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Introduction

@ In structural models researcher often distinguish between two types of

restrictions: assumptions and normalizations.

@ A normalization typically fixes one or more parameters of the model to

achieve point identification.
@ When is a restriction a normalization?

@ A normalization typically
o affects many parameters of the model, but

o should be without loss of generality.

@ Example: Probit model where
Y =1(81 + 52X > U),
U| X ~ N(u,0?) and we set 4 =0 and 0 = 1.



Introduction

@ A restriction might not affect parameters of interests, such as marginal

effects in the probit model.

@ | define a restriction to be a normalization if it does not affect the

identified set of a function of interest.
@ Implications:
o The definition typically holds for some functions, but not others.

o Whether a restriction is a normalization depends on the model.

o If a normalization achieves point identification, then the function

should be identified without the restriction.



Motivating example: skill formation models

@ Estimate production functions of skills or other latent variables.
o How do skills evolve over time?

o What is the best timing of interventions?

(]

Data only contains noisy measures of skills without natural scales.

(]

Identification and estimation often proceed in two steps:
o lIdentify the joint distribution of skills from the measurements.

o Use that distribution to identify the production function.

(]

First step requires scale and location restrictions, but the production

function imposes additional parametric assumptions.

@ Are these restrictions (1) over-identifying and (2) normalization with

respect to which parameters and counterfactuals?



Introduction
@ | derive the identified sets without normalizations for different
production functions under baseline assumptions, which shows:

o Without additional restrictions, the model is not identified, but

many important features are.

o Additional restrictions needed depends on the production function.



Introduction

@ | derive the identified sets without normalizations for different

production functions under baseline assumptions, which shows:

o Without additional restrictions, the model is not identified, but

many important features are.
o Additional restrictions needed depends on the production function.
@ Trans-log: standard restrictions are not over-identifying.
= Select an element of the identified set.

= Parameters and certain counterfactuals are not invariant.



Introduction

@ | derive the identified sets without normalizations for different

production functions under baseline assumptions, which shows:

o Without additional restrictions, the model is not identified, but

many important features are.
o Additional restrictions needed depends on the production function.
@ Trans-log: standard restrictions are not over-identifying.
= Select an element of the identified set.
= Parameters and certain counterfactuals are not invariant.
@ CES: standard scale restrictions are over-identifying.
= Estimates are biased - results depend on units of measurement.

= Need less restrictions and a more flexible estimator.



Outline

In this talk:

@ Introduction

@ Simplified skill formation models
o Trans-log

o CES

@ Conclusion

Additional results in the paper:

@ Normalization definition and examples
@ Full skill formation model and technical details.

@ Monte Carlo simulations
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Skill formation models

@ Let 6; denote skills at time t and let /; be investment at time t.

@ | consider the model:

9t+l:f(9talt76tan0,t) t:O77T_1
ZO,t,m = Wo,t,m + )\G,t,m In 01’ + €0,t,m t= 07 R T; m= 17 27 3
Zl,t,m = Kit,m + )\I,t,m In It + El,t,m t= 0, ey T-— 1, m = 1,2, 3

Q=ap+ar1lnfr +ng
|n/t:Bo,t‘i‘ﬁl,tlnet‘Fﬁz,tlnYt+77/,t t=0,...,T—-1

@ We observe Zy ¢ m, Zit,m, Yt, and Q, but not 6, and /;.
@ Other unobervables: g+, €0,¢,m, €1,¢,m M1,t, and Ng.

@ Parameters: 6, [49.t,m, Ao,t.m, [1,6,m0 Ale,m, Be, and a.



Skill formation models

@ Let 6; denote skills at time t and let /; be investment at time t.

@ | consider the model:

9t+1:f(9talt76t;77(‘ﬁt) t=0,...,T—-1
ZO,t,m = Wo,t,m + )\G,t,m In 01’ + €0,t,m t= 07 R Ta m= 17 27 3
Zl,t,m = Kit,m + )\I,t,m In It + El,t,m t= 0, ey T-— 1, m = 1,2, 3

Q=ap+ar1lnfr +ng
Inly = Bot+ Brelnbr +BoeInYe+my t=0,...,T -1

@ We observe Zy ¢ m, Zit,m, Yt, and Q, but not 6, and /;.
@ Other unobervables: g+, €0,¢,m, €1,¢,m M1,t, and Ng.

@ Parameters: 6, [49.t,m, Ao,t.m, [1,6,m0 Ale,m, Be, and a.



Skill formation models

@ Let 6; denote skills at time t and let /; be investment at time t.

@ | consider the model:

9t+1:f(9talt76t) t:O,,T—l
Zo,t.m = Mo, e.m + Ng,e,m IN Ot + €¢.t.m t=0,....,T,m=1,2,3
ZI,1.“,m = Kit,m + )\I,t,m Inl + Elt,m t=0,... y T — 13 m = 1727 3

Q=ap+ar1lnfr +ng

@ We observe Zy ¢ m, Zi.t,m, and Q, but not 6; and ;.
@ Other unobervables: g ¢+ m, €1.t,m, and nq.

o Parameters: 3¢, 10,6,m: No,t,my [1,6,mi Ale,m, and o

10



Skill formation models

@ Let 6; denote skills at time t and let /; be investment at time t.

@ | consider the model:

9t+1:f(9talt76t) t:O,,T—l
Zo,t.m = Mo, e.m + Ng,e,m IN Ot + €¢.t.m t=0,....,T,m=1,2,3
Zitm = [it,m + MmNl + €1 em t=0,...,T—-1,m=1,2,3

Q=ap+ar1lnfr +ng

@ We observe Zy ¢ m, Zi.t,m, and Q, but not 6; and ;.
@ Other unobervables: g ¢+ m, €1.t,m, and nq.

o Parameters: 3¢, 10,6,m: No,t,my [1,6,mi Ale,m, and o

11



Skill formation models

@ Let 6; denote skills at time t and let /; be investment at time t.

@ | consider the model:
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@ We observe Zy ¢ m, I;, and Q, but not 6.
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T-1

)

o T,m=1,273
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Skill formation models
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Skill formation models

@ Let 6; denote skills at time t and let /; be investment at time t.

@ | consider the model:

Or11 = f(ehlta(st) t=0,...
Zot = po,e + NoeIn0; + €9t t=0,...

QR=apg+arlnfr +ng

@ We observe Zy ¢ m, It, and Q, but not 6.
@ Other unobervables: g ; and nq.

o Parameters: 8¢, f1g,¢, Ao, and a.

T-1

)
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Skill formation models
@ Let 6; denote skills at time t and let /; be investment at time t.

@ Simplified model:

01 = f(at,lt,ét) t=0,...,T -1
Zt = ILLt+At|n9t+€t tIO,,T
QR = Oéo+0£1|n9T+17Q

@ We observe {Z:}] o {l:}] 5" and @, but not {0;,¢:}/_, and nq.
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Skill formation models

@ Let 6; denote skills at time t and let /; be investment at time t.
@ Simplified model:
Ory1 = (0,1, 01) t=0,...,T—1

Zy = pr+Aeln0; + e t=0,...,T

QR = ag+arlnfr+ng
@ We observe {Z:}] o {l:}] 5" and @, but not {0;,¢:}/_, and nq.
@ Trans-log:

N6 1 =ar + 716 N0 +yorInly + 3¢ In G In |l

o Constant Elasticity of Substitution (CES):

Pt
ot

Oer1 = (71t€?t + '72tlft)

@ Nonparametric model in the paper.



Skill formation models

@ The model consists of

0t+1 - f(@t,/t,5t) t:O,..., T*].
Zt = /Jt“‘)\tlnet“—ft tZO,,T
QR = ao+a1|n97-+77Q
@ To isolate the main issues, | assume that (o, ...,e7,7n) are independent

of (lo,...,lT-1,00,...,07) and that the joint distribution is known.

@ Easy to show: The joint distribution of
(,uo—i—)\OInHO,...,MT+)\T|n07,ao+a1|n97—)

is identified conditional on (ly, ..., /r—1), but ¢, ¢, and A; are not.

@ Characterize identified set and discuss additional restrictions.
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Trans-log production function

@ First consider

IN0i1 = ac+1eln0: +vorIn e + y3¢ InO¢ In
Zt = Mt+)\t|n0t+6t
QR = a0+a1|n0T+nQ

@ Main idea: Rewrite the model in terms of In ét = s + At In6;.
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Trans-log production function

@ First consider

IN0i1 = ac+1eln0: +vorIn e + y3¢ InO¢ In
Zt = ,ut—i-)\t|n9t—|—6t
Q = ag+arlnfr+ng

@ Main idea: Rewrite the model in terms of In ét = s + At In6;.

@ We can only identify certain combinations of parameters, such as

Att1 A\ e Att1
A Vits t+1 | V2t /\t’YSt ) A V3t

@ We cannot distinguish between changes in the quality of the

measurements (A;+1/A;) and changes in the technology (7y1¢).

@ Even when ~3; = 0, we can only identify A¢1172¢.

17



Trans-log production function

@ When
INOcy1 = ac +71e N0 +v2e Inly + v3¢ In O In

three additional assumptions are commonly used in the literature.

,uo:Oand)\ozl.

ar=0and vt + Yt +7y3e =1forall t=0,..., T — 1.

At = Aey1 and gy = pppq forall t=0,..., T — 1.

18



Trans-log production function

@ All parameters are point identified under the baseline assumption and
either

o Assumption 2 and 3 or

o Assumption 2 and 4
@ Restrictions are not overidentifying and observationally equivalent.

@ Many estimated parameters are not invariant to the restriction A\g = 1

or changes in the units of measurement of the data, including

o the elasticity of investment and

o counterfactuals that depend on the level of skills, such as

investment sequences that maximize E(67).
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Invariant features

@ Some features that are identified without Assumptions 2 — 4 are:
o Fng.y(ae + 71610 Qa(0:) +v2¢ In 1 + 3¢ In Qo (0:) In /)
o P(R<qll,. .., I7—1,00 = Qu(bo))

@ With these features, we can calculate:

o Investment sequence that maximizes the skill rank in the final

period or a feature of the distribution of the adult outcome.

o Calculate skill ranks or distributions of @ for different
counterfactual investments to compare means, variances, and

heterogeneous effects.

20



CES production function

(*]

(]

Consider
Oein = (yaeb7 +el7e)"
Zy = pr+Aelnf+¢;
Q = ag+ailndr+ng
Many parameters are point identified, including {\¢, o4}/ .

Point identification under various restrictions:
o Fix po and use age-invariant p; or y1r + v2r = 1.

o Parameters depend on the set of restrictions and pyg.
Setting Ao = 1 yields inconsistent estimators.
Same features as before are identified under the baseline assumption.

Features can be estimated using a more flexible estimator.

21



Monte Carlo simulations

@ Setup adapted from Attanasio, Meghir, and Nix (2019) with T =2 and
1
Orr1 = A (7:07° + (1 — ve) I7*) 7t exp(no,¢)
Inly = B1:In 0 + Bor In Y + Mt

@ Three (linear) measurements each for In6; and In/; and the loading of

the first measure is equal to 1 in all periods.

o Simulate (Indy,In Y) from a normal mixture and generate skills and
investment recursively.

@ Estimation in AMN proceeds in three steps:
(0) Fit a normal mixture distribution using all measures.
(1) Estimate distr. of skills, investments, and Y using restrictions.

(2) Take a sample and estimate the production function by NLLS.

22



Monte Carlo simulations

@ In this setting /\ - and M are identified.
o Only need to normalize )\,,071, which | set to 1.

o It is common to set Ag;1 =1and A;;1 =1 for all t.

@ To estimate the scales, we need to relax the CES specification and use

1
Ori1 = <71t0?t + ’7215/{\/':'1)
@ Generated data by
Ze,t,l = |Og(9t) + €0,t1
but estimate the model using

Zoe1 = S0Zp,e1 = So log(0:) + spep.¢,1-

@ Parameters will be affected but with my estimator invariant features,

including elasticities in this setting, are not.

23



Elasticities
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24



Optimal investment
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Different investment strategies

More income in period 0
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Different investment strategies

More income in period 0

tribution
tribution

riginal incon
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Conclusion

@ The paper provides a formal definition of a normalization.

o Whether or not a restriction is a normalization depends on the

model specification and the object of interest.

o Researchers should argue that a restriction is truly a normalization.

@ In skill formation models, seemingly innocuous restrictions are not

normalizations and can affect parameters and counterfactuals.

o Simply changing the units of measurements can yield ineffective

investment strategies and misleading policy recommendations.

o Key features are invariant to these restrictions, are identified

under weaker assumptions, and provide robust policy implications.
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Skill formation models

@ Let 6; denote skills at time t and let /; be investment at time t.

@ | consider the model:
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Normalization

@ 0y € © is the true parameter and © is the parameter space.
@ Let Z contain all observed random variables, such as Y and X.
o Model with 8 € © generates a joint distribution P(Z,0).
@ 61,0, € © are observationally equivalent if P(Z,0;) = P(Z,0,).
@ The identified set for 6 is
©o={0€0:P(Z,0)=P(Z,b)}.

@ The identified set for g(6p) is

O, = {8(6) : 6 € O0}.
o g(bp) could be point identified even if g is not.
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Normalization

@ A normalization is a restriction of the form 6 € ©), where ©y C © is a

known set.

@ Typically, ©g N Oy # ©g and by §é On.
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Normalization

@ A normalization is a restriction of the form 6 € ©), where ©y C © is a

known set.

@ Typically, ©g N Oy 75 ©p and 6y ¢ On.

Definition

The restriction § € Oy is a normalization with respect to g(fp) if

for any 6y € ©

{g(0) : 0 € ©onON} ={g(0): 0 € O}
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Normalization

@ A normalization is a restriction of the form 6 € ©), where ©y C © is a

known set.

@ Typically, ©g N Oy 75 ©p and 6y ¢ On.

Definition

The restriction § € Oy is a normalization with respect to g(fp) if

for any 6y € ©

{g(0):0 € ©nON} ={g(0):0 € Oo}.

@ Typically, ©9 N Oy is a singleton. The definition then requires that

g(6o) is point identified, even without a normalization.
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Simple example

@ Consider the probit model
Y =1(Bo1 + fo2X > U),
where var(X) >0, U | X ~ N(uo,03) and o3 > 0.

o We have 6y = (5o.1, Bo,2, 10, 00)" and Z = (Y, X) and since
P(Y=1|X=x)= (501 502)7

00 0o
we get

@o_{QGR“:Bl_N—BO’l_MO ande—BO’z}.
o

oo g g0

@ Common restriction is 4t = 0 and o = 1 so that Oy = R? x 0 x 1 and

OOy = (501 Mo Bo2 0 1>

a0 0o

@ Normalization with respect to marginal effects, but not (5o 1, 50.2)-

32



Asssumptions

@ (e0,.-.,e7,n0) are independent of (l,...,Ir—1,00,...,07).

O The joint distribution of (eg,...,e7,m¢q) is known and the cf

of (eo,...,e7,m@) only has isolated zeros.

Q X: >0 forall t.




Trans-log production function
@ First consider

|n 9t+1 = at + Y1t |n 9,_» + Y2t |n It + Y3t |n 91» |n It'

and define Inf; = 1t + A¢ In6;.
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Trans-log production function
@ First consider

|n9t+1 = Vltlnet‘i_’}?tln It+’}/3t|n9t|n It'
and define Inf, = At In 6.

@ Here | set a;, p¢, and ag to 0 and focus on the scale issue.

@ We can then rewrite the production function in terms of f, and get

b1 = F1eInbe+ FoeInle + F3¢ In b In I,
Zt = |n gt + Et
Q = éailnfr+mnq
where
- /\t+1 ~ ~ )\t+1 ~ a1
M = Yies G2t = Aer172e, Y3 = V3, 01 =
)\t )\t )\T
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Anchor

@ All results are qualitatively identical when we anchor the skills at Q.

o Let Q =ap+a1lnf7r +ng.

o Impose ag = 0 and a3 = 1 instead of g =0 and A\g = 1.

35



CES production function

o Consider
01 = (’Yltoft + 72tltm)wt/m
Zy = pr+AInf +er
Q = ag+arlnfr+ng
A

@ Define §, = exp(pe)0z* or In 0, = Lt + AeIn 6y

@ We can then rewrite

~ . "Uz/)\t . o )\t+11/1r/‘»7t
9t+1 = (’Yltet + 72tlt t)

Zt = In ét+€t

Q = do+adInbr+ng

where the transformed parameters have complicated expressions.
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CES production function

Suppose Assumption 1 holds.

Q {N,0:} 5t and {9} ;2 are point identified.

@ Some complicated functions are point identified as well.

@ Observationally equivalence of any two sets of parameters.

Corollary 2

Suppose Assumption 1 holds.

Q {ut}tT:_Ol, {fylt,'yzt}tT:_lz are identified if y1: + v2¢ = 1 and po = 0.

Q {me} oot (e e} /o7 are identified if py = p1epq and pg = 0.

@ Full identification if A7 is identified, e.g. if Ay = A\¢11 or ¢y = 1.
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CES production function

@ In the trans-log case, setting A\g = 1 or A\g = 10 yields different

estimated parameters, but observationally equivalent models.
@ In the CES case, \q is point identified and we cannot fix it.

@ When we set \g = 1, which is a standard restriction, multiplying all

measures by a constant affects everything.
@ The exact bias depends on how the parameters are estimated.

@ To obtain point identification, we need to fix g and this restriction

affects certain features, depending on the other assumptions.
@ Again, anchoring yields similar conclusions.

@ Same features as before are identified under Assumption 1 only.
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Invariant features for the CES production function

Suppose Assumption 1 holds. Then the following features are identified.

o 'Elnatﬂ(('}/lte?t +’thldt)wr/0‘)
(2] P(Q§y|/07...,/7—,1790:Qa(90))
0 fP(QSyIIO"IT_1700:0)f;90(0)d0

© Sequences of investment that maximize known strictly increasing

functions of In @7 subject to 8y = Q,(6p) and ZtT;ll Iy = c.

@ Sequences of investment that maximize linear functions of
E(In67) or E(67) subject to 2;711 I =c.
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