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Introduction

In structural models researcher often distinguish between two types of

restrictions: assumptions and normalizations.

A normalization typically fixes one or more parameters of the model to

achieve point identification.

When is a restriction a normalization?

A normalization typically

affects many parameters of the model, but

should be without loss of generality.

Example: Probit model where

Y = 1(β1 + β2X ≥ U),

U | X ∼ N(µ, σ2) and we set µ = 0 and σ = 1.
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Introduction

A restriction might not affect parameters of interests, such as marginal

effects in the probit model.

I define a restriction to be a normalization if it does not affect the

identified set of a function of interest.

Implications:

The definition typically holds for some functions, but not others.

Whether a restriction is a normalization depends on the model.

If a normalization achieves point identification, then the function

should be identified without the restriction.
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Motivating example: skill formation models

Estimate production functions of skills or other latent variables.

How do skills evolve over time?

What is the best timing of interventions?

Data only contains noisy measures of skills without natural scales.

Identification and estimation often proceed in two steps:

Identify the joint distribution of skills from the measurements.

Use that distribution to identify the production function.

First step requires scale and location restrictions, but the production

function imposes additional parametric assumptions.

Are these restrictions (1) over-identifying and (2) normalization with

respect to which parameters and counterfactuals?
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Introduction

I derive the identified sets without normalizations for different

production functions under baseline assumptions, which shows:

Without additional restrictions, the model is not identified, but

many important features are.

Additional restrictions needed depends on the production function.

Trans-log: standard restrictions are not over-identifying.

⇒ Select an element of the identified set.

⇒ Parameters and certain counterfactuals are not invariant.

CES: standard scale restrictions are over-identifying.

⇒ Estimates are biased - results depend on units of measurement.

⇒ Need less restrictions and a more flexible estimator.
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Outline

In this talk:

Introduction

Simplified skill formation models

Trans-log

CES

Conclusion

Additional results in the paper:

Normalization definition and examples

Full skill formation model and technical details.

Monte Carlo simulations
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Skill formation models

Let θt denote skills at time t and let It be investment at time t.

I consider the model:

θt+1 = f (θt , It , δt , ηθ,t) t = 0, . . . ,T − 1

Zθ,t,m = µθ,t,m + λθ,t,m ln θt + εθ,t,m t = 0, . . . ,T ,m = 1, 2, 3

ZI ,t,m = µI ,t,m + λI ,t,m ln It + εI ,t,m t = 0, . . . ,T − 1,m = 1, 2, 3

Q = α0 + α1 ln θT + ηQ

ln It = β0,t + β1,t ln θt + β2,t lnYt + ηI ,t t = 0, . . . ,T − 1

We observe Zθ,t,m, ZI ,t,m, Yt , and Q, but not θt and It .

Other unobervables: ηθ,t , εθ,t,m, εI ,t,m, ηI ,t , and ηQ .

Parameters: δt , µθ,t,m, λθ,t,m, µI ,t,m, λI ,t,m, βt , and α.
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Skill formation models

Let θt denote skills at time t and let It be investment at time t.

Simplified model:

θt+1 = f (θt , It , δt) t = 0, . . . ,T − 1

Zt = µt + λt ln θt + εt t = 0, . . . ,T

Q = α0 + α1 ln θT + ηQ

We observe {Zt}Tt=0,{It}T−1t=0 and Q, but not {θt , εt}Tt=0 and ηQ .

Trans-log:

ln θt+1 = at + γ1t ln θt + γ2t ln It + γ3t ln θt ln It

Constant Elasticity of Substitution (CES):

θt+1 = (γ1tθ
σt
t + γ2t I

σt
t )

ψt
σt

Nonparametric model in the paper.
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Skill formation models

The model consists of

θt+1 = f (θt , It , δt) t = 0, . . . ,T − 1

Zt = µt + λt ln θt + εt t = 0, . . . ,T

Q = α0 + α1 ln θT + ηQ

To isolate the main issues, I assume that (ε0, . . . , εT , η) are independent

of (I0, . . . , IT−1, θ0, . . . , θT ) and that the joint distribution is known.

Easy to show: The joint distribution of

(µ0 + λ0 ln θ0, . . . , µT + λT ln θT , α0 + α1 ln θT )

is identified conditional on (I0, . . . , IT−1), but δt , µt , and λt are not.

Characterize identified set and discuss additional restrictions.
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Trans-log production function

First consider

ln θt+1 = at + γ1t ln θt + γ2t ln It + γ3t ln θt ln It

Zt = µt + λt ln θt + εt

Q = α0 + α1 ln θT + ηQ

Main idea: Rewrite the model in terms of ln θ̃t = µt + λt ln θt .

We can only identify certain combinations of parameters, such as

λt+1

λt
γ1t , λt+1

(
γ2t −

µt

λt
γ3t

)
,

λt+1

λt
γ3t

We cannot distinguish between changes in the quality of the

measurements (λt+1/λt) and changes in the technology (γ1t).

Even when γ3t = 0, we can only identify λt+1γ2t .
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Trans-log production function

When

ln θt+1 = at + γ1t ln θt + γ2t ln It + γ3t ln θt ln It

three additional assumptions are commonly used in the literature.

Assumption 2

µ0 = 0 and λ0 = 1.

Assumption 3

at = 0 and γ1t + γ2t + γ3t = 1 for all t = 0, . . . ,T − 1.

Assumption 4

λt = λt+1 and µt = µt+1 for all t = 0, . . . ,T − 1.
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Trans-log production function

All parameters are point identified under the baseline assumption and

either

Assumption 2 and 3 or

Assumption 2 and 4

Restrictions are not overidentifying and observationally equivalent.

Many estimated parameters are not invariant to the restriction λ0 = 1

or changes in the units of measurement of the data, including

the elasticity of investment and

counterfactuals that depend on the level of skills, such as

investment sequences that maximize E (θT ).
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Invariant features

Some features that are identified without Assumptions 2 – 4 are:

Fln θt+1(at + γ1t lnQα(θt) + γ2t ln I + γ3t lnQα(θt) ln I )

P(Q ≤ q | I0, . . . , IT−1, θ0 = Qα(θ0))

With these features, we can calculate:

Investment sequence that maximizes the skill rank in the final

period or a feature of the distribution of the adult outcome.

Calculate skill ranks or distributions of Q for different

counterfactual investments to compare means, variances, and

heterogeneous effects.
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CES production function

Consider

θt+1 = (γ1tθ
σt
t + γ2t I

σt
t )ψt/σt

Zt = µt + λt ln θt + εt

Q = α0 + α1 ln θT + ηQ

Many parameters are point identified, including {λt , σt}T−1t=0 .

Point identification under various restrictions:

Fix µ0 and use age-invariant µt or γ1t + γ2t = 1.

Parameters depend on the set of restrictions and µ0.

Setting λ0 = 1 yields inconsistent estimators.

Same features as before are identified under the baseline assumption.

Features can be estimated using a more flexible estimator.

21



Monte Carlo simulations

Setup adapted from Attanasio, Meghir, and Nix (2019) with T = 2 and

θt+1 = At (γtθ
σt
t + (1− γt) Iσt

t )
1
σt exp(ηθ,t)

ln It = β1t ln θt + β2t lnY + ηI ,t

Three (linear) measurements each for ln θt and ln It and the loading of

the first measure is equal to 1 in all periods.

Simulate (ln θ0, lnY ) from a normal mixture and generate skills and

investment recursively.

Estimation in AMN proceeds in three steps:

(0) Fit a normal mixture distribution using all measures.

(1) Estimate distr. of skills, investments, and Y using restrictions.

(2) Take a sample and estimate the production function by NLLS.
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Monte Carlo simulations

In this setting
λI,t,1

λθ,t,1
and

λθ,t+1,1

λθ,t,1
are identified.

Only need to normalize λI ,0,1, which I set to 1.

It is common to set λθ,t,1 = 1 and λI ,t,1 = 1 for all t.

To estimate the scales, we need to relax the CES specification and use

θt+1 =

(
γ1tθ

σt
t + γ2t I

σt
λI,t,1

t

) 1
σt

Generated data by

Z̃θ,t,1 = log(θt) + εθ,t,1

but estimate the model using

Zθ,t,1 = sθZ̃θ,t,1 = sθ log(θt) + sθεθ,t,1.

Parameters will be affected but with my estimator invariant features,

including elasticities in this setting, are not.
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Elasticities
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Optimal investment
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Different investment strategies

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26



Different investment strategies
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Conclusion

The paper provides a formal definition of a normalization.

Whether or not a restriction is a normalization depends on the

model specification and the object of interest.

Researchers should argue that a restriction is truly a normalization.

In skill formation models, seemingly innocuous restrictions are not

normalizations and can affect parameters and counterfactuals.

Simply changing the units of measurements can yield ineffective

investment strategies and misleading policy recommendations.

Key features are invariant to these restrictions, are identified

under weaker assumptions, and provide robust policy implications.
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Normalization

θ0 ∈ Θ is the true parameter and Θ is the parameter space.

Let Z contain all observed random variables, such as Y and X .

Model with θ ∈ Θ generates a joint distribution P(Z , θ).

θ1, θ2 ∈ Θ are observationally equivalent if P(Z , θ1) = P(Z , θ2).

The identified set for θ0 is

Θ0 = {θ ∈ Θ : P(Z , θ) = P(Z , θ0)}.

The identified set for g(θ0) is

Θg0 = {g(θ) : θ ∈ Θ0}.

g(θ0) could be point identified even if θ0 is not.
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Normalization

A normalization is a restriction of the form θ ∈ ΘN , where ΘN ⊆ Θ is a

known set.

Typically, Θ0 ∩ΘN 6= Θ0 and θ0 /∈ ΘN .

Definition

The restriction θ ∈ ΘN is a normalization with respect to g(θ0) if

for any θ0 ∈ Θ

{g(θ) : θ ∈ Θ0 ∩ΘN} = {g(θ) : θ ∈ Θ0}.

Typically, Θ0 ∩ΘN is a singleton. The definition then requires that

g(θ0) is point identified, even without a normalization.
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Simple example

Consider the probit model

Y = 1(β0,1 + β0,2X ≥ U),

where var(X ) > 0, U | X ∼ N(µ0, σ
2
0) and σ2

0 > 0.

We have θ0 = (β0,1, β0,2, µ0, σ0)′ and Z = (Y ,X ) and since

P(Y = 1 | X = x) = Φ

(
β0,1 − µ0

σ0
+
β0,2
σ0

x

)
,

we get

Θ0 =

{
θ ∈ R4 :

β1 − µ
σ

=
β0,1 − µ0

σ0
and

β2
σ

=
β0,2
σ0

}
.

Common restriction is µ = 0 and σ = 1 so that ΘN = R2 × 0× 1 and

Θ0 ∩ΘN =

(
β0,1 − µ0

σ0
,
β0,2
σ0

, 0, 1

)
.

Normalization with respect to marginal effects, but not (β0,1, β0,2).
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Asssumptions

Assumption 1

a (ε0, . . . , εT , ηQ) are independent of (I0, . . . , IT−1, θ0, . . . , θT ).

b The joint distribution of (ε0, . . . , εT , ηQ) is known and the cf

of (ε0, . . . , εT , ηQ) only has isolated zeros.

c λt > 0 for all t.
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Trans-log production function

First consider

ln θt+1 = at + γ1t ln θt + γ2t ln It + γ3t ln θt ln It .

and define ln θ̃t = µt + λt ln θt .

Here I set at , µt , and α0 to 0 and focus on the scale issue.

We can then rewrite the production function in terms of θ̃t and get

ln θ̃t+1 = γ̃1t ln θ̃t + γ̃2t ln It + γ̃3t ln θ̃t ln It

Zt = ln θ̃t + εt

Q = α̃1 ln θ̃T + ηQ

where

γ̃1t =
λt+1

λt
γ1t , γ̃2t = λt+1γ2t , γ̃3t =

λt+1

λt
γ3t , α̃1 =

α1

λT
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Anchor

All results are qualitatively identical when we anchor the skills at Q.

Let Q = α0 + α1 ln θT + ηQ .

Impose α0 = 0 and α1 = 1 instead of µ0 = 0 and λ0 = 1.

35



CES production function

Consider

θt+1 = (γ1tθ
σt
t + γ2t I

σt
t )ψt/σt

Zt = µt + λt ln θt + εt

Q = α0 + α1 ln θT + ηQ

Define θ̃t = exp(µt)θ
λt
t or ln θ̃t = µt + λt ln θt .

We can then rewrite

θ̃t+1 =
(
γ̃1t θ̃

σt/λt

t + γ̃2t I
σt
t

)λt+1ψt/σt

Zt = ln θ̃t + εt

Q = α̃0 + α̃1 ln θ̃T + ηQ

where the transformed parameters have complicated expressions.
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CES production function

Theorem 3

Suppose Assumption 1 holds.

a {λt , σt}T−1t=0 and {ψt}T−2t=0 are point identified.

b Some complicated functions are point identified as well.

c Observationally equivalence of any two sets of parameters.

Corollary 2

Suppose Assumption 1 holds.

a {µt}T−1t=0 , {γ1t , γ2t}T−2t=1 are identified if γ1t + γ2t = 1 and µ0 = 0.

b {µt}T−1t=0 , {γ1t , γ2t}T−2t=1 are identified if µt = µt+1 and µ0 = 0.

c Full identification if λT is identified, e.g. if λt = λt+1 or ψt = 1.
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CES production function

In the trans-log case, setting λ0 = 1 or λ0 = 10 yields different

estimated parameters, but observationally equivalent models.

In the CES case, λ0 is point identified and we cannot fix it.

When we set λ0 = 1, which is a standard restriction, multiplying all

measures by a constant affects everything.

The exact bias depends on how the parameters are estimated.

To obtain point identification, we need to fix µ0 and this restriction

affects certain features, depending on the other assumptions.

Again, anchoring yields similar conclusions.

Same features as before are identified under Assumption 1 only.
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Invariant features for the CES production function

Theorem 4

Suppose Assumption 1 holds. Then the following features are identified.

1 Fln θt+1((γ1tθ
σt
t + γ2t I

σt )ψt/σt )

2 P(Q ≤ y | I0, . . . , IT−1, θ0 = Qα(θ0))

3
∫
P(Q ≤ y | I0, . . . , IT−1, θ0 = θ)fθ0(θ)dθ

4 Sequences of investment that maximize known strictly increasing

functions of ln θT subject to θ0 = Qα(θ0) and
∑T−1

t=1 It = c .

5 Sequences of investment that maximize linear functions of

E (ln θT ) or E (θT ) subject to
∑T−1

t=1 It = c .
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