Normalizations and misspecification

 in skill formation modelsJoachim Freyberger
University of Bonn

September, 2022

Introduction

- In structural models researcher often distinguish between two types of restrictions: assumptions and normalizations.
- A normalization typically fixes one or more parameters of the model to achieve point identification.
- When is a restriction a normalization?
- A normalization typically
- affects many parameters of the model, but
- should be without loss of generality.
- Example: Probit model where

$$
\begin{array}{r}
Y=1\left(\beta_{1}+\beta_{2} X \geq U\right), \\
U \mid X \sim N\left(\mu, \sigma^{2}\right) \text { and we set } \mu=0 \text { and } \sigma=1 .
\end{array}
$$

Introduction

- A restriction might not affect parameters of interests, such as marginal effects in the probit model.
- I define a restriction to be a normalization if it does not affect the identified set of a function of interest.
- Implications:
- The definition typically holds for some functions, but not others.
- Whether a restriction is a normalization depends on the model.
- If a normalization achieves point identification, then the function should be identified without the restriction.

Motivating example: skill formation models

- Estimate production functions of skills or other latent variables.
- How do skills evolve over time?
- What is the best timing of interventions?
- Data only contains noisy measures of skills without natural scales.
- Identification and estimation often proceed in two steps:
- Identify the joint distribution of skills from the measurements.
- Use that distribution to identify the production function.
- First step requires scale and location restrictions, but the production function imposes additional parametric assumptions.
- Are these restrictions (1) over-identifying and (2) normalization with respect to which parameters and counterfactuals?

Introduction

- I derive the identified sets without normalizations for different production functions under baseline assumptions, which shows:
- Without additional restrictions, the model is not identified, but many important features are.
- Additional restrictions needed depends on the production function.

Introduction

- I derive the identified sets without normalizations for different production functions under baseline assumptions, which shows:
- Without additional restrictions, the model is not identified, but many important features are.
- Additional restrictions needed depends on the production function.
- Trans-log: standard restrictions are not over-identifying.
\Rightarrow Select an element of the identified set.
\Rightarrow Parameters and certain counterfactuals are not invariant.

Introduction

- I derive the identified sets without normalizations for different production functions under baseline assumptions, which shows:
- Without additional restrictions, the model is not identified, but many important features are.
- Additional restrictions needed depends on the production function.
- Trans-log: standard restrictions are not over-identifying.
\Rightarrow Select an element of the identified set.
\Rightarrow Parameters and certain counterfactuals are not invariant.
- CES: standard scale restrictions are over-identifying.
\Rightarrow Estimates are biased - results depend on units of measurement.
\Rightarrow Need less restrictions and a more flexible estimator.

Outline

In this talk:

- Introduction
- Simplified skill formation models
- Trans-log
- CES
- Conclusion

Additional results in the paper:

- Normalization definition and examples
- Full skill formation model and technical details.
- Monte Carlo simulations

Literature

- Normalizations:
- Factor models: Anderson and Rubin (1956), Madansky (1964), Cunha and Heckman (2008), Williams (2020), ...
- General discussions: Matzkin $(1994,2007)$, Lewbel (2019), ...
- Invariance: Aguirregabiria and Suzuki (2014), Komarova, Sanches, and Junior (2017), Kalouptsidi, Scott, and Souza-Rodrigues (2020) ...
- Estimation: Hamilton, Waggoner, and Zha (2007), Chiappori, Komunjer, and Kristensen (2015), Gao and Li (2019), ...
- Skill formation:
- Cunha and Heckman (2008), Cunha, Heckman, and Schennach (2010)
- Applications: Helmers and Patnam (2011), Fiorini and Keane (2014), Attanasio, Meghir, and Nix (2019), Aucejo and James (2019), ...
- Specification issues: Agostinelli and Wiswall (2016, 2017, 2020), Del Bono, Kinsler, and Pavan (2020). ...

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- I consider the model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}, \eta_{\theta, t}\right) & & t=0, \ldots, T-1 \\
Z_{\theta, t, m} & =\mu_{\theta, t, m}+\lambda_{\theta, t, m} \ln \theta_{t}+\varepsilon_{\theta, t, m} & & t=0, \ldots, T, m=1,2,3 \\
Z_{l, t, m} & =\mu_{l, t, m}+\lambda_{l, t, m} \ln I_{t}+\varepsilon_{l, t, m} & & t=0, \ldots, T-1, m=1,2,3 \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & & \\
\ln I_{t} & =\beta_{0, t}+\beta_{1, t} \ln \theta_{t}+\beta_{2, t} \ln Y_{t}+\eta_{l, t} & & t=0, \ldots, T-1
\end{aligned}
$$

- We observe $Z_{\theta, t, m}, Z_{l, t, m}, Y_{t}$, and Q, but not θ_{t} and I_{t}.
- Other unobervables: $\eta_{\theta, t}, \varepsilon_{\theta, t, m}, \varepsilon_{l, t, m}, \eta_{l, t}$, and η_{Q}.
- Parameters: $\delta_{t}, \mu_{\theta, t, m}, \lambda_{\theta, t, m}, \mu_{I, t, m}, \lambda_{I, t, m}, \beta_{t}$, and α.

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- I consider the model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}, \eta_{\theta, t}\right) & & t=0, \ldots, T-1 \\
Z_{\theta, t, m} & =\mu_{\theta, t, m}+\lambda_{\theta, t, m} \ln \theta_{t}+\varepsilon_{\theta, t, m} & & t=0, \ldots, T, m=1,2,3 \\
Z_{l, t, m} & =\mu_{l, t, m}+\lambda_{l, t, m} \ln I_{t}+\varepsilon_{l, t, m} & & t=0, \ldots, T-1, m=1,2,3 \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & & \\
\ln I_{t} & =\beta_{0, t}+\beta_{1, t} \ln \theta_{t}+\beta_{2, t} \ln Y_{t}+\eta_{I, t} & & t=0, \ldots, T-1
\end{aligned}
$$

- We observe $Z_{\theta, t, m}, Z_{l, t, m}, Y_{t}$, and Q, but not θ_{t} and I_{t}.
- Other unobervables: $\eta_{\theta, t}, \varepsilon_{\theta, t, m}, \varepsilon_{l, t, m}, \eta_{l, t}$, and η_{Q}.
- Parameters: $\delta_{t}, \mu_{\theta, t, m}, \lambda_{\theta, t, m}, \mu_{I, t, m}, \lambda_{I, t, m}, \beta_{t}$, and α.

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- I consider the model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}\right) & & t=0, \ldots, T-1 \\
Z_{\theta, t, m} & =\mu_{\theta, t, m}+\lambda_{\theta, t, m} \ln \theta_{t}+\varepsilon_{\theta, t, m} & & t=0, \ldots, T, m=1,2,3 \\
Z_{l, t, m} & =\mu_{I, t, m}+\lambda_{l, t, m} \ln I_{t}+\varepsilon_{l, t, m} & & t=0, \ldots, T-1, m=1,2,3 \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & &
\end{aligned}
$$

- We observe $Z_{\theta, t, m}, Z_{l, t, m}$, and Q, but not θ_{t} and I_{t}.
- Other unobervables: $\varepsilon_{\theta, t, m}, \varepsilon_{l, t, m}$, and η_{Q}.
- Parameters: $\delta_{t}, \mu_{\theta, t, m}, \lambda_{\theta, t, m}, \mu_{I, t, m}, \lambda_{l, t, m}$, and α.

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- I consider the model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}\right) & & t=0, \ldots, T-1 \\
Z_{\theta, t, m} & =\mu_{\theta, t, m}+\lambda_{\theta, t, m} \ln \theta_{t}+\varepsilon_{\theta, t, m} & & t=0, \ldots, T, m=1,2,3 \\
Z_{l, t, m} & =\mu_{l, t, m}+\lambda_{l, t, m} \ln I_{t}+\varepsilon_{l, t, m} & & t=0, \ldots, T-1, m=1,2,3 \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & &
\end{aligned}
$$

- We observe $Z_{\theta, t, m}, Z_{l, t, m}$, and Q, but not θ_{t} and I_{t}.
- Other unobervables: $\varepsilon_{\theta, t, m}, \varepsilon_{l, t, m}$, and η_{Q}.
- Parameters: $\delta_{t}, \mu_{\theta, t, m}, \lambda_{\theta, t, m}, \mu_{I, t, m}, \lambda_{l, t, m}$, and α.

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- I consider the model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}\right) \\
Z_{\theta, t, m} & =\mu_{\theta, t, m}+\lambda_{\theta, t, m} \ln \theta_{t}+\varepsilon_{\theta, t, m}
\end{aligned}
$$

$$
t=0, \ldots, T-1
$$

$$
t=0, \ldots, T, m=1,2,3
$$

$$
Q=\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q}
$$

- We observe $Z_{\theta, t, m}, I_{t}$, and Q, but not θ_{t}.
- Other unobervables: $\varepsilon_{\theta, t, m}$ and η_{Q}.
- Parameters: $\delta_{t}, \mu_{\theta, t, m}, \lambda_{\theta, t, m}$, and α.

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- I consider the model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}\right) \\
Z_{\theta, t, m} & =\mu_{\theta, t, m}+\lambda_{\theta, t, m} \ln \theta_{t}+\varepsilon_{\theta, t, m}
\end{aligned}
$$

$$
t=0, \ldots, T-1
$$

$$
t=0, \ldots, T, m=1,2,3
$$

$$
Q=\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q}
$$

- We observe $Z_{\theta, t, m}, I_{t}$, and Q, but not θ_{t}.
- Other unobervables: $\varepsilon_{\theta, t, m}$ and η_{Q}.
- Parameters: $\delta_{t}, \mu_{\theta, t, m}, \lambda_{\theta, t, m}$, and α.

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- I consider the model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}\right) \\
Z_{\theta, t} & =\mu_{\theta, t}+\lambda_{\theta, t} \ln \theta_{t}+\varepsilon_{\theta, t} \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q}
\end{aligned}
$$

$$
t=0, \ldots, T-1
$$

$$
t=0, \ldots, T
$$

- We observe $Z_{\theta, t, m}, I_{t}$, and Q, but not θ_{t}.
- Other unobervables: $\varepsilon_{\theta, t}$ and η_{Q}.
- Parameters: $\delta_{t}, \mu_{\theta, t}, \lambda_{\theta, t}$, and α.

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- Simplified model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, l_{t}, \delta_{t}\right) & & t=0, \ldots, T-1 \\
Z_{t} & =\mu_{t}+\lambda_{t} \ln \theta_{t}+\varepsilon_{t} & & t=0, \ldots, T \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & &
\end{aligned}
$$

- We observe $\left\{Z_{t}\right\}_{t=0}^{T},\left\{I_{t}\right\}_{t=0}^{T-1}$ and Q, but not $\left\{\theta_{t}, \varepsilon_{t}\right\}_{t=0}^{T}$ and η_{Q}.

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- Simplified model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, l_{t}, \delta_{t}\right) & & t=0, \ldots, T-1 \\
Z_{t} & =\mu_{t}+\lambda_{t} \ln \theta_{t}+\varepsilon_{t} & & t=0, \ldots, T \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & &
\end{aligned}
$$

- We observe $\left\{Z_{t}\right\}_{t=0}^{T},\left\{I_{t}\right\}_{t=0}^{T-1}$ and Q, but not $\left\{\theta_{t}, \varepsilon_{t}\right\}_{t=0}^{T}$ and η_{Q}.
- Trans-log:

$$
\ln \theta_{t+1}=a_{t}+\gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t}
$$

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- Simplified model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, l_{t}, \delta_{t}\right) & & t=0, \ldots, T-1 \\
Z_{t} & =\mu_{t}+\lambda_{t} \ln \theta_{t}+\varepsilon_{t} & & t=0, \ldots, T \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & &
\end{aligned}
$$

- We observe $\left\{Z_{t}\right\}_{t=0}^{T},\left\{I_{t}\right\}_{t=0}^{T-1}$ and Q, but not $\left\{\theta_{t}, \varepsilon_{t}\right\}_{t=0}^{T}$ and η_{Q}.
- Trans-log:

$$
\ln \theta_{t+1}=a_{t}+\gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t}
$$

- Constant Elasticity of Substitution (CES):

$$
\theta_{t+1}=\left(\gamma_{1 t} \theta_{t}^{\sigma_{t}}+\gamma_{2 t} I_{t}^{\sigma_{t}}\right)^{\frac{\psi_{t}}{\sigma_{t}}}
$$

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- Simplified model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}\right) & & t=0, \ldots, T-1 \\
Z_{t} & =\mu_{t}+\lambda_{t} \ln \theta_{t}+\varepsilon_{t} & & t=0, \ldots, T \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & &
\end{aligned}
$$

- We observe $\left\{Z_{t}\right\}_{t=0}^{T},\left\{I_{t}\right\}_{t=0}^{T-1}$ and Q, but not $\left\{\theta_{t}, \varepsilon_{t}\right\}_{t=0}^{T}$ and η_{Q}.
- Trans-log:

$$
\ln \theta_{t+1}=a_{t}+\gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t}
$$

- Constant Elasticity of Substitution (CES):

$$
\theta_{t+1}=\left(\gamma_{1 t} \theta_{t}^{\sigma_{t}}+\gamma_{2 t} I_{t}^{\sigma_{t}}\right)^{\frac{\psi_{t}}{\sigma_{t}}}
$$

- Nonparametric model in the paper.

Skill formation models

- The model consists of

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}\right) & & t=0, \ldots, T \\
Z_{t} & =\mu_{t}+\lambda_{t} \ln \theta_{t}+\varepsilon_{t} & & t=0, \ldots, T \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & &
\end{aligned}
$$

- To isolate the main issues, I assume that $\left(\varepsilon_{0}, \ldots, \varepsilon_{T}, \eta\right)$ are independent of $\left(I_{0}, \ldots, I_{T-1}, \theta_{0}, \ldots, \theta_{T}\right)$ and that the joint distribution is known.
- Easy to show: The joint distribution of

$$
\left(\mu_{0}+\lambda_{0} \ln \theta_{0}, \ldots, \mu_{T}+\lambda_{T} \ln \theta_{T}, \alpha_{0}+\alpha_{1} \ln \theta_{T}\right)
$$

is identified conditional on $\left(I_{0}, \ldots, I_{T-1}\right)$, but δ_{t}, μ_{t}, and λ_{t} are not.

- Characterize identified set and discuss additional restrictions.

Trans-log production function

- First consider

$$
\begin{aligned}
\ln \theta_{t+1} & =a_{t}+\gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t} \\
Z_{t} & =\mu_{t}+\lambda_{t} \ln \theta_{t}+\varepsilon_{t} \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q}
\end{aligned}
$$

- Main idea: Rewrite the model in terms of $\ln \tilde{\theta}_{t}=\mu_{t}+\lambda_{t} \ln \theta_{t}$.

Trans-log production function

- First consider

$$
\begin{aligned}
\ln \theta_{t+1} & =a_{t}+\gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t} \\
Z_{t} & =\mu_{t}+\lambda_{t} \ln \theta_{t}+\varepsilon_{t} \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q}
\end{aligned}
$$

- Main idea: Rewrite the model in terms of $\ln \tilde{\theta}_{t}=\mu_{t}+\lambda_{t} \ln \theta_{t}$.
- We can only identify certain combinations of parameters, such as

$$
\frac{\lambda_{t+1}}{\lambda_{t}} \gamma_{1 t}, \quad \lambda_{t+1}\left(\gamma_{2 t}-\frac{\mu_{t}}{\lambda_{t}} \gamma_{3 t}\right), \quad \frac{\lambda_{t+1}}{\lambda_{t}} \gamma_{3 t}
$$

- We cannot distinguish between changes in the quality of the measurements $\left(\lambda_{t+1} / \lambda_{t}\right)$ and changes in the technology $\left(\gamma_{1 t}\right)$.
- Even when $\gamma_{3 t}=0$, we can only identify $\lambda_{t+1} \gamma_{2 t}$.

Trans-log production function

- When

$$
\ln \theta_{t+1}=a_{t}+\gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t}
$$

three additional assumptions are commonly used in the literature.

Assumption 2

$$
\mu_{0}=0 \text { and } \lambda_{0}=1 .
$$

Assumption 3

$$
a_{t}=0 \text { and } \gamma_{1 t}+\gamma_{2 t}+\gamma_{3 t}=1 \text { for all } t=0, \ldots, T-1 .
$$

Assumption 4

$\lambda_{t}=\lambda_{t+1}$ and $\mu_{t}=\mu_{t+1}$ for all $t=0, \ldots, T-1$.

Trans-log production function

- All parameters are point identified under the baseline assumption and either
- Assumption 2 and 3 or
- Assumption 2 and 4
- Restrictions are not overidentifying and observationally equivalent.
- Many estimated parameters are not invariant to the restriction $\lambda_{0}=1$ or changes in the units of measurement of the data, including
- the elasticity of investment and
- counterfactuals that depend on the level of skills, such as investment sequences that maximize $E\left(\theta_{T}\right)$.

Invariant features

- Some features that are identified without Assumptions 2-4 are:
- $F_{\ln \theta_{t+1}}\left(a_{t}+\gamma_{1 t} \ln Q_{\alpha}\left(\theta_{t}\right)+\gamma_{2 t} \ln I+\gamma_{3 t} \ln Q_{\alpha}\left(\theta_{t}\right) \ln I\right)$
- $P\left(Q \leq q \mid I_{0}, \ldots, I_{T-1}, \theta_{0}=Q_{\alpha}\left(\theta_{0}\right)\right)$
- With these features, we can calculate:
- Investment sequence that maximizes the skill rank in the final period or a feature of the distribution of the adult outcome.
- Calculate skill ranks or distributions of Q for different counterfactual investments to compare means, variances, and heterogeneous effects.

CES production function

- Consider

$$
\begin{aligned}
\theta_{t+1} & =\left(\gamma_{1 t} \theta_{t}^{\sigma_{t}}+\gamma_{2 t} I_{t}^{\sigma_{t}}\right)^{\psi_{t} / \sigma_{t}} \\
Z_{t} & =\mu_{t}+\lambda_{t} \ln \theta_{t}+\varepsilon_{t} \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q}
\end{aligned}
$$

- Many parameters are point identified, including $\left\{\lambda_{t}, \sigma_{t}\right\}_{t=0}^{T-1}$.
- Point identification under various restrictions:
- Fix μ_{0} and use age-invariant μ_{t} or $\gamma_{1 t}+\gamma_{2 t}=1$.
- Parameters depend on the set of restrictions and μ_{0}.
- Setting $\lambda_{0}=1$ yields inconsistent estimators.
- Same features as before are identified under the baseline assumption.
- Features can be estimated using a more flexible estimator.

Monte Carlo simulations

- Setup adapted from Attanasio, Meghir, and Nix (2019) with $T=2$ and

$$
\begin{aligned}
\theta_{t+1} & =A_{t}\left(\gamma_{t} \theta_{t}^{\sigma_{t}}+\left(1-\gamma_{t}\right) I_{t}^{\sigma_{t}}\right)^{\frac{1}{\sigma_{t}}} \exp \left(\eta_{\theta, t}\right) \\
\ln I_{t} & =\beta_{1 t} \ln \theta_{t}+\beta_{2 t} \ln Y+\eta_{I, t}
\end{aligned}
$$

- Three (linear) measurements each for $\ln \theta_{t}$ and $\ln I_{t}$ and the loading of the first measure is equal to 1 in all periods.
- Simulate $\left(\ln \theta_{0}, \ln Y\right)$ from a normal mixture and generate skills and investment recursively.
- Estimation in AMN proceeds in three steps:
(0) Fit a normal mixture distribution using all measures.
(1) Estimate distr. of skills, investments, and Y using restrictions.
(2) Take a sample and estimate the production function by NLLS.

Monte Carlo simulations

- In this setting $\frac{\lambda_{l, t, 1}}{\lambda_{\theta, t, 1}}$ and $\frac{\lambda_{\theta, t+1,1}}{\lambda_{\theta, t, 1}}$ are identified.
- Only need to normalize $\lambda_{I, 0,1}$, which I set to 1 .
- It is common to set $\lambda_{\theta, t, 1}=1$ and $\lambda_{l, t, 1}=1$ for all t.
- To estimate the scales, we need to relax the CES specification and use

$$
\theta_{t+1}=\left(\gamma_{1 t} \theta_{t}^{\sigma_{t}}+\gamma_{2 t} l_{t}^{\frac{\sigma_{t}}{\lambda_{l, t, 1}}}\right)^{\frac{1}{\sigma_{t}}}
$$

- Generated data by

$$
\tilde{Z}_{\theta, t, 1}=\log \left(\theta_{t}\right)+\varepsilon_{\theta, t, 1}
$$

but estimate the model using

$$
Z_{\theta, t, 1}=s_{\theta} \tilde{Z}_{\theta, t, 1}=s_{\theta} \log \left(\theta_{t}\right)+s_{\theta} \varepsilon_{\theta, t, 1} .
$$

- Parameters will be affected but with my estimator invariant features, including elasticities in this setting, are not.

Elasticities

Optimal investment

Different investment strategies

Different investment strategies

Conclusion

- The paper provides a formal definition of a normalization.
- Whether or not a restriction is a normalization depends on the model specification and the object of interest.
- Researchers should argue that a restriction is truly a normalization.
- In skill formation models, seemingly innocuous restrictions are not normalizations and can affect parameters and counterfactuals.
- Simply changing the units of measurements can yield ineffective investment strategies and misleading policy recommendations.
- Key features are invariant to these restrictions, are identified under weaker assumptions, and provide robust policy implications.

Skill formation models

- Let θ_{t} denote skills at time t and let I_{t} be investment at time t.
- I consider the model:

$$
\begin{aligned}
\theta_{t+1} & =f\left(\theta_{t}, I_{t}, \delta_{t}, \eta_{\theta, t}\right) & & t=0, \ldots, T-1 \\
Z_{\theta, t, m} & =\mu_{\theta, t, m}+\lambda_{\theta, t, m} \ln \theta_{t}+\varepsilon_{\theta, t, m} & & t=0, \ldots, T, m=1,2,3 \\
Z_{l, t, m} & =\mu_{l, t, m}+\lambda_{l, t, m} \ln I_{t}+\varepsilon_{l, t, m} & & t=0, \ldots, T-1, m=1,2,3 \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q} & & \\
\ln I_{t} & =\beta_{0, t}+\beta_{1, t} \ln \theta_{t}+\beta_{2, t} \ln Y_{t}+\eta_{l, t} & & t=0, \ldots, T-1
\end{aligned}
$$

- We observe $Z_{\theta, t, m}, Z_{l, t, m}, Y_{t}$, and Q, but not θ_{t} and I_{t}.
- Other unobervables: $\eta_{\theta, t}, \varepsilon_{\theta, t, m}, \varepsilon_{l, t, m}, \eta_{l, t}$, and η_{Q}.
- Parameters: $\delta_{t}, \mu_{\theta, t, m}, \lambda_{\theta, t, m}, \mu_{l, t, m}, \lambda_{l, t, m}, \beta_{t}$, and α.

Normalization

- $\theta_{0} \in \Theta$ is the true parameter and Θ is the parameter space.
- Let Z contain all observed random variables, such as Y and X.
- Model with $\theta \in \Theta$ generates a joint distribution $P(Z, \theta)$.
- $\theta_{1}, \theta_{2} \in \Theta$ are observationally equivalent if $P\left(Z, \theta_{1}\right)=P\left(Z, \theta_{2}\right)$.
- The identified set for θ_{0} is

$$
\Theta_{0}=\left\{\theta \in \Theta: P(Z, \theta)=P\left(Z, \theta_{0}\right)\right\} .
$$

- The identified set for $g\left(\theta_{0}\right)$ is

$$
\Theta_{g_{0}}=\left\{g(\theta): \theta \in \Theta_{0}\right\} .
$$

- $g\left(\theta_{0}\right)$ could be point identified even if θ_{0} is not.

Normalization

- A normalization is a restriction of the form $\theta \in \Theta_{N}$, where $\Theta_{N} \subseteq \Theta$ is a known set.
- Typically, $\Theta_{0} \cap \Theta_{N} \neq \Theta_{0}$ and $\theta_{0} \notin \Theta_{N}$.

Normalization

- A normalization is a restriction of the form $\theta \in \Theta_{N}$, where $\Theta_{N} \subseteq \Theta$ is a known set.
- Typically, $\Theta_{0} \cap \Theta_{N} \neq \Theta_{0}$ and $\theta_{0} \notin \Theta_{N}$.

Definition

The restriction $\theta \in \Theta_{N}$ is a normalization with respect to $g\left(\theta_{0}\right)$ if for any $\theta_{0} \in \Theta$

$$
\left\{g(\theta): \theta \in \Theta_{0} \cap \Theta_{N}\right\}=\left\{g(\theta): \theta \in \Theta_{0}\right\}
$$

Normalization

- A normalization is a restriction of the form $\theta \in \Theta_{N}$, where $\Theta_{N} \subseteq \Theta$ is a known set.
- Typically, $\Theta_{0} \cap \Theta_{N} \neq \Theta_{0}$ and $\theta_{0} \notin \Theta_{N}$.

Definition

The restriction $\theta \in \Theta_{N}$ is a normalization with respect to $g\left(\theta_{0}\right)$ if for any $\theta_{0} \in \Theta$

$$
\left\{g(\theta): \theta \in \Theta_{0} \cap \Theta_{N}\right\}=\left\{g(\theta): \theta \in \Theta_{0}\right\}
$$

- Typically, $\Theta_{0} \cap \Theta_{N}$ is a singleton. The definition then requires that $g\left(\theta_{0}\right)$ is point identified, even without a normalization.

Simple example

- Consider the probit model

$$
Y=1\left(\beta_{0,1}+\beta_{0,2} X \geq U\right),
$$

where $\operatorname{var}(X)>0, U \mid X \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$ and $\sigma_{0}^{2}>0$.

- We have $\theta_{0}=\left(\beta_{0,1}, \beta_{0,2}, \mu_{0}, \sigma_{0}\right)^{\prime}$ and $Z=(Y, X)$ and since

$$
P(Y=1 \mid X=x)=\Phi\left(\frac{\beta_{0,1}-\mu_{0}}{\sigma_{0}}+\frac{\beta_{0,2}}{\sigma_{0}} x\right)
$$

we get

$$
\Theta_{0}=\left\{\theta \in \mathbb{R}^{4}: \frac{\beta_{1}-\mu}{\sigma}=\frac{\beta_{0,1}-\mu_{0}}{\sigma_{0}} \text { and } \frac{\beta_{2}}{\sigma}=\frac{\beta_{0,2}}{\sigma_{0}}\right\} .
$$

- Common restriction is $\mu=0$ and $\sigma=1$ so that $\Theta_{N}=\mathbb{R}^{2} \times 0 \times 1$ and

$$
\Theta_{0} \cap \Theta_{N}=\left(\frac{\beta_{0,1}-\mu_{0}}{\sigma_{0}}, \frac{\beta_{0,2}}{\sigma_{0}}, 0,1\right) .
$$

- Normalization with respect to marginal effects, but not $\left(\beta_{0,1}, \beta_{0,2}\right)$.

Asssumptions

Assumption 1

(1
(0. The joint distribution of $\left(\varepsilon_{0}, \ldots, \varepsilon_{T}, \eta_{Q}\right)$ is known and the cf of $\left(\varepsilon_{0}, \ldots, \varepsilon_{T}, \eta_{Q}\right)$ only has isolated zeros.
($\lambda_{t}>0$ for all t.

Trans-log production function

- First consider

$$
\ln \theta_{t+1}=a_{t}+\gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t}
$$

and define $\ln \tilde{\theta}_{t}=\mu_{t}+\lambda_{t} \ln \theta_{t}$.

Trans-log production function

- First consider

$$
\ln \theta_{t+1}=a_{t}+\gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t}
$$

and define $\ln \tilde{\theta}_{t}=\mu_{t}+\lambda_{t} \ln \theta_{t}$.

- Here I set a_{t}, μ_{t}, and α_{0} to 0 and focus on the scale issue.

Trans-log production function

- First consider

$$
\ln \theta_{t+1}=\quad \gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t}
$$

and define $\ln \tilde{\theta}_{t}=\quad \lambda_{t} \ln \theta_{t}$.

- Here I set a_{t}, μ_{t}, and α_{0} to 0 and focus on the scale issue.

Trans-log production function

- First consider

$$
\ln \theta_{t+1}=\quad \gamma_{1 t} \ln \theta_{t}+\gamma_{2 t} \ln I_{t}+\gamma_{3 t} \ln \theta_{t} \ln I_{t}
$$

and define $\ln \tilde{\theta}_{t}=\quad \lambda_{t} \ln \theta_{t}$.

- Here I set a_{t}, μ_{t}, and α_{0} to 0 and focus on the scale issue.
- We can then rewrite the production function in terms of $\tilde{\theta}_{t}$ and get

$$
\begin{aligned}
\ln \tilde{\theta}_{t+1} & =\tilde{\gamma}_{1 t} \ln \tilde{\theta}_{t}+\tilde{\gamma}_{2 t} \ln I_{t}+\tilde{\gamma}_{3 t} \ln \tilde{\theta}_{t} \ln I_{t} \\
Z_{t} & =\ln \tilde{\theta}_{t}+\varepsilon_{t} \\
Q & =\tilde{\alpha}_{1} \ln \tilde{\theta}_{T}+\eta_{Q}
\end{aligned}
$$

where

$$
\tilde{\gamma}_{1 t}=\frac{\lambda_{t+1}}{\lambda_{t}} \gamma_{1 t}, \quad \tilde{\gamma}_{2 t}=\lambda_{t+1} \gamma_{2 t}, \quad \tilde{\gamma}_{3 t}=\frac{\lambda_{t+1}}{\lambda_{t}} \gamma_{3 t}, \quad \tilde{\alpha}_{1}=\frac{\alpha_{1}}{\lambda_{T}}
$$

Anchor

- All results are qualitatively identical when we anchor the skills at Q.
- Let $Q=\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q}$.
- Impose $\alpha_{0}=0$ and $\alpha_{1}=1$ instead of $\mu_{0}=0$ and $\lambda_{0}=1$.

CES production function

- Consider

$$
\begin{aligned}
\theta_{t+1} & =\left(\gamma_{1 t} \theta_{t}^{\sigma_{t}}+\gamma_{2 t} I_{t}^{\sigma_{t}}\right)^{\psi_{t} / \sigma_{t}} \\
Z_{t} & =\mu_{t}+\lambda_{t} \ln \theta_{t}+\varepsilon_{t} \\
Q & =\alpha_{0}+\alpha_{1} \ln \theta_{T}+\eta_{Q}
\end{aligned}
$$

- Define $\tilde{\theta}_{t}=\exp \left(\mu_{t}\right) \theta_{t}^{\lambda_{t}}$ or $\ln \tilde{\theta}_{t}=\mu_{t}+\lambda_{t} \ln \theta_{t}$.
- We can then rewrite

$$
\begin{aligned}
\tilde{\theta}_{t+1} & =\left(\tilde{\gamma}_{1 t} \tilde{\theta}_{t}^{\sigma_{t} / \lambda_{t}}+\tilde{\gamma}_{2 t} l_{t}^{\sigma_{t}}\right)^{\lambda_{t+1} \psi_{t} / \sigma_{t}} \\
Z_{t} & =\ln \tilde{\theta}_{t}+\varepsilon_{t} \\
Q & =\tilde{\alpha}_{0}+\tilde{\alpha}_{1} \ln \tilde{\theta}_{T}+\eta_{Q}
\end{aligned}
$$

where the transformed parameters have complicated expressions.

CES production function

Theorem 3

Suppose Assumption 1 holds.
(a) $\left\{\lambda_{t}, \sigma_{t}\right\}_{t=0}^{T-1}$ and $\left\{\psi_{t}\right\}_{t=0}^{T-2}$ are point identified.
(b) Some complicated functions are point identified as well.
(c) Observationally equivalence of any two sets of parameters.

Corollary 2

Suppose Assumption 1 holds.
(a) $\left\{\mu_{t}\right\}_{t=0}^{T-1},\left\{\gamma_{1 t}, \gamma_{2 t}\right\}_{t=1}^{T-2}$ are identified if $\gamma_{1 t}+\gamma_{2 t}=1$ and $\mu_{0}=0$.
(b) $\left\{\mu_{t}\right\}_{t=0}^{T-1},\left\{\gamma_{1 t}, \gamma_{2 t}\right\}_{t=1}^{T-2}$ are identified if $\mu_{t}=\mu_{t+1}$ and $\mu_{0}=0$.
(c) Full identification if λ_{T} is identified, e.g. if $\lambda_{t}=\lambda_{t+1}$ or $\psi_{t}=1$.

CES production function

- In the trans-log case, setting $\lambda_{0}=1$ or $\lambda_{0}=10$ yields different estimated parameters, but observationally equivalent models.
- In the CES case, λ_{0} is point identified and we cannot fix it.
- When we set $\lambda_{0}=1$, which is a standard restriction, multiplying all measures by a constant affects everything.
- The exact bias depends on how the parameters are estimated.
- To obtain point identification, we need to fix μ_{0} and this restriction affects certain features, depending on the other assumptions.
- Again, anchoring yields similar conclusions.
- Same features as before are identified under Assumption 1 only.

Invariant features for the CES production function

Theorem 4

Suppose Assumption 1 holds. Then the following features are identified.
(1) $F_{\ln \theta_{t+1}}\left(\left(\gamma_{1 t} \theta_{t}^{\sigma_{t}}+\gamma_{2 t} I^{\sigma_{t}}\right)^{\psi_{t} / \sigma_{t}}\right)$
(2) $P\left(Q \leq y \mid I_{0}, \ldots, I_{T-1}, \theta_{0}=Q_{\alpha}\left(\theta_{0}\right)\right)$
(3) $\int P\left(Q \leq y \mid I_{0}, \ldots, I_{T-1}, \theta_{0}=\theta\right) f_{\theta_{0}}(\theta) d \theta$
(4) Sequences of investment that maximize known strictly increasing functions of $\ln \theta_{T}$ subject to $\theta_{0}=Q_{\alpha}\left(\theta_{0}\right)$ and $\sum_{t=1}^{T-1} I_{t}=c$.
(5) Sequences of investment that maximize linear functions of $E\left(\ln \theta_{T}\right)$ or $E\left(\theta_{T}\right)$ subject to $\sum_{t=1}^{T-1} I_{t}=c$.

