt)), g̃

−1
I,t (g̃I,t(It)), F

−1
ηI,t

(η̃I,t), ςθ,t).

We can therefore identify

Qα4(g̃θ,t+1(θt+1) | g̃θ,t(θt) = Qα1(g̃θ,t(θt)), g̃I,t(It) = Qα2(g̃I,t(It)), η̃I,t = α3)

= g̃θ,t+1(ft(g̃
−1
θ,t (Qα1(g̃θ,t(θt)), g̃

−1
I,t (Qα2(g̃I,t(It)), F

−1
ηI,t

(α3), Qα4(ςθ,t)))

= g̃θ,t+1(ft(Qα1(θt), Qα2(It), Qα3(ηI,t), Qα4(ςθ,t)))

and

Fg̃θ,t+1(θt+1)(g̃θ,t+1(ft(Qα1(θt), Qα2(It), Qα3(ηI,t), Qα4(ςθ,t)))) = Fθt+1(ft(Qα1(θt), Qα2(It), Qα3(ηI,t), Qα4(ςθ,t)))

For the second part notice that

g̃I,t(It(Y )) = g̃I,t(ht(g̃
−1
θ,t+1(Qα1(g̃θ,t(θt))), Yt, F

−1
ηI,t

(α3)))

= h̃t(Qα1(g̃θ,t(θt)), Yt, α3)

is identified by the previous arguments. We can therefore identify

Qα4(g̃θ,t+1(θt+1) | g̃θ,t(θt) = Qα1(g̃θ,t(θt)), g̃I,t(It) = g̃I,t(It(Y )), η̃I,t = α3)

= g̃θ,t+1(ft(g̃
−1
θ,t (Qα1(g̃θ,t(θt)), g̃

−1
I,t (g̃I,t(It(Y ))), F−1

ηI,t
(α3), Qα4(ςθ,t)))

= g̃θ,t+1(ft(Qα1(θt), It(Y ), Qα2(ηI,t), Qα4(ςθ,t)))

and

Fg̃θ,t+1(θt+1)(g̃θ,t+1(ft(Qα1(θt), It(Y ), Qα2(ηI,t), Qα4(ςθ,t))))

= Fθt+1(ft(Qα1(θt), It(Y ), Qα2(ηI,t), Qα4(ςθ,t)))

For the third part notice that

g̃θ,t+1(θt+1) = g̃θ,t+1(ft(g̃
−1
θ,t (g̃θ,t(θt)), g̃

−1
I,t (g̃I,t(It)), F

−1
ηI,t

(η̃I,t), F
−1
ςθ,t

(ς̃θ,t))).

with ς̃θ,t = Fςθ,t(ςθ,t) ∼ U [0, 1]. We can therefore write ς̃θ,t as an identified function of the random

vector (g̃θ,t+1(θt+1), g̃θ,t(θt), g̃I,t(It), η̃I,t). Hence, the joint distribution of

(Q, g̃θ,t(θt), {g̃I,t(It)}T−1
s=t , {η̃I,s}

T−1
s=t , {ς̃θ,s}

T−1
s=t )

is identified. Finally,

P
(
Q ≤ q | θt = Qα1(θt), {Is = Qα2s(Is)}T−1

s=t , {ηI,s = Qα3s(ηI,s)}T−1
s=t , {ςθ,s = Qα4s(ςθ,s)}T−1

s=t

)
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= P
(
Q ≤ q | θ̃t = Qα1(θ̃t), {g̃I,t(It) = Qα2s(g̃I,t(It))}T−1

s=t , {η̃I,s = Qα3s(η̃I,s)}T−1
s=t , {ς̃θ,s = Qα4s(ς̃θ,s)}T−1

s=t

)
.

The fourth part follows from identification of the joint distribution of (Q, g̃θ,t(θt), {Ys}T−1
s=t ).

Proof of Theorem 6. Let µ̄θ,0,1 = 0, λ̄θ,0,1 = 1 and ln θ̄0 = µθ,0,1 + λθ,0,1 ln θ0. Let µ̄θ,t,1 and λ̄θ,t,1

and ln θ̄t be such that

µ̄θ,t,1 + λ̄θ,t,1 ln θ̄t = µθ,t,1 + λθ,t,1 ln θt.

These values are not unique for t > 0 and will be determined by the other assumptions. Now let

λ̄θ,t,m = λ̄θ,t,1
λθ,t,m
λθ,t,1

and µ̄θ,t,m = µθ,t,m −
λθ,t,m
λθ,t,1

µθ,t,1 +
λ̄θ,t,m
λ̄θ,t,1

µ̄θ,t,1 in which case

µ̄θ,t,m + λ̄θ,t,m ln θ̄t = µθ,t,m + λθ,t,m ln θt.

for all m.

Next suppose that µ̄I,t,1 = 0 and λ̄I,t,1 = 1 for all t and define

ln Īt =
1

λ̄I,t,1
(µI,t,1 − µ̄I,t,1 + λI,t,1 ln It) .

and λ̄I,t,m = λ̄I,t,1
λI,t,m
λI,t,1

and µ̄I,t,m = µI,t,m −
λI,t,m
λI,t,1

µI,t,1 +
λ̄I,t,m
λ̄I,t,1

µ̄I,t,1 in which case

µ̄I,t,m + λ̄I,t,m ln Īt = µI,t,m + λI,t,m ln It

for all m. Moreover, it is easy to see that there are (β̄0t, β̄1t, β̄2t) and η̄I,t such that

ln Īt = β̄0t + β̄1t ln θt + β̄2t lnYt + η̄I,t

Instead of assuming µ̄I,t,1 = 0 and λ̄I,t,1 = 1, first write

ln It = β0t + β1t

(
µ̄θ,t,1 − µθ,t,1

λθ,t,1
+
λ̄θ,t,1
λθ,t,1

ln θ̄t

)
+ β2t lnYt + ηI,t

= β0t + β1t

(
µ̄θ,t,1 − µθ,t,1

λθ,t,1

)
+ β1t

λ̄θ,t,1
λθ,t,1

ln θ̄t + β2t lnYt + ηI,t

which implies that

ln Īt = β̄1 ln θ̄t + β̄2 lnYt + η̄I,t

with

ln Īt =
ln It −

(
β0t + β1t

(
µ̄θ,t,1−µθ,t,1

λθ,t,1

))
β1t

λ̄θ,t,1
λθ,t,1

+ β2t

,

β̄1t =
β1t

λ̄θ,t,1
λθ,t,1

β1t
λ̄θ,t,1
λθ,t,1

+ β2t

and β̄2t =
β2t

β1t
λ̄θ,t,1
λθ,t,1

+ β2t
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It is now easy to see that there exist µ̄I,t,1 and λ̄I,t,1 such that

µ̄I,t,1 + λ̄I,t,1 ln Īt = µI,t,1 + λI,t,1 ln It.

Then define and λ̄I,t,m = λ̄I,t,1
λI,t,m
λI,t,1

and µ̄I,t,m = µI,t,m −
λI,t,m
λI,t,1

µI,t,1 +
λ̄I,t,m
λ̄I,t,1

µ̄I,t,1 in which case

µ̄I,t,m + λ̄I,t,m ln Īt = µI,t,m + λI,t,m ln It

for all m.

In both cases, there are parameters that consistent with the second, third, and forth equation

of the model. In addition, we now have known constant µ̄I,t,1 and λ̄I,t,1 and a random variable ln Īt

such that

µ̄I,t,1 + λ̄I,t,1 ln θ̄t = µI,t,1 + λI,t,1 ln It.

We next show that there production function parameters that are consistent with Assumption

3(b). To do so, write

ln θt+1 = at + γ1t ln θt + γ2t ln It + γ3t ln θt ln It + ηθ,t

= at + γ1t

(
µ̄θ,t,1 − µθ,t,1

λθ,t,1
+
λ̄θ,t,1
λθ,t,1

ln θ̄t

)
+ γ2t

(
µ̄I,t,1 − µI,t,1

λI,t,1
+
λ̄I,t,1
λI,t,1

ln Īt

)
+ γ3t

(
µ̄θ,t,1 − µθ,t,1

λθ,t,1
+
λ̄θ,t,1
λθ,t,1

ln θ̄t

)(
µ̄I,t,1 − µI,t,1

λI,t,1
+
λ̄I,t,1
λI,t,1

ln Īt

)
+ ηθ,t

= at + γ1t
µ̄θ,t,1 − µθ,t,1

λθ,t,1
+ γ2t

µ̄I,t,1 − µI,t,1
λI,t,1

+ γ3t
µ̄θ,t,1 − µθ,t,1

λθ,t,1

µ̄I,t,1 − µI,t,1
λI,t,1

+

(
γ1t

λ̄θ,t,1
λθ,t,1

+ γ3t
µ̄I,t,1 − µI,t,1

λI,t,1

λ̄θ,t,1
λθ,t,1

)
ln θ̄t +

(
γ2t

λ̄I,t,1
λI,t,1

+ γ3t
µ̄θ,t,1 − µθ,t,1

λθ,t,1

λ̄I,t,1
λI,t,1

)
ln Īt

+ γ3t
λ̄θ,t,1
λθ,t,1

λ̄I,t,1
λI,t,1

ln θ̄t ln Īt + ηθ,t

which we can write as

ln θ̄t+1 = γ̄1t ln θ̄t + γ̄2t ln Īt + γ̄3t ln θ̄t ln Īt + η̄θ,t

where

ln θ̄t+1 =
ln θt+1 −

(
at + γ1t

µ̄θ,t,1−µθ,t,1
λθ,t,1

+ γ2t
µ̄I,t,1−µI,t,1

λI,t,1
+ γ3t

µ̄θ,t,1−µθ,t,1
λθ,t,1

µ̄I,t,1−µI,t,1
λI,t,1

)
γ1t

λ̄θ,t,1
λθ,t,1

+ γ3t
µ̄I,t,1−µI,t,1

λI,t,1

λ̄θ,t,1
λθ,t,1

+ γ2t
λ̄I,t,1
λI,t,1

+ γ3t
µ̄θ,t,1−µθ,t,1

λθ,t,1

λ̄I,t,1
λI,t,1

+ +γ3t
λ̄θ,t,1
λθ,t,1

λ̄I,t,1
λI,t,1

γ̄1t =
γ1t

λ̄θ,t,1
λθ,t,1

+ γ3t
µ̄I,t,1−µI,t,1

λI,t,1

λ̄θ,t,1
λθ,t,1

γ1t
λ̄θ,t,1
λθ,t,1

+ γ3t
µ̄I,t,1−µI,t,1

λI,t,1

λ̄θ,t,1
λθ,t,1

+ γ2t
λ̄I,t,1
λI,t,1

+ γ3t
µ̄θ,t,1−µθ,t,1

λθ,t,1

λ̄I,t,1
λI,t,1

+ +γ3t
λ̄θ,t,1
λθ,t,1

λ̄I,t,1
λI,t,1

γ̄2t =
γ2t

λ̄I,t,1
λI,t,1

+ γ3t
µ̄θ,t,1−µθ,t,1

λθ,t,1

λ̄I,t,1
λI,t,1

γ1t
λ̄θ,t,1
λθ,t,1

+ γ3t
µ̄I,t,1−µI,t,1

λI,t,1

λ̄θ,t,1
λθ,t,1

+ γ2t
λ̄I,t,1
λI,t,1

+ γ3t
µ̄θ,t,1−µθ,t,1

λθ,t,1

λ̄I,t,1
λI,t,1

+ +γ3t
λ̄θ,t,1
λθ,t,1

λ̄I,t,1
λI,t,1
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γ̄3t =
γ3t

λ̄θ,t,1
λθ,t,1

λ̄I,t,1
λI,t,1

γ1t
λ̄θ,t,1
λθ,t,1

+ γ3t
µ̄I,t,1−µI,t,1

λI,t,1

λ̄θ,t,1
λθ,t,1

+ γ2t
λ̄I,t,1
λI,t,1

+ γ3t
µ̄θ,t,1−µθ,t,1

λθ,t,1

λ̄I,t,1
λI,t,1

+ +γ3t
λ̄θ,t,1
λθ,t,1

λ̄I,t,1
λI,t,1

It is now easy to see that there exist µ̄θ,t+1,1 and λ̄θ,t+1,1 such that

µ̄θ,t+1,1 + λ̄θ,t+1,1 ln θ̄t+1 = µθ,t+1,1 + λθ,t+1,1 ln θt+1.

We can now use the arguments recursively and show always exist sets of parameters for the

first four equations that are consistent with the data and satisfy Assumptions 1, 2, 3(b), and either

4(a) or 4(b). It also immediately follows that the exist ρ̄0 and ρ̄1 such that

ρ̄0 + ρ̄1 ln θT = ρ0 + ρ1 ln θT

The arguments in Section 3.2.1 imply that there always exist sets of parameters that are con-

sistent with the data and satisfy that Assumptions 1, 2, either 3(a) and 4(a).

Finally, suppose Assumptions 1, 2, either 3(a) and 4(b) hold. Let

ln θ̄t = µθ,t,1 + λθ,t,1 ln θt.

Then we can write

ln Īt = β̄1 ln θ̄t + β̄2 lnYt + η̄I,t

with

ln Īt =
ln It −

(
β0t + β1t

(
µθ,t,1
λθ,t,1

))
β1t

1
λθ,t,1

+ β2t
,

β̄1t =
β1t

1
λθ,t,1

β1t
1

λθ,t,1
+ β2t

and β̄2t =
β2t

β1t
1

λθ,t,1
+ β2t

It is now easy to see that there exist µ̄I,t,1 and λ̄I,t,1 such that

µ̄I,t,1 + λ̄I,t,1 ln Īt = µI,t,1 + λI,t,1 ln It.

Using the previous arguments, we can then write

ln θ̄t+1 = µθ,t+1,1 + λθ,t+1,1

(
at + γ1t

µ̄θ,t,1 − µθ,t,1
λθ,t,1

+ γ2t
µ̄I,t,1 − µI,t,1

λI,t,1
+ γ3t

µ̄θ,t,1 − µθ,t,1
λθ,t,1

µ̄I,t,1 − µI,t,1
λI,t,1

)
+ λθ,t+1,1

(
γ1t

λ̄θ,t,1
λθ,t,1

+ γ3t
µ̄I,t,1 − µI,t,1

λI,t,1

λ̄θ,t,1
λθ,t,1

)
ln θ̄t + λθ,t+1,1

(
γ2t

λ̄I,t,1
λI,t,1

+ γ3t
µ̄θ,t,1 − µθ,t,1

λθ,t,1

λ̄I,t,1
λI,t,1

)
ln Īt

+ λθ,t+1,1γ3t
λ̄θ,t,1
λθ,t,1

λ̄I,t,1
λI,t,1

ln θ̄t ln Īt + λθ,t+1,1ηθ,t

Setting µ̄θ,t,1 = 0 and λ̄θ,t,1 = 1, it is easy to that there are āt, γ̄1t, γ̄2t, and γ̄3t such that such that

ln θ̄t+1 = āt + γ̄1t ln θ̄t + γ̄2t ln Īt + γ̄3t ln θ̄t ln Īt + η̄θ,t
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Proof of Theorem 7. As in the proof of Theorem 6, there are constants µ̄θ,t,1 and λ̄θ,t,1 and a

random variable ln θ̄t such that

µ̄θ,t,1 + λ̄θ,t,1 ln θ̄t = µθ,t,1 + λθ,t,1 ln θt

and µ̄θ,0,1 = 0 and λ̄θ,0,1 = 1. Then there exist µ̄θ,t,m and λ̄θ,t,m such that for all m

µ̄θ,t,m + λ̄θ,t,m ln θ̄t = µθ,t,m + λθ,t,m ln θt

Next consider the production function and write

θt+1 = (γ1tθ
σt
t + γ2tI

σt
t )

ψt
σt exp(ηθ,t)

=

γ1t exp

(
σt
µ̄θ,t,1 − µθ,t,1

λθ,t,1

)
θ̄
σt
λ̄θ,t,1
λθ,t,1

t + γ2tI
σt
t


ψt
σt

exp(ηθ,t)

=

γ1t exp

(
σt
µ̄θ,t,1 − µθ,t,1

λθ,t,1

)
θ̄
σt
λ̄θ,t,1
λθ,t,1

t + γ2t

(
I

λθ,t,1
λ̄θ,t,1

t

)σt λ̄θ,t,1λθ,t,1


ψt
σt

exp(ηθ,t)

and with σ̄t = σt
λ̄θ,t,1
λθ,t,1

we have

θ

λθ,t,1
λ̄θ,t,1

t+1 =

γ1t exp

(
σt
µ̄θ,t,1 − µθ,t,1

λθ,t,1

)
θ̄σ̄tt + γ2t

(
I

λθ,t,1
λ̄θ,t,1

t

)σ̄t
ψt
σ̄t

exp

(
λθ,t,1

λ̄θ,t,1
ηθ,t

)

We also know that we need to satisfy the relationship

exp

(
µ̄I,t,1 − µI,t,1

λI,t,1
+
λ̄I,t,1
λI,t,1

ln Īt

)
= It

Hence,

θ

λθ,t,1
λ̄θ,t,1

t+1 =

γ1t exp

(
σt
µ̄θ,t,1 − µθ,t,1

λθ,t,1

)
θ̄σ̄tt + γ2t exp

(
σ̄t
λθ,t,1

λ̄θ,t,1

µ̄I,t,1 − µI,t,1
λI,t,1

)
Ī
σ̄t
λθ,t,1
λ̄θ,t,1

λ̄I,t,1
λI,t,1

t


ψt
σ̄t

exp

(
λθ,t,1

λ̄θ,t,1
ηθ,t

)

Since

θ

λθ,t,1
λ̄θ,t,1

t+1 = exp

(
λθ,t,1

λ̄θ,t,1

µ̄θ,t+1,1 − µθ,t+1,1

λθ,t+1,1

)
θ̄

λθ,t,1
λ̄θ,t,1

λ̄θ,t+1,1
λθ,t+1,1

t+1

we then write

θ̄t+1 =

 γ1t exp
(
σt
µ̄θ,t,1−µθ,t,1

λθ,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) θ̄σ̄tt +
γ2t exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄I,t,1−µI,t,1
λI,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) Ī σ̄t λθ,t,1λ̄θ,t,1

λ̄I,t,1
λI,t,1

t


ψ̄t
σ̄t

exp

(
λθ,t,1

λ̄θ,t,1
ηθ,t

)
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=

γ̄1tθ̄
σ̄t
t + γ̄2tĪ

σ̄t
λθ,t,1
λ̄θ,t,1

λ̄I,t,1
λI,t,1

t


ψ̄t
σ̄t

exp

(
λθ,t,1

λ̄θ,t,1
ηθ,t

)
where

γ̄1t =
γ1t exp

(
σt
µ̄θ,t,1−µθ,t,1

λθ,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) and γ̄2t =
γ2t exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄I,t,1−µI,t,1
λI,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

)
and ψ̄t = ψt

λ̄θ,t,1
λθ,t,1

λθ,t+1,1

λ̄θ,t+1,1
= ψt

σ̄t
σt

σt+1

σ̄t+1
.

We now show that under different combinations of the assumptions, there always parameters

that are consistent with the model. First notice that it has to hold that

λ̄I,t,1 =
λ̄θ,t,1
λθ,t,1

λI,t,1

Now write(
µ̄I,t,1 − µI,t,1

λI,t,1
+
λ̄I,t,1
λI,t,1

ln Īt

)
= β0t + β1t

(
µ̄θ,t,1 − µθ,t,1

λθ,t,1
+
λ̄θ,t,1
λθ,t,1

ln θ̄t

)
+ β2t lnYt + ηI,t

which implies that

ln Īt = β0t
λI,t,1

λ̄I,t,1
−
µ̄I,t,1 − µI,t,1

λI,t,1

λI,t,1

λ̄I,t,1
+ β1t

λI,t,1

λ̄I,t,1

µ̄θ,t,1 − µθ,t,1
λθ,t,1

+ β1t ln θ̄t + β2t
λI,t,1

λ̄I,t,1
lnYt + ηI,t

It follows that β̄1 = β1 and β̄2 = β2t
λI,t,1
λ̄I,t,1

are determined and

β̄0t = β0t
λI,t,1

λ̄I,t,1
−
µ̄I,t,1 − µI,t,1

λI,t,1

λI,t,1

λ̄I,t,1
+ β1t

λI,t,1

λ̄I,t,1

µ̄θ,t,1 − µθ,t,1
λθ,t,1

If λ̄θ,t,1 = λ̄θ,t+1,1 = 1, set ψ̄t = ψt
λθ,t+1,1

λθ,t,1
and σ̄t = σt

1
λθ,t,1

. If instead ψ̄t = 1, take λ̄θ,t+1,1 =

ψt
λ̄θ,t,1
λθ,t,1

λθ,t+1,1 and σ̄t = σt
λ̄θ,t,1
λθ,t,1

. Either way, σ̄t, ψ̄t, and λ̄θ,t,1 are uniquely determined.

Now suppose that µ̄θ,t,1 = µ̄I,t,1 = 0. Then β̄0t is uniquely determined and so is

γ̄1t =
γ1t exp

(
σt
µ̄θ,t,1−µθ,t,1

λθ,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) and γ̄2t =
γ2t exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄I,t,1−µI,t,1
λI,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) .
Hence, we found parameters that are consistent with the first four equations of the model.

Next suppose that µ̄θ,t,1 = 0 and β̄0t = 0. Then also µ̄θ,t+1,1 = 0. Again let

γ̄1t =
γ1t exp

(
σt
µ̄θ,t,1−µθ,t,1

λθ,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

)
Then we can find µ̄I,t,1 such that β̄0t = 0. Finally let

γ̄2t =
γ2t exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄I,t,1−µI,t,1
λI,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) .
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Hence, we found parameters that are consistent with the first four equations of the model.

Next suppose that µ̄I,t,1 = 0 and γ1t + γ2t = 1. Then β̄0t = β0t
λI,t,1
λ̄I,t,1

is uniquely determined. It

then has to hold that

γ̄1t =
γ1t exp

(
σt
µ̄θ,t,1−µθ,t,1

λθ,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) and γ̄2t =
γ2t exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄I,t,1−µI,t,1
λI,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) .
and γ̄1t + γ̄2t = 1. Since the denominator of the fractions is strictly monotone in µ̄θ,t+1,1 and

has range (0,∞), there exists a unique value of µ̄θ,t+1,1 such that γ̄1t + γ̄2t = 1. We then found

parameters that are consistent with the first four equations of the model.

Finally, suppose that β̄0t = 0 and γ1t + γ2t = 1. Then we can find a unique value µ̄I,t,1 = 0

such that β̄0t = 0. Given this value, it has to hold that

γ̄1t =
γ1t exp

(
σt
µ̄θ,t,1−µθ,t,1

λθ,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) and γ̄2t =
γ2t exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄I,t,1−µI,t,1
λI,t,1

)
exp

(
σ̄t
λθ,t,1
λ̄θ,t,1

µ̄θ,t+1,1−µθ,t+1,1

λθ,t+1,1

) .
and γ̄1t + γ̄2t = 1. Again, we there exists a unique value of µ̄θ,t+1,1 such that γ̄1t + γ̄2t = 1. We

then found parameters that are consistent with the first four equations of the model.

In all four cases, it also immediately follows that the exist ρ̄0 and ρ̄1 such that

ρ̄0 + ρ̄1 ln θT = ρ0 + ρ1 ln θT

58



References

Agostinelli, F. and M. Wiswall (2016a). Estimating the technology of children’s skill formation.

NBER Working Paper No. 22442.

Agostinelli, F. and M. Wiswall (2016b). Identification of dynamic latent factor models: The

implications of re-normalization in a model of child development. NBER Working Paper No.

22441.

Agostinelli, F. and M. Wiswall (2022). Estimating the technology of children’s skill formation.

NBER Working Paper No. 22442.

Aguirregabiria, V. and J. Suzuki (2014). Identification and counterfactuals in dynamic models

of market entry and exit. Quantitative Marketing and Economics 12, 267–304.

Anderson, T. W. and H. Rubin (1956). Statistical inference in factor analysis. In Proceedings

of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 5:

Contributions to Econometrics, Industrial Research, and Psychometry, Berkeley, Calif., pp.

111–150. University of California Press.

Attanasio, O., S. Cattan, E. Fitzsimons, C. Meghir, and M. Rubio-Codin (2019). Estimating the

production function for human capital: Results from a randomized control trial in Colombia.

NBER Working Paper No. 20965.

Attanasio, O., C. Meghir, and E. Nix (2020). Human Capital Development and Parental Invest-

ment in India. The Review of Economic Studies 87 (6), 2511–2541.

Attanasio, O., C. Meghir, E. Nix, and F. Salvati (2017). Human capital growth and poverty:

Evidence from Ethiopia and Peru. Review of Economic Dynamics 25, 234–259.

Aucejo, E. and J. James (2016). The path to college education: Are verbal skills more important

than math skills? RePEc Working Paper 1602.

Chiappori, P.-A., I. Komunjer, and D. Kristensen (2015). Nonparametric identification and esti-

mation of transformation models. Journal of Econometrics 188 (1), 22 – 39.

Cunha, F. (2011). Recent developments in the identification and estimation of production func-

tions of skills. Fiscal Studies 32 (2), 297–316.

Cunha, F. and J. Heckman (2007). The technology of skill formation. The American Economic

Review 97 (2), 31–41.

Cunha, F. and J. Heckman (2008). Formulating, identifying and estimating the technology of

cognitive and noncognitive skill formation. Journal of Human Resources 43 (4), 738–782.

Cunha, F. and J. Heckman (2009). The economics and psychology of inequality and human

development. Journal of the European Economic Association 7 (2), 320–364.

59



Cunha, F., J. Heckman, and S. Schennach (2010). Estimating the technology of cognitive and

noncognitive skill formation. Econometrica 78 (3), 883–931.

Daruich, D. (2018). The macroeconomic consequences of early childhood development policies.

FRB St. Louis Working Paper No. 2018-29.

Del Bono, E., J. Kinsler, and R. Pavan (2020). A note on the importance of normalizations in

dynamic latent factor models of skill formation. Working paper.

Embrey, I. (2019). On the benefits of normalization in production functions. Lancaster Economics

Department Working Paper No. 2019/0049.

Evdokimov, K. and H. White (2012). Some extensions of a lemma of kotlarski. Econometric

Theory 28 (4), 925–932.

Fiorini, M. and M. Keane (2014). How the allocation of children’s time affects cognitive and

noncognitive development. Journal of Labor Economics 32 (4), 787–836.

Freyberger, J. (2018). Nonparametric panel data models with interactive fixed effects. Review of

Economic Studies 85 (3), 1824–1851.

Gao, W. and M. Li (2019). Robust semiparametric estimation in panel multinomial choice models.

SSRN Working Paper No. 3282293.

Hamilton, J., D. Waggoner, and T. Zha (2007). Normalization in econometrics. Econometric

Reviews 26 (2–4), 221–252.

Heckman, J., R. Pinto, and P. Savelyev (2013, October). Understanding the mechanisms through

which an influential early childhood program boosted adult outcomes. American Economic

Review 103 (6), 2052–86.

Helmers, C. and M. Patnam (2011). The formation and evolution of childhood skill acquisition:

Evidence from India. Journal of Development Economics 95 (2), 252–266.

Hernández-Alava, M. and G. Popli (2017, Apr). Children’s development and parental input:

Evidence from the UK millennium cohort study. Demography 54 (2), 485–511.
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