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Abstract

An important class of structural models studies the determinants of skill formation and the
optimal timing of interventions. In this paper, I provide new identification results for these
models and investigate the effects of seemingly innocuous scale and location restrictions on
parameters of interest. To do so, I first characterize the identified set of all parameters
without these additional restrictions and show that important policy-relevant parameters
are point identified under weaker assumptions than commonly used in the literature. The
implications of imposing standard scale and location restrictions depend on how the model
is specified, but they generally impact the interpretation of parameters and can affect coun-
terfactuals. Importantly, with the popular CES production function, commonly used scale
restrictions are overidentifying and lead to biased estimators. Consequently, simply changing
the units of measurements of observed variables might yield ineffective investment strate-
gies and misleading policy recommendations. I show how existing estimators can easily be
adapted to solve these issues. As a byproduct, this paper also presents a general and formal

definition of when restrictions are truly normalizations.
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1 Introduction

Structural models are key tools of economists to simulate changes in the economic environ-
ment and evaluate and design policies. An important class of such models deals with skill and
human capital formation. Human capital formation is a main part of many structural models
and is an important driver of economic growth and inequality (Murphy and Topel 2016),
which makes policies targeting skill formation particularly critical. This growing literature
estimates production functions of various skills of children, studies how past skills, parental
skills, and investments affect future skills, and links the skills to outcomes in adulthood. The
results can, among others, be used to inform about determinants of skill formation, timing of
investments in children, and optimal interventions for disadvantaged children. Following the
seminal papers of Cunha and Heckman (2008) and Cunha, Heckman, and Schennach (2010),
a large literature has studied different specifications with data sets from several countries
and has provided many important policy recommendations.

A major challenge in these models is that skills are not directly observable, do not have
a natural scale, and can only be approximated through measurements, such as test scores.
Identification in these models is often achieved in two steps, where the distribution of skills
is identified from the measurements in the first step and the production function is identified
in the second step (see for example Cunha et al. (2010), Attanasio, Meghir, Nix, and Salvati
(2017), and Attanasio, Meghir, and Nix (2020)). To obtain point identification in the first
step, researchers have to impose restrictions that fix the unknown scales and locations of the
skills. While these restrictions are necessary to achieve point identification when studying
the first step in isolation, it is not clear whether these restrictions are needed once all other
restrictions of the model are combined.

In this paper, I present a new identification analysis for skill formation models and in-
vestigates the consequences of the seemingly innocuous normalizations. Instead of providing
sufficient conditions for point identification using multi-step arguments, I start by pooling
all parts of the model and characterize the identified set of all parameters without the scale
and location restrictions. This characterization highlights which parameters are point or
partially identified and how additional restrictions affect the identified set. In particular, I
show that many key features are invariant to these restrictions, are point identified without
them, and are identified under weaker assumptions than commonly used in the literature
(e.g. they do not require age-invariant measures). These identification results hold for both
parametric and nonparametric versions of the model.

The exact implications of imposing the additional scale and location restrictions on pa-



rameters and counterfactuals depends on how the model is specified and what the object of
interest is. Specifically, a restriction could be a harmless normalization with one production
function, but could impose strong assumptions with a different one. 1 therefore analyze
two popular specifications, namely the trans-log production function (which includes Cobb-
Douglas as a special case) and the CES production function. For the trans-log production
function, it turns out that standard scale and location restrictions are necessary for point
identification of the parameters and are not overidentifying, but still affect production func-
tion parameter estimates and certain counterfactuals. Since these restrictions are often
arbitrary and depend on the units of measurement of the data, the estimates are hard to
interpret, difficult to compare across different studies, and policy recommendations based on
such counterfactuals can be misleading. For the CES case with different parametric assump-
tions, I show that commonly used scale restrictions are in fact overidentifying and imposing
them severely impacts the estimated parameters of the model. Simply changing the units
of measurements of one of the skill measures (for example from years to months) can then
lead to different estimated dynamics in the model, it can change the estimated persistence
of skills and the effects of parental investments on skill formation, and it can yield ineffective
optimal investment strategies.

Next to providing new identification results, I also show how existing estimators can
easily be adapted to solve these overidentification issues. While many parameters are still
hard to interpret, the estimates can then be used to calculate point identified features and
counterfactuals that are invariant to the scale and location restrictions and the units of
measurement of the data. I illustrate the results using Monte Carlo simulations based on
the setup and the estimator of Attanasio et al. (2020).

In this particular class of models, the scale and location restrictions are generally not
innocuous normalizations. More generally, to the best of my knowledge, there does not
exist a formal definition of when a restriction is truly a normalization, and I provide one
in this paper. Clearly, any restriction on the parameters of the model affects some of the
estimates and thus, a normalization has to be with respect to some function or feature of
interest, such as a subvector or a counterfactual prediction. I therefore define a restriction
as a normalization if imposing the restriction does not change the identified set of a function
of interest. I illustrate this definition in a simple and commonly used example and use it as
a basis for the analysis of skill formation models.

A broader takeaway from this paper is that researchers need to carefully check if imposed

restrictions are in fact normalizations, which is especially important in structural models



where identification proceeds in multiple steps and supposedly innocuous restrictions in one
step might have unintended consequences in subsequent steps. Researchers should then focus
on features of the model that are invariant to the restrictions. If estimates depend the these
types of restrictions, as in skill formation models, resulting policy recommendations might
be ineffective and results might not be comparable across different studies. In addition, the
estimates might then not be suitable ingredients to calibrate larger models, as in Daruich
(2018), unless one can argue that all main conclusions are unaffected by the restrictions.

Literature: Following the influential work of Cunha and Heckman (2008) and Cunha
et al. (2010), a growing literature has emerged that studies the development of latent
variables. For example, Helmers and Patnam (2011) study the determinants of children’s
cognitive and non-cognitive skills using Indian data, Fiorini and Keane (2014) investigate
how the time allocation affects cognitive and noncognitive development using Australian
data, Attanasio et al. (2020) and Attanasio et al. (2017) estimate the effects of health and
cognition on human capital with data from India and Ethiopia and Peru, respectively, and
Attanasio et al. (2019) study which early childhood intervention led to significant gains in
cognitive and socio-emotional skills among disadvantaged children using Colombian data.
The literature has provided many important insights regarding the nature of persistence,
dynamic complementarities between the different components, and the optimal targeting of
interventions. See also Cunha and Heckman (2007), Cunha and Heckman (2009), Cunha
(2011), Heckman, Pinto, and Savelyev (2013), Aucejo and James (2016), Herndndez-Alava
and Popli (2017), and references therein.

In these papers, the measurement system for the latent variables is assumed to have a
factor structure. Thus, to identify the joint distribution, certain restrictions on the measure-
ment system are needed, which typically fix the scale and the location of the latent variables,
either in the first period or by “anchoring” them to an adult outcome. In particular, Cunha
and Heckman (2008) study a model where the production function is log-linear. Their iden-
tification arguments proceed in two steps. First, they identify the distribution of skills using
the measurement system and an adult outcome anchor to obtain a well-defined scale and
location. Using that distribution, they identify the production function in the second step.
They also discuss which parameters depend on the anchor or its units of measurement. In
this particular model, I illustrate that certain policy relevant parameters, such as optimal
investment sequences, can depend on the specific scales and the specific units of the mea-
surements of the observed variables. Additionally, I show that a set of key features that

can be expressed in terms of quantiles of the skill distribution are identified under weaker



restrictions on the measures and the production function and without anchoring the skills or
fixing their scales. Importantly, I also provide formal identification results for other produc-
tion technologies, such as the popular CES production function, where standard restrictions
have much more severe consequences. In particular, certain scale restrictions are not needed
for identification and imposing them through an initial period normalization or through
anchoring leads to inconsistent estimators.

Common restrictions are to fix the scales and locations of each latent factor in each
time period by setting parameters in the measurement system.! If they are set to the
same values in all time periods, Agostinelli and Wiswall (2016a, 2016b, 2022) refer to this
restriction as an age-invariance assumption (see Assumption 3(a) for a formal definition or
Definition 1 of Agostinelli and Wiswall (2022)). In an important contribution, Agostinelli and
Wiswall (2016a, 2016b, 2022) show that imposing this age-invariance assumption can yield
overidentifying restrictions and inconsistent estimators when the production function has a
known scale and location. They then discuss relaxations of popular production functions
when the measures are age-invariant. They also show that without age-invariant measures,
production function restrictions can still yield point identification (see Corollary 1 below and
the related discussion). In both cases, they still impose scale and location restrictions on
the skill measures in the first period, and they argue that these restrictions are necessary for
point identification. While this is true for the trans-log production function that they use in
their empirical application, these scale restrictions are not required for the CES production
function and imposing them yields inconsistent estimators. Moreover, I show that, in general,
production function parameters and certain counterfactuals can depend on the specific scales
and the specific units of the measurements of the data. With restrictions on the production
function, I also show that changing the scales of the skills can yield misleading dynamics.
Again, many key parameters are invariant to these restrictions, including age-invariance, and
are in fact point identified without them.

In independent research, Del Bono, Kinsler, and Pavan (2020) have recently shown that,

IFor example, Cunha and Heckman (2008) and Cunha et al. (2010) set the scale of the first skill measure
to 1 in each period - see the discussion around equations (7) — (8) of Cunha and Heckman (2008) and the
first paragraph on page 891 of Cunha et al. (2010). In addition, as discussed in footnote 17 of Cunha and
Heckman (2008) and in the first paragraph on page 891 of Cunha et al. (2010), their identification results
rely on either setting one of the location parameters to 0 in each time period or setting the mean of the skill
to 0 in each time period. These restrictions have also been used in subsequent papers such as Attanasio
et al. (2020). The nonparametric identification results in Cunha et al. (2010) impose analogous restrictions

in their Assumption (v) of Theorem 2.



with a trans-log production function, anchored treatment effects are invariant to scale and
location normalizations and are identified without age-invariance. They also show in simu-
lations that standard restrictions lead to biased estimated treatment effects with the CES
production function. In the trans-log case, these results are similar to those in part 4 of
Theorem 2 below. While their proof is specific to the trans-log production function with a
log-linear measurement error system, my arguments can easily be extended to other cases.
In addition, my proof highlights that only skill measures in the first period are needed to
identify anchored treatment effects, which reduces the data requirements considerably and
consequently weakens the assumptions. I also consider additional policy-relevant features.
For the CES case, I show that standard restrictions are overidentifying, which explains why
their estimated treatment effects are biased, and describe how existing estimators can be
adapted to solve this issue.

Consequences resulting from normalizations have been discussed in various contexts. In
factor models, it is well known that restrictions are needed for point identification (see e.g.
Anderson and Rubin (1956), Madansky (1964), Joreskog and Goldberger (1975), and Cunha
and Heckman (2008), among many others). Williams (2020) shows that these restrictions are
not needed for identification of certain features, such as the variance decomposition. I com-
bine a factor model with a production function, which can reduce the number of additional
restrictions needed. Many papers have argued that important features should not depend
on normalizations and have shown this in specific examples, such as Freyberger (2018) and
Komarova et al. (2018). Similar to this paper, but in a very different context, Aguirregabiria
and Suzuki (2014) show that restrictions that were thought of as a normalization can lead
to biases. Kalouptsidi, Scott, and Souza-Rodrigues (2020) show that certain counterfactuals
in dynamic discrete choice models are identified, even when the model is not nonparametri-
cally identified. Rubio-Ramirez, Waggoner, and Zha (2010) define a normalization in vector
autoreggressive models to pin down unidentified signs; see end of Section 2 for more de-
tails. Matzkin (1994, 2007) discusses several examples of normalizations that can be used to
achieve point identification, some of which are motivated by economic theory, but she does
not present a definition. Lewbel (2019) provides an informal discussion of normalizations,
which is conceptually very similar to the formal definition below.

When normalizing restrictions are needed to point identify the parameters, there are often
different ways of imposing them when estimating the model. Clever choice can then yield
particularly convenient restrictions on the parameter space (as in Gao and Li (2019)) or even

faster rates of convergence (as in Chiappori, Komunjer, and Kristensen (2015)). See also



Hamilton, Waggoner, and Zha (2007) for a discussion on estimation with normalizations. In
skill formation models, different restrictions can also yield observationally equivalent models
with identical counterfactual, but certain specification might be easier to estimate.
Structure: In Section 2, I provide a formal definition of a normalization and a very
simple illustrative example. Section 3 contains the identification analysis of different skill
formation models and the Monte Carlo simulations. Section 4 extends some of the parametric

identification results to a more general nonparametric setting.

2 Normalizations

I begin by providing a formal definition of a normalization, which will serve as a basis for
the analysis of skill formation models. Suppose we have a model where 6, € © denotes
the true values of the parameters and © is the parameter space. Here 6y could denote
the coefficients in a regression model or the parameters in a skill formation model. If the
model is nonparametric or semiparametric, 6y could also contain unknown functions. Let
Z contain all observed random variables, such as Y and X, with distribution P(Z). For
any # € ©, the model generates a joint distribution of the data Z, denoted by P(Z,8).
Since the model is assumed to be correctly specified, the true distribution of Z is P(Z, 6,).
The model typically contains certain assumptions, such as functional form or independence
assumptions, but suppose that so far none of the normalizations are imposed. We then say
that 61,60, € © are observationally equivalent if they generate the same distribution of the
data: P(Z,0,) = P(Z,05). The identified set for 6y is

0y = {0 €0 :P(Z,0) = P(Z)}

We say that 6y is point identified if © is a singleton. Let g(fy) be a (potentially vector-

valued) function of interest, such as a counterfactual. The identified set for g(fy) is
Oy =1{9(0) : 0 € Op}.

We say that g(6p) is point identified if O, is a singleton. Notice that if 6y is point identified,
then g(6y) is point identified as well, but g(6y) could be point identified even if 6y is not.

In models with normalizations, © is typically not a singleton. A normalization is a
restriction of the form 6 € ©y, where Oy C O is a known set that does not depend on the
distribution of the data. Hence, the normalization restricts the feasible values of #, such as
setting one element to 1. I define a restriction to be normalization if it does not change the

identified set for some function g(6y).



Definition 1. The restriction § € Oy is a normalization with respect to g(6y) if for all
90 €O
{9(0) : 60 € ©NON} ={g(0) : 0 € O}

Typically, ©9 N Oy is a singleton. That is, we achieve point identification once the

normalizations are imposed. Since 0y € Oq, the definition then requires that

{9(00)} ={9(0) : 0 € ©NON} ={g(0) : 6 € O}

and thus that g(fy) is point identified, even without a normalization. In addition, since
normalizations are often arbitrary, y is usually not in ©y N ©x. Thus, the restriction
0 € Oy is not a normalization with respect to 6y, but it can be a normalization with respect
to particular functions of interest. Moreover, the restriction can be a normalization for some
function and not for others. Hence, researchers need to argue that normalizations hold with
respect to all functions of interest, such as all counterfactuals in a structural model.

The definition also implies that a normalization cannot impose any additional overiden-
tifying restrictions in the sense that ©y N Oy # () if ©¢ # (). That is, if there is a parameter
that is consistent with the model and the distribution of the data without the normalizations,
then there is also such a parameter with the normalizations.

As a very simple illustrative example, consider the probit model
Y = 1(Bo1 + Bo2X > U),

where var(X) > 0, U | X ~ N(up,02) and 02 > 0. The true parameter vector is 0y =
(Boas Boz, to,00)" and Z = (Y, X). Now notice that

P(Yzl|X:m):®<50’1_’u0+ﬁ0’2x),

0o 0o

where ® denotes the standard normal cdf. Since var(X) > 0, BO;—;”O and B;)—OQ are point

identified. It is also well known and easy to see that

@0:{9€R4:51—/~L:50,1—M0 and@:@}

o (oy) o (o)

because all values in O imply the same joint distribution of (Y, X).
Since 6y is not point identified, a common normalization in this setting is ¢ = 0 and

o = 1. Using the previous notation, this means that O = R? x 0 x 1 and

O, NOy = <M’@7071>‘

0o 00

8



Clearly, this restriction is not a normalization with respect to 8y 1 or £y 2, which are typically
not objects of interest. In fact, in general 6y ¢ ©y N Oy unless g = 0 and o9 = 1. However,
this restriction is a normalization with respect to (potentially counterfactual) probabilities

PY=1|X=2)=0 <50,1—M0 —|—60’2a:>

0o 0o

or, when X is continuous, marginal effects

Dpy = x == Do (i B

ox ox oL oL

Clearly, these features are point identified even though 6, is not. While this is a very simple
example, it highlights that normalizations affect parameters and, to get interpretable results,
one needs to focus on features that are invariant to the restrictions. See also Lewbel (2019)
for additional discussion on normalizations and some other examples.

In the context of vector autoregressive models, Rubio-Ramirez, Waggoner, and Zha (2010)
define a normalization as a restriction on the parameter space that pins down unidentified
signs of coefficients. These restrictions are imposed in addition to other assumptions, such
as long run restrictions. Just like above, their normalizations do not impose additional
overidentifying restrictions. Unlike my definition, it is not clear whether these restrictions
are without loss of generality in the sense that they do not affect functions of interest. If
they do, they play the same role as the other assumptions and one would have to argue why

they reasonable, in contrast to normalizations as defined in Definition 1.

3 Skill formation models

I now illustrate the subtle issues that can arise from normalizations in a model of skill
formation. I start by introducing the general model and then discuss the results for the

trans-log and the CES production functions.

3.1 Model

Let 6, denote skills at time ¢t and let I; be investment at time t.2 We are interested in the
roles of investment and past skills in the development of future skills. A complication in
this setting is that skills and investment are not directly observed and we instead observe

measurements of them, denoted by Zy ., and Zj .

2In the previous section @ contains all parameters of the model. In what follows, I adapt the common

notation in the skill formation literature and let 6; denote the skills.



Specifically, I consider the model:

(1) Oupr = [0, I, 0y, 779,t) t=0,...,T -1
(2) Zotm = Hotm + Mot N0 + Egtm t=0,...,T,m=1,2
(3) Zrgm = Prgm T Aregm Il +Erem t=0,....T—1,m=1,2

The first equation describes the production technology with a production function f that
depends on skills and investment at time ¢, a parameter vector d;, and an unobserved shock
ng+. The second and the third equations describe the measurement system for unobserved
(latent) skills ; and unobserved investment I, respectively. Observed investment is a special
case with gy ¢ =0, A\rym =1, and €74, = 0 for all m and ¢ in which case Z;;,, = In ;.
Next, I introduce two additional equations to allow for endogenous investment and to
anchor the measures at an adult outcome. If investment is exogenous, in the sense that 7y, is
independent of I;, then these additional equations are not needed for the main identification

results. That is, let

(4) ].n_[t = Bot‘f—ﬁltlnet—’—BQtlnn—f—Tnﬂg t:O,,T—l
(5) Q = p0+p11D(9T+T]Q
Here Y; is parental income (or another exogenous variable that affects investment) and @
is an adult outcome, such as earnings or education. An adult outcome does not necessarily
have to be available and we can simply use a skill measure in period 7" in its place.

To summarize, the observed variables are the measures {Zytm, Z1.t.m tt—o... Tm=12, iD-
come {Y;}/ ;' and the adult outcome @, but we neither observe skills {6;}7, nor invest-
ment {I;}7°;. We also do not observe the measurement errors {€0.tm» E1.t.m Jt=0,... Tym=12

or Mg, {7717t}tT:_01, and 7g. The parameters of the model are {igsm, Notm}i—o. Tm=12,

{i,tm At Fe—o,.. m—1m=1.2, {0t }i—0' {Bots But, Bar =o', and (po, p1)-
In the following analysis, I consider two forms for the production technology (1). These

two forms have been the most extensively used and estimated in the empirical literature:

e Trans-log:

N1 =a +vie b + v In Iy + 3 In O In I + 194
with 6, = (ar, Y1e, V2t Vat)-
e Constant Elasticity of Substitution (CES):
Orir = (Ve + Y2 I7*) "7 exp(np,)
with & = (71¢, Yat, 0, V).

10



When v3; = 0, the trans-log reduces to the Cobb-Douglas production function. I now

state several additional assumptions that are common in the literature.

Assumption 1.

(a) {{eo.t;m ti=o,..Tm=12: {E1.t.:m }1=0....T—1.m=1,2, N } are jointly independent and independent
of {{0,},, {I,}]='} conditional on {V;}/ ;.

(b) All random variables have bounded first and second moments.
(c) Elegtm) = Elert,m] = Eleg] = 0 for all ¢t and m.
(d) Notm, Arem # 0 for all ¢ and m.

(e) Forallt € {0,...,T}, cov(Inby,In ;) # 0 for some s € {0,...,T—1} or cov(Iln 0y, In b) #
0 for some s € {0,...,T}\t . Forall t € {0,1,...,T — 1}, cov(In I;,In6;) # 0 for some
s€{0,...,T} or cov(In Iy, In I5) # 0 for some s € {0,...,T — 1}\t.

(f) For all t and m the real zeros of the characteristic functions of €y, ,, are isolated and
are distinct from those of its derivatives. Identical conditions hold for the characteristic

functions of €74, and 7g.
(g) The support of (6, I;,Y;) includes an open ball in R? for all .

(h) E[Tle,t | O, Yt] =0 and E[U@,t | 9t7771,t7 YZ] = K1t for all ¢.

Part (a) imposes common independence assumptions on the measurement errors. Im-
portantly, I; and 6, are not independent and I; may be endogenous and contemporaneously
correlated with 7g,. Part (b) is a standard restriction, part (c) is needed because all mea-
surement equations contain an intercept, and part (d) ensures that the skills actually affect
the measures. Part (e) requires that skills and investment are correlated in some time pe-
riods. Sufficient conditions are that cov(Inf;,1,In6;) # 0 and cov(InI;q1,In1;) # 0 for all
t. Notice that under parts (a) and (d) zero covariances of the latent variables are identified
because, for example, cov(Inb;,In6s) = 0 if and only if cov(Zg,1, Zps1) = 0. Notice that I
only require two measures in each period. One can drop this assumption by assuming that
three measures are available. Part (f) contains weak regularity conditions needed for non-
parametric identification of the distributions of skills and investment and that hold for most
common distributions. Part (g) is a mild support condition that ensures sufficient variation

of (0;,1;,Y;) and rules out colinarity. Part (h) implies that Y; can serve as an instrument
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and identification can be achieved using a control function argument as in Attanasio et al.
(2020). Linearity of the conditional mean function can be relaxed and one could allow for
more flexible functional forms. Exogenous investment is a special case with x; = 0.

Under parts (a)—(e) of Assumption 1 we get the following result.

Lemma 1. Suppose that parts (a)-(e) of Assumption 1 hold. Then the joint distribution of

({ro,em + MmO tio, . mom=12, {ftrem + Arem In Lt fio, . 7—1,m=1,2, po + p1 1n07)
is point identified conditional on {Y;}1 .

The proof follows from an extension of Kotlarski’s Lemma due to Evdokimov and White
(2012). Lemma 1 shows that under Assumption 1, we can identify the distribution of a linear
combination of the log skills and investments, but not the parameters in equations (1)—(3),
and therefore also not ;. Below I discuss additional assumptions, which have been used
in the literature, to achieve point identification of two sets of parameters: (i) the primitive
parameters of the model (1)—~(5): {ft6,tm, Ao,t.m ft=0,... Tom=1,2, {11,t;m> AL tm Ft=0,...T—1,m=1,2,
{6323 {Bot, B, Bt b iy, and (po, p1) and (ii) “policy relevant” parameters, such as how
changes in investment or income affect the adult outcome (). I consider various combinations
of assumptions and I discuss whether certain restrictions are normalizations.

There are two separate issues concerning identification and normalizations in this model.
First, the previous literature has focused on sufficient conditions for point identification,
which includes scale and location restrictions. However, it is unclear whether these restric-
tions are necessary or potentially overidentifying. If so, estimators are generally inconsis-
tent. Second, once we have a set of restrictions that is non-overidentifying, it is important
to understand which parameters and features are invariant to arbitrary scale and location
restrictions. Although the implications in the CES case are more interesting, I start with
the more transparent trans-log case in which only the second issue arises. As pointed out
before, whether or not a restriction is a normalization depends on the specifics of the model,

and we will see that certain parameters are invariant in some settings, but not in others.

3.2 Trans-log production function

In this section I consider the production function
In 9t+1 = + Y1t In Qt —+ Yot In It + Y3t In Qt In It + No.t-
I now introduce additional assumptions that are commonly used in the literature.

12



Assumption 2. \gpo; =1 and pgo1 = 0.

Assumption 3.

(@) Ngt1 = Ager11 and pge1 = pori1q forall t =0,..., 7 —1

(b) ag =0and vy + 7y + v =1 forall t =0,..., 7 — 1.
Assumption 4.

(@) Are1=Arer1a =1land prsq = prepn =0forallt=0,...,7 —2.
(b) Bor =0 and By + foy =1 forallt =0,...,7 — 1.

Assumption 2 is usually thought of as a normalization, which is commonly imposed since
log skills are only identified up to scale and location. Here, I impose the restrictions on
the first measure, which is without loss of generality. Instead of fixing the intercept and
the slope coefficient in equation (2) for ¢ = 0, one could set py = 0 and p; = 1 and thus
“anchor” the skills at ). Assumption 2 anchors the skills at Zyo 1, but analogous issues
discussed here also arise with anchoring at @) (see Section 3.2.4 for details). Without such
an assumption, the parameters are not point identified. Assumptions 3(a) states that the
skill measures are age-invariant (using the terminology of Agostinelli and Wiswall (2022) —
see their Definition 1 and footnote 10). Assumption 3 imposes restrictions on the technology,
which Agostinelli and Wiswall (2022) refer to as a known scale and location assumption in a
more general context. Assumption 4(a) states that an investment measure is age-invariant.
Assumption 4(b) imposes constant return to scale of investment, which is a strong assumption
needed for point identification of all parameters without age-invariant investment measures.
If investment was observed (i.e. Zr;,, = Inl;), Assumption 4(a) is automatically satisfied.

I now characterize the identified set of the primitive parameters of the model under As-
sumption 1 only. I then discuss point identification under different combinations of Assump-
tions 1 — 4 and show that several policy relevant parameters are invariant to the restrictions
in Assumption 2 and are in fact point identified under Assumption 1 only. Finally, I illus-
trate why Assumption 2 is in general not a normalization for the primitive parameters of

the model as well as some policy relevant parameters.

3.2.1 Identification

Define

t,1

~ A
0, = exp(ﬂe,t,l)et .

13



so that

In6, — Ho¢1
Ao,t1

"

Ing, = Hot1 + o1 1n 0, and Inf, =

Similarly, define

ALLt,1

jt = exp(ﬂl,t,l)ft

We can then rewrite the trans-log production technology in terms of 6; and I, because

In ét—‘,—l — Mop+1,1 In ét — Mot In ]~t — M1t In ét — Mot In jt — M1t
\ = ay +71t)\— ’Y2t)\— V3t 3 \ + Mot
0,t+1,1 0.t,1 It1 0.t,1 It1
After rearranging, we can then rewrite equations (1)—(5) as
(6) ln§t+1 = &t+’?1tln§t—’—"]V/Qtln_[t+;}’/3tlnétln.[t+ﬁ9,t tZO,,T—l
(7) Zgﬂg’m = ﬂG,t,m -+ S\G,t,m In ét —+ €0,t,;m t= g0 v ,T, m = 1, 2
(8) ZI,t,m = ﬂ[,t,m+5\1,t,mlnft+51,t,m = 7"'7T_17m:172
9) Inl, = BOt+Bltlnét+62tlnY;f+ﬁl,t t=0,..., T -1
(10) Q = pot+pmlnbdr+ng
where the parameters in equation (6) are
_ A,i41,1 Ab,t+1,1 A6,t41,1
r = No41,10¢ + [o 1411 — Mo 11t — HreaYet + ~——~ M1, 110,613t
Aot ALt Y RROIAR!
By = Ao t41,1 <’y ,uf,t,17 ) oy = A6,t+41,1 (7 Me,mfy ) Hay = Ao t4+1,1 y
= |7t — 3ty Yot = —~—— | Yot — 3t ], V3t = v v V3t
Ao, ALt ALt Aot Aot 1AL

with unobservable 7y = Ag 41170, the parameters in the measurement equations (7) and

(8) are figs1 = 0, 5\9,1&,1 =1, pfirg1 =0, 5\I,t,l =1,
S\G,t,m = )\Q,t,m/)\G,t,b ﬁe,t,l = Hot,;m — ()\O,t,m/)\ﬁ,t,l) Heo 1

S\I,t,m = A/ A1, Bren = frgm — (Aam/Are1) fret,

the parameters in equation (9) are

Bot = Maafor + trea — rea/Nos)toga B, B = o1/ Mos1)Bres  Bor = AP

with unobservable 7 ; = Ar: 171+, and the parameters in equation (10) are

P1HG,t1 ~ PN
kil =
Aot

Po = pPo —

The following theorem characterizes the identified set of the finite dimensional parameters
of the model.
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Theorem 1. Suppose Assumption 1 holds.

1. The identified set of {Me,t,ma)\G,t,m}t:O,...,T,mzl,27 {Mf,t,m,)\I,t,m}t:O,...,T—Lm:Lz, (P07P1)7
{Bot, Buts Bar Y=gty {as, Yue, Yor, Y3t b imy' consists of all vectors that yield the same values
Of {ﬂ@,t,ma 5\G,t,m}t:O,...,T,m:l,Q7 {ﬂ[,t,ma S\I,t,m}t:O,...,Tfl,mZIQ; (ﬁOaﬁl); {BOUBH;B%}?:}};

and {as, Y1¢, Yor, V3¢ f1—g S the true parameter vectors.

2. Let {figs1, N1 o, {1, Maatieg, be fized constants with Mg 41, Are1 # 0 for allt. If

in addition { g1, MNs1 Yo = {Houas Nowa bimo and {pirs1, Area Yo = {Br.e1, Mad bico

then the identified set is a singleton.

The identified set of the primitive parameters consists of all parameters that satisfy cer-
tain restrictions, analogous to the probit model. The second part of the theorem shows that
the parameters are indeed not point identified and that the sources of underidentification
are the ambiguous scales and locations of skills and investments. For example, without addi-
tional assumptions, equations (1)—(5) and (6)—(10) are observationally equivalent. That is,
we cannot distinguish between the skills 6, and 0, and the corresponding production function
parameters. Even if investment was observed (and pr.; = 0 for all t), we can then only
identify (Ap.t+1.m/No.t.m) Y1, but not Agsn, and vy separately. Hence, we cannot distinguish
between changes in the quality of the measurements (Agti1.m/Aotm) and changes in the
technology (71¢). For example, suppose Zp;,, are test scores. We then cannot distinguish
between all kids getting smarter or tests becoming easier. Similarly, we can at best identify
~vo¢ up to scale, even with observed investment.

The theorem implies that all parameters are point identified under additional assump-
tions. These results are an extension of those in Agostinelli and Wiswall (2022), who assume

that investment is exogenous (in the sense that it is uncorrelated with 7).

Corollary 1. Suppose Assumptions 1 and 2 hold. Suppose either Assumption 3(a) or As-
sumption 3(b) holds. Suppose either Assumption 4(a) or Assumption 4(b) holds. Then all

parameters are point identified.

The corollary also immediately implies that Assumptions 3(a) and 3(b) together impose
overidentifying restrictions, which is one of the main contributions of Agostinelli and Wiswall
(2016a, 2016b, 2022). As shown in Theorem 6 in the appendix and illustrated in examples
below, if the model is correctly specified and Assumption 1 holds, then there always exist
sets of parameters which are consistent with the data and satisfy Assumptions 1, 2, either

3(a) or 3(b), and either 4(a) or 4(b). These different sets of assumptions therefore impose
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no additional restrictions on the distribution of observables. While different sets of assump-
tions yield point identification and are observationally equivalent, the estimated primitive
parameters are usually quite different, as illustrated in Section 3.2.3. Moreover, these results
show that the primitive parameters are not point identified without Assumption 2. However,

setting the initial scales and locations to other values changes the identified values.

3.2.2 Invariant parameters

I now show that while the primitive parameters are generally very sensitive to the scale and
location restrictions, many objects of interest are in fact point identified under Assumption
1 only. To state the formal results below, let Q,(6;) be the a quantile of the skill distribution
at time ¢ and let Fi,,,,)(-) be the distribution function of log-skills at time ¢ 4 1.

Theorem 2. Suppose Assumption 1 holds.

1. ky Oyt (at + 71 InQq, (Qt) +v2¢ In Qo (It) + 3¢ In Qo (91&) In Qa, (It) + Qa3 (779,15)) is point
identified for all oy, as, a3 € (0,1).

2. Let
InI,(Y) = Bot + B1eIn Qo (6;) + Bor InY + Qo (M14)
Then Fing, ., (ar+71¢ 10 Qa, (0r) +72e In L (Y) + 93 In Qu, (0) In L (Y) + Qay (00,)) s point
identified for all oy, as,ay € (0,1).

3. P(Q < q0s=Quy(05).{li = Quo, (1) }i=0's {0t = Qusu (0.4) }1=,") s point identified
for all oy, {any, as } 2 € (0,1).

4. P(Q < q|0s=Q40,),{Ys =wy}') is point identified for all a € (0,1).

5. Suppose Assumption 3(a) also holds. Then vi; + v3: In Qo (1;) is point identified for all
a and P(yy + vs In Iy < q) is point identified for all ¢ € R.

The function Fiyg,,, (@ +71¢ In Qu, () +7v2e In Quy (It) +y3¢ In Quy (01) In Qay (1) + Qg (6,4))
measures how changes in investment changes the relative standing in the skill distribution.
For example, consider an individual with 6; = Qo1(6;), which means that the person is in
the lowest 10% of the skill distribution at time ¢. Then, given investment I, = Qg.25(/;) and

a median production function shock, 7y = Qo.5(ne.t),

Fino,y (ar + 71 In Qo1 (6) + vor In Qo.25(Ly) + Y3 In Qo1 (0;) In Qo.25(11) + Qos5(n6,4))
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tells us the relative rank (or the quantile) in the skill distribution at time ¢ + 1. Also notice
that if investment was directly observed, then Q,,(I;) is also identified and belongs to a
particular level of investment. We can then for example vary the investment quantile/level
and analyze how future skill ranks are affected. Once we know the rank at time ¢+ 1 and fix
investment and production function shock quantiles in that period, we can also identify the
skill rank at time t 4+ 2. Thus, using these recursive arguments, we can identify the relative
rank in period T, given investment and production function shock quantiles in all period and
a skill quantile in period 0. We could then make statements such as: “A person at lowest
10% of the initial skill distribution would end up at the 30% quantile in the final period skill
distribution with a particular investment strategy and median production function shocks.”
These statements would allow comparisons of investment strategies, assessing heterogeneous
effects, and choosing optimal investments depending on the skill level. Instead of fixing the

unobservables at particular quantiles, we can also average them out because

/ Flug,,y (@t + 716 0 Qay (05) + vt In Qo (1r) + ¥3: I Qay (04) In Qo (1) + Qg (M0,) ) dxs
= /En9t+1 (ar + v In Qo (0) + Yo In Quy (1) + v3 In Qo (01) In Qo (1) + U)ane,t (n)

which is then point identified for all ay, as € (0,1).

One advantage 