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Abstract. This paper studies the implications of equilibrium interactions be-
tween the shopping behavior of heterogeneous households and retailers’ price
posting. Heterogeneous consumption baskets along the income distribution
and higher shopping effort of the poor imply that retailers face different price
elasticities depending on their customer base and charge higher markups for
goods disproportionately consumed by richer households. First, I formalize
this mechanism in a standard model of frictional product markets and de-
rive testable predictions on the shape of price distributions as a function of
search effort. Second, I confirm these predictions using supermarket scanner
data from the US. Third, I embed the simple framework into a rich incomplete
markets model featuring heterogeneous households with non-homothetic pref-
erences as well as endogenous price distributions for multiple varieties. The
calibrated model shows that equilibrium interactions between shopping effort,
demand composition, and price posting double the contribution of shopping
effort to expenditure inequality relative to previous findings. The model also
implies that the response of markups to aggregate income shocks crucially
depends on the incidence of the shock along the income distribution.
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1 Introduction

Macroeconomic research on inequality often uses households’ expenditure to proxy for
differences in consumption and ultimately welfare, e.g. when assessing the consequences
of rising income or wealth inequality. The approximation relies on the assumption that
the cost of consumption is identical across households. In reality, this assumption is
violated for at least two reasons: First, rich and poor households do not buy the same
basket of goods. Second, low-income households are able to exploit price dispersion for
identical products, shop for bargains and reduce the price they pay for any given basket.
Understanding how this behavior affects the cost of consumption across households is
essential to interpret the real inequality implied by any distribution of nominal income,
wealth, or expenditures. Previous research has shown both substitution across products
and shopping for cheaper prices to be quantitatively important, but has studied each
margin in isolation and has taken posted prices as given.

To account for interactions between shopping, substitution, and prices posted it is im-
portant to consider the behavior of heterogeneous households in equilibrium with retail-
ers’ price setting. From a retailer’s perspective, systematic differences in households’
consumption baskets lead to heterogeneity in demand composition across goods, i.e. a
separation of demand from buyers at different income levels into different varieties. Dif-
ferences in shopping behavior yield heterogeneous price elasticities of demand across
households since the more any buyer searches for cheaper prices the more likely she is
to purchase at a cheaper offer. The correlation between households’ shopping effort and
their consumption baskets implies that retailers face overall higher elasticities of demand
for goods in the basket of low-income households. Their best response is to post lower
prices by reducing their markups for goods bought by low-income households. Through
heterogeneity in consumption baskets, differences in shopping effort can therefore have an
equilibrium effect on the prices offered across varieties and not only a direct effect on the
prices paid for any given good. In this way shopping effort has additional redistributive
effects through the posted market price of consumption.

This paper considers the equilibrium effects of heterogeneity in shopping effort and de-
mand composition on offered prices. I provide evidence on the mechanism outlined above
by studying how the shape of price distributions changes across products with the shop-
ping effort of buyers both in theory and in the data. Studying its implications, I show that
accounting for effects on offered prices more than doubles the contribution of shopping
effort to explaining expenditure inequality, reducing real inequality through the posted
price of consumption. This is because demand composition varies across products and
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retailers can differentiate price setting across households based on their consumption
baskets. In addition, I find that a similar mechanism can have negative consequences in
response to aggregate income shocks. If income losses are concentrated among a subset
of households they affect the composition of aggregate demand over time. In response
to a decline in earnings among low-income households and the ensuing reduction in their
consumption, retailers shift the focus of their price setting towards high-income agents
and can find it optimal to increase prices, leading to a further decline in real resources.

The analysis proceeds in four steps: First, I formalize the mechanism by focusing on
retailers’ price setting problem in a standard model of price dispersion under search fric-
tions. In this framework, I derive analytical predictions for how the moments of price
distributions co-move with equilibrium shopping effort. Second, I conduct an empiri-
cal test of the theoretical predictions providing evidence from US micro data. Third, I
develop a quantitative model featuring heterogenous households choosing their consump-
tion baskets and shopping effort, as well as endogenous price distributions for multiple
varieties. I calibrate the model to capture salient features of expenditure inequality and
price dispersion. Fourth and finally, I employ the model to highlight the consequences of
equilibrium prices responding to households’ shopping behavior and demand composition.

To formalize the main mechanism of the paper, I build on a standard model of frictional
product markets in the spirit of Burdett and Judd (1983). Buyers have to search for price
quotes and for every purchase they make draw either one or two offers from the equilib-
rium distribution of posted prices. Higher shopping effort increases the probability that a
buyer observes two prices for his purchase simultaneously. Fixing a price before meeting
any buyers, retailers trade off higher margins per sale against undercutting alternative
offers when buyers observe a second price simultaneously. I show analytically that the
mean of the ensuing equilibrium price distribution can be decomposed into marginal costs
and an average margin, the latter decreasing in equilibrium shopping effort. The model
nests two special cases: Bertrand competition if all buyers observe two prices simultane-
ously and a perfect monopoly if no buyer observes a second price. Shopping effort shifts
the equilibrium outcome between these two extremes, increasing the competition among
retailers. An additional analytical result shows that as price distributions gradually shift
from buyers’ maximum willingness to pay (monopoly at zero shopping effort) to marginal
cost (Bertrand competition if all buyers observe two prices), their skewness monotonically
increases in the shopping effort exerted and is independent of all other parameters of the
model. This result presents the skewness of price distributions as an ideal candidate for
an empirical test of the mechanism.
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For the empirical analysis, I use supermarket scanner data from the Nielsen Consumer
Panel made available via the Kilts Center for Marketing at Chicago Booth. The dataset
provides granular information on households’ grocery purchases and prices paid at the
barcode level. Based on the theoretical results, I focus on how the skewness of price
distributions co-moves with equilibrium shopping effort across varieties. Defining local
price distributions at the level of a barcode in line with the literature, I show that their
skewness is decreasing in the share of total expenditure for a given barcode stemming from
households at the top of the expenditure or income distribution or having more members
employed. This finding is in line with the theoretical predictions, as high-spending, high-
income, and employed households are known to exert lower shopping effort and pay higher
prices for identical goods. It provides strong supportive evidence for a response of price
distributions to shopping effort in line with search theory.

To study equilibrium interactions between households’ behavior and retailers’ price set-
ting, I introduce a model economy featuring heterogeneous households and endogenous
price distributions for multiple varieties. Households differ in their idiosyncratic labor
income and beginning of period wealth. They decide on overall spending vs. savings
and allocate their total expenditures across varieties. Consumption baskets vary system-
atically across households due to non-homothetic preferences in the spirit of Handbury
(2021). Choosing how much to increase the probability of observing two prices for every
purchase they make, households trade off a reduction in average prices paid against the
disutility from exerting shopping effort. Equilibrium price distributions are determined
endogenously as the solution to a Burdett and Judd (1983) market for each variety. The
model matches salient features on the composition of expenditures across households and
price dispersion across varieties and is able to reproduce the untargeted distribution of
expenditures in the data.

I use the model as a framework to study the equilibrium implications of interactions
between shopping behavior and demand composition. It allows me to highlight the con-
sequences of differences in demand composition (i) across varieties and (ii) over time. To
capture the first, I employ a decomposition of expenditures to both the model and the
Nielsen data and use the model to adjust for differences in posted prices due to hetero-
geneous shopping effort. For the second, I simulate aggregate income losses for different
groups of households and show how offered prices and especially markups respond to
changes in households’ consumption and shopping choices.

Focusing first on the implications of heterogeneity in demand composition across varieties,
I decompose the price a household pays into the contribution of the direct effect of
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shopping (difference between price paid and average price of a barcode across households),
substitution across varieties (difference between average price of a barcode vs. average
price of close substitutes), and expenditures absent both margins. In the data, the bottom
quintile of the expenditure distribution pays 4% less than average among a range of close
substitutes due to substitution across barcodes, and an additional 1.5% less due to paying
less for the same barcode (shopping). The top quintile pays 3.5% above average due to
substitution and 0.5% more due to shopping. The model replicates this decomposition
of expenditures. It further allows me to adjust for the equilibrium effect of shopping
through posted markups. In the baseline decomposition, differences in posted markups
are picked up by the average price of a variety and hence allocated to the substitution
term. Accounting for the equilibrium effect on offered prices, shopping reduces the cost
of consumption for the bottom quintile by 3.5% and increases it for the top quintile by
2%. Equilibrium effects more than double the contribution of shopping to expenditure
inequality compared to the partial equilibrium effect of paying more or less for the same
good at given offered prices. The insurance provided through posted prices and markups
exists because non-homothetic preferences and the implied segregation in demand reduce
the externality households exerting low shopping effort impose on others through their
effect on retailers’ price setting. Despite the findings outlined above, a significant extent of
this externalities remains due to the non-zero overlap in households consumption baskets.
Allowing households to draw from price distributions targeted to their individual shopping
effort, I show that the bottom of the expenditure distribution could reduce their cost of
consumption by an additional 15% if good markets were perfectly separated by household
type, while the top of the expenditure distribution would pay up to 25% more for the
same basket of goods.

To study the consequences of shifts in demand composition over time, I simulate the
response of the economy to an aggregate income loss. I consider three scenarios: First,
reducing the labor earnings of all households in the economy by 3%. Second, causing the
same decline in aggregate income but concentrating the losses only at the top quartile
of the labor earnings distribution. Third, concentrating the same aggregate income loss
at the bottom quartile of the distribution. The model yields a pro-cyclicality of retail
markups that is decreasing in the share of income losses allocated to the bottom of the
distribution. In response to an income loss affecting households equally all agents increase
their shopping effort, retailers face more competition, and markups decline. Markups
decline by more if the losses are concentrated at the top quintile, but increase if losses
affect only the lowest earning households. The key to understand this result is a shift in
demand composition: To set prices, retailers weigh households’ shopping effort by their
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share in demand. An income loss concentrated at the bottom of the distribution forces
low-income households to reduce consumption and shifts demand composition towards
high-income (low-shopping) households, possibly decreasing demand weighted shopping
despite an increase in effort among low-income households. In response to income losses
at the top both effects go in the same direction, high-income households searching more for
cheap prices and demand being reallocated towards low-income (high-search) agents. The
varying cyclicality of markup responses to income shocks has implications for inequality:
High-income households can obtain partial insurance if hit by an aggregate income loss
through a decline in the retail markups they face. Low-income households can be hit
twice, by a loss in income and a subsequent loss in purchasing power as markups increase
in response to an income shock at the bottom of the distribution. This implication of
shifts in demand composition over time is in contrast to the findings outlined above for
heterogeneity in demand composition across varieties, which dampens inequality among
agents.

The remainder of the paper is organized as follows: Section 1.1 discusses the relation to
previous literature. Section 2 formalizes and provides empirical evidence on the main
mechanism. Section 3 outlines the quantitative model. Section 4 studies implications
of heterogeneous shopping effort and differences in demand composition for inequality.
Section 5 concludes.

1.1 Related Literature

The paper relates to a large and growing empirical literature on expenditure inequality
and its drivers, with recent contributions by Aguiar and Bils (2015) or Coibion et al.
(2021), sampled e.g. in Attanasio and Pistaferri (2016). Most closely related is the strain
of the literature focussing on the consequences of shopping behavior and prices paid, in-
cluding the seminal contributions by Aguiar and Hurst (2005, 2007) as well as subsequent
work by e.g. Broda et al. (2009), Griffith et al. (2009), Aguiar et al. (2013), Nevo and
Wong (2019), or Droste et al. (2019). While these papers focus on measuring the direct
effect of shopping (paying more or less for a given good) empirically, I combine data and
a quantitative model to jointly measure the contributions of shopping and substitution to
expenditure inequality and highlight the equilibrium effect of shopping on offered prices.

The theoretical literature on price search in the goods market goes back to the seminal
contributions of Butters (1977), Varian (1980), and especially Burdett and Judd (1983). I
build on the latter, which has been widely applied in macroeconomic research on topics in-
cluding price dynamics (Burdett and Menzio 2018) or product differentiation (Albrecht et
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al. 2021; Menzio 2021). Building on a similar mechanism of profit margins changing with
shopping effort, Kaplan and Menzio (2016) use the framework to show how differences in
shopping effort between employed and unemployed households can generate self-fulfilling
unemployment fluctuations while Alessandria (2009) applies it to explain fluctuations in
relative prices across countries. Two papers study the consequences of search frictions
in the goods market for heterogeneous households: Arslan et al. (2021) introduce price
search effort into a life-cycle consumption-savings problem but take the distribution of
offered prices and the return to search as given. Pytka (2018) additionally endogenizes
a single equilibrium price distribution. Both papers focus on the consequences of price
search for life-cycle inequality and households’ response to idiosyncratic income shocks
in a stationary economy, but abstract from heterogeneity in consumption baskets – and
therefore from equilibrium effects of shopping across varieties – as well as the response
to aggregate income losses. This paper is the first to develop an equilibrium framework
with rich household heterogeneity and endogenous price distributions for multiple vari-
eties to study the equilibrium consequences of shopping and heterogeneity in demand
composition across goods and over time.

A vast literature exists on heterogeneity in households’ consumption baskets, dating back
as far as the formulation of Engel’s Law in 1857. Most important for the present paper
is the strand focussing on non-homotheticities at the barcode level and consequences
for e.g. the distribution of gains from product innovations (Jaravel 2019), cost of living
differences between poor and rich households over the business cycle (Argente and Lee
2021) or across cities (Handbury 2021), as well as firms’ decision of which products to
offer (Faber and Fally 2022). Non-homotheticities at this low level are often interpreted
as substitution along a quality margin. This margin of adjustment is studied e.g. in Bils
and Klenow (2001) and Bisgaard Larsen and Weissert (2020) and its consequences in
Jaimovich et al. (2019) or Ferraro and Valaitis (2022). None of these papers considers
interactions with households’ shopping effort or price dispersion.

The paper also extends the empirical literature on retail prices and markups. Closely
related contributions on price dispersion include the seminal work by Kaplan and Menzio
(2015) and Kaplan et al. (2019), who provide evidence on the structure of price distribu-
tions but do not consider their co-movement with demand composition across products.
Stroebel and Vavra (2019) find retail prices to respond pro-cyclically to local variations
in house prices, driven mostly through changes in markups, and attribute this pattern to
empirically observed changes in shopping behavior. Anderson et al. (2020) find markups
paid to covary positively with proxies for local income, driven by local differences in
products bought not local variations in markups charged for the same products. Their
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findings are well in line with the mechanism proposed in this paper.

Most closely related is the work of Sangani (2022), providing a complement to this paper.
Using a combination of the Nielsen panel and data on wholesale prices, Sangani (2022)
shows empirically that markups are on average higher for the goods bought by high-
income households and rationalizes this finding with a shopping model. I provide direct
empirical evidence on the mechanism, testing theoretical predictions on the relationship
between shopping and the shape of price distributions. Combining the single-variety
model of Burdett and Judd (1983) with stylized household heterogeneity, Sangani (2022)
studies implications of increasing income inequality for the rise in aggregate markups.
The focus of my study is the feedback between equilibrium prices and inequality. Hence,
I develop a model with rich household heterogeneity in the tradition of Bewley (1977) and
Aiyagari (1994), featuring non-homothetic preferences and endogenous price distributions
for multiple varieties.

2 The Mechanism:

Equilibrium Shopping and Posted Price Distributions

The main mechanism proposed in this paper is best understood by focussing on the
distribution of offered prices for a single variety and how it changes with the shopping
effort exerted by the buyers of this variety. I begin by outlining the price posting problem
of a single-variety retailer in a market with consumer search and derive the ensuing
equilibrium price distribution, building on the work of Burdett and Judd (1983) and
Pytka (2018). To provide evidence on the relationship between shopping and posted
prices, I characterize analytically how moments of the offered price distribution respond
to changes in equilibrium search effort and show that predictions from search theory align
well with empirical observations from the Nielsen Consumer Panel micro data.

2.1 Retailers’ Price Setting with Consumer Search

Consider the market for a single variety j, which is produced at homogeneous marginal
cost κj, and for which consumers have a maximum willingness to pay p̄j. The variety
is sold by a continuum of homogeneous retailers of measure one. The demand side of
the market consists of a continuum of households indexed by their type i, with λi being
the distribution over types. A type i household consumes a quantity cij ≥ 0 of variety j,
which he splits into a measure cij of infinitesimal purchases. The market for the variety is
subject to incomplete information as in Burdett and Judd (1983) and Pytka (2018): For
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each purchase he makes, the household observes either one or two price postings, drawn
at random from the equilibrium distribution of offered prices Fj(p). The probability of
observing two price draws for any given purchase is determined by the household’s shop-
ping effort and given as si ∈ [0, 1]. Shopping effort in this framework is best interpreted as
the intensity with which households search for a second price observation. If a household
observes only one price, he makes a purchase as long as this price is below the maximum
willingness to pay p̄j. If he observes two prices simultaneously, the household purchases
at the lowest offer below p̄j.

Retailers post prices for variety j to maximize their profits, taking expectations over
which type of household they will meet in the market and how likely these households
are to see a second price offer simultaneously. The total profits of a retailer posting price
p are given by

πj(p) = Cj︸︷︷︸
demand

per retailer

[∫
λicij
Cj

[
(1− si) + si2(1− Fj(p))

]
di

]
︸ ︷︷ ︸

sales per demand
(market share)

(p− κj)︸ ︷︷ ︸
profit
per sale

where Cj =
∫
λic

i
jdi is total demand for variety j and λicij

Cj
the fraction of demand (frac-

tion of purchases) stemming from households of type i. In words, profits are given as the
margin per sale (p−κj) times total demand per retailer (Cj) times the market share. To
determine the effect of the posted price on the latter, the retailer considers the likelihood
with which any buyer he meets in the market observes a second price quote simultane-
ously: With probability λicij

Cj
he meets a type i household, and with probability si this

household has a simultaneous second price observation conditional on being type i. In
the latter case the retailer only makes a sale if his price offer is lower than the second
quote, which conditional on posting price p occurs with probability (1− Fj(p)).1

As profits are linear in sales and by the law of large numbers, the problem can be simplified
to

πj(p) = Cj [(1− s̄j) + s̄j2(1− Fj(p))] (p− κj) (1)

1The multiplication of the second term by 2 captures that the retailer can be either the first or second
of two price observations.

8



where

s̄j =

∫
λic

i
j

Cj︸︷︷︸
demand

composition

sidi (2)

Demand weighted, average shopping effort s̄j is a sufficient statistic for the retailer to
set a price. How households’ shopping effort is taken into consideration by the retailer
depends on their share in total demand, which from here on out I will refer to as demand
composition.

Deciding on the price to post in this market, retailers trade off between two forces: On the
one hand, a higher price increases the margin earned per sale (p−kj). On the other hand,
it increases the probability to be undercut by a competitor Fj(p) and hence decreases
demand at the extensive margin. For the second effect, the equilibrium search effort is
key, which determines the likelihood that any given unit of demand observes a second
price and therefore the likelihood any retailer has to compete for the purchase. Thereby,
together with the endogenous price offer distribution Fj(p), the equilibrium shopping
effort s̄j determines the price elasticity of demand across retailers.

The setup leads to two immediate observations: First, price dispersion through the lens
of this model can be interpreted as a distribution of markups over marginal cost κj.
Second, for any non-degenerate equilibrium price distribution to exist retailers will have
to be indifferent between posting a range of prices, i.e. the benefit of earning a higher
margin per sale will have to be exactly offset by the loss in demand. For given kj, p̄j,
and 0 < s̄j < 1 Burdett and Judd (1983) and Pytka (2018) show that a unique and
continuous equilibrium distribution of offered prices Fj(p) exists with compact support
[
¯
pj, p̄j], where

Fj(p) =


0 if p <

¯
pj

1− 1−s̄j
2s̄j

p̄j−p
p−κj if p ∈ [

¯
pj, p̄j]

1 if p > p̄j

(3)

and

¯
pj = κj + (p̄j − κj)

1− s̄j
1 + s̄j

The distribution of posted prices depends on the marginal cost κj and households’ max-
imum willingness to pay p̄j, as well as demand weighted shopping effort s̄j, but is inde-
pendent of total demand per retailer Cj as retailers are infinitesimal and only compete
over their share in a total number of sales they take as given. To study the mechanism
at the heart of this paper I will focus on how the offered distribution of prices responds
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to changes in equilibrium search effort s̄j.

2.2 The Effect of Shopping on Posted Price Distributions

According to equation (2), changes in s̄j can be due to individual households adjusting
their shopping effort si or due to differences in demand composition (e.g. across varieties),
i.e. how retailers take each household’s individual shopping effort into account. In equi-
librium, individual shopping, demand composition, and hence demand weighted shopping
effort s̄j will be determined by households’ optimal behavior in response to the offered
price distribution. In this section, I take s̄j as given and focus on retailers best response
to any change in equilibrium search effort. Focussing on how retailers respond to changes
in s̄j allows me to highlight the effect of differences in both households’ shopping effort
or demand composition on offered prices.

From equation (3) it is immediate that ∂Fj(p)

∂s̄j
≥ 0, i.e. a distribution with lower equilib-

rium shopping effort s̄j has first-order stochastic dominance over any distribution with
higher equilibrium shopping effort and hence a greater probability to observe high posted
prices. Given the analytical characterization of Fj(p), the problem yields closed form ex-
pressions for the moments of the distribution. Results for the first three central moments
are presented in Proposition 1.

Proposition 1 The mean µFj , standard deviation σFj , and skewness γFj of the offered
price distribution Fj(p) for given κj, p̄j, and 0 < s̄j < 1 can be derived as

(i)

µFj = κj + (p̄j − κj)
1− s̄j

2s̄j
log

(
1 + s̄j
1− s̄j

)
︸ ︷︷ ︸

average posted margin

,

(ii)

σFj =

√√√√(p̄j − κj)2

(
1− s̄j
1 + s̄j

−
(

1− s̄j
2s̄j

)2

log

(
1 + s̄j
1− s̄j

)2
)

(iii)

γFj =

1−s̄j
4s̄j

(
1−

(
1−s̄j
1+s̄j

)2
)
− 3

(1−s̄j)2
2s̄j+2s̄2j

log
(

1+s̄j
1−s̄j

)
+ 2

(
1−s̄j
2s̄j

)3

log
(

1+s̄j
1−s̄j

)3

(
1−s̄j
1+s̄j
−
(

1−s̄j
2s̄j

)2

log
(

1+s̄j
1−s̄j

)2
) 3

2

Proof. Follows immediately from equation (3) and the standard formulas for the first
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three central moments of any continuous distribution. �

Focussing first on the mean of offered prices, Proposition 2 shows that the average price
posted is increasing in marginal cost κj and maximum willingness to pay p̄j, but decreas-
ing in equilibrium shopping effort s̄j. Figure 1a illustrates this result graphically.

Proposition 2 The mean of the offered price distribution µFj for 0 < s̄j < 1 is increasing
in marginal cost κj and maximum willingness to pay p̄j but decreasing in equilibrium
search effort s̄j, i.e.

(i) ∂µFj
∂κj

> 0, (ii) ∂µFj
∂p̄j

> 0, (iii) ∂µFj
∂s̄j

< 0

Proof. Follows immediately from taking first derivatives of µFj . �

The equilibrium effect of shopping on posted prices operates through changes in profit
margins over marginal cost κj, which are strictly decreasing in equilibrium shopping effort(
∂(µFj −κj)

∂s̄j
< 0
)
. We find the origin of this effect in retailers’ profit equation (1): Higher

shopping effort s̄j makes it more likely that the average buyer a seller meets also observes
a second price, and hence tilts sellers’ tradeoff between higher margins and retaining
demand in favor of the latter. The higher the shopping effort the higher is the implied
elasticity of demand: The more buyers in the market search for lower prices the more
competition sellers face and the lower their (optimal) margins per sale.

In the limit, the setup approaches two well known special cases: If all buyers observe two
prices simultaneously (s̄j = 1), sellers solve a Bertrand competition problem and µFj = κj,
i.e. all sellers post marginal cost. If no buyer observes two prices simultaneously (s̄j = 0),
all sellers have a monopoly for any buyer they meet and hence all sellers extract buyers
maximum willingness to pay such that µFj = p̄j.2 Households’ shopping effort determines
a market’s position between these two extremes by regulating how much competition
sellers face for any given unit of demand they meet.

The result captures the mechanism at the heart of this paper. If goods are bought
predominantly by low-searching households, retailers put more weight on their shopping
effort, face a low s̄j and optimally post higher markups. Taking into account retailers’
optimal price posting and differences in demand composition therefore yields equilibrium
effects of heterogeneity in shopping effort on posted prices.

While the mean and standard deviation of the posted price distribution are not deter-
mined by shopping effort alone, focussing on the skewness provides a sharp, empirically
testable prediction. As outlined in Proposition 3 and highlighted graphically in Figure

2This point has been made by Pytka 2018 for a similar setup with at most 2 price observations.
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(a) Mean Offered Price µF (b) Skewness of Offered Prices γF

Figure 1: Moments of the Offered Price Distribution Fj(p)

1b, the skewness of the offered price distribution γF is a function only of the equilib-
rium shopping effort s̄j and independent of κj as well as p̄j. Furthermore, it is strictly
increasing in s̄j.

Proposition 3 The skewness of the offered price distribution γFj for 0 < s̄j < 1 is in-
creasing in equilibrium search effort s̄j, but independent of marginal cost κj and maximum
willingness to pay p̄j, i.e.

(i) ∂γFj
∂κj

= 0, (ii) ∂γFj
∂p̄j

= 0, (iii) ∂γFj
∂s̄j

> 0.

Proof. Follows immediately from taking first derivatives of γFj . �

The intuition behind this finding is that κj and p̄j determine the interval of possible
prices – no seller will ever post prices below marginal cost or above households maximum
willingness to pay as this would yield weakly negative profits – while shopping effort s̄j
determines the distribution of prices within this interval. The skewness picks up any
shift in mass of a distribution over a given interval. If shopping effort is high, prices
are concentrated close to marginal cost and the distribution exhibits a lot of mass close
to κj at the left of the interval and a long right tail (high skewness). If shopping effort
decreases, more prices are posted closer to buyers’ maximum willingness to pay p̄j, the
mass of the distribution shifts to the right, and the skewness decreases.

Before turning to an empirical test of Proposition 3, I refer to the appendix for robustness
of the main findings with respect to two potential extensions of the model: Retailer
entry combined with fixed cost of operating, as well as heterogeneous marginal cost.
Appendix A.1 shows that the introduction of fixed cost of operating and entry leaves
the solution derived above for the equilibrium distribution of offered prices unchanged.
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Appendix A.2 shows that under reasonable calibrations the introduction of heterogeneous
marginal cost leaves markups decreasing and the skewness increasing in shopping effort.
For the remainder of the paper, I focus on the version with homogeneous marginal cost
as the empirically relevant case, as marginal cost in this model should be interpreted
as wholesale cost and wholesale price differentiation among retailers within a geographic
area is prohibited in the US under the (federal) Robinson-Patman Act as well as various,
more commonly applied state level legislations.3

2.3 Evidence on Demand Composition and Price Distributions

The finding of Proposition 3 makes the relationship between the skewness of price distri-
butions and the shopping effort in a given market a natural candidate for an empirical
test of the effect of shopping on offered prices. If posted prices respond to shopping effort,
we should expect the skewness of any price distribution to be an increasing function in the
demand weighted shopping effort of households buying the good. For an empirical test
I rely on differences in shopping effort induced by heterogeneity in demand composition
across goods.

To test for an empirical relationship between the shape of price distributions and equi-
librium shopping effort, I make use of the Nielsen Consumer Panel micro data waves
for 2007-2019. The dataset provides detailed information on the grocery purchases of
approximately 60,000 US households per wave, containing both quantities purchased and
prices paid for every store visit at the barcode (UPC) level. In addition, the data contains
annual information on households’ demographic characteristics such as income, household
composition, or employment, as well as the place of residence. Further information on
the dataset is provided in Appendix B.

A price distribution consists of all transactions observed for a given variety j, within a
region r and time period t. In line with the literature (Kaplan and Menzio 2015), I define
a variety as a barcode (UPC), a region as a Scantrack Market Area (SMA) and the time
period to be a quarter.4 The price associated with a transaction is defined as the total
amount paid less of coupon values, divided by the number of quantities purchased. To

3See e.g. Nakamura (2008).
4The choice for what definition of a region and which time period to consider has to trade off between

two forces: A narrow definition ensures that any variation in prices can be allocated to (and exploited
by) search frictions, while it also reduces the number of price observations per distribution and hence
makes the analysis more noisy. For the ensuing analysis to be valid it is not necessary that households
have access to every price within a region, but only that the distribution of prices is identical for any
subregion. As Scantrack Markets are defined by industry professionals as target regions for marketing
purposes, retailers pricing can be assumed to be sufficiently similar within such regions to ensure identical
price distributions throughout.
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control for outliers, I drop all transactions for which prices are zero or negative. For the
baseline analysis, I consider all price distributions containing at least 25 transactions and
compute the skewness of each distribution weighting individual price observations with
household weights and quantities purchased.

To proxy for equilibrium shopping effort, I make use of the impact of demand composition
on s̄. Theory suggests that to set their prices, retailers should consider the shopping
effort of households weighted by their share in overall demand for the variety they sell.
Therefore, for each barcode (UPC) I compute the annual, national expenditure shares
stemming from different groups of households, sorted by their shopping effort.5 I consider
separately the five quintiles of the (equivalence scale adjusted) expenditure distribution,
four bins of household income, as well as the number of non-employed household heads.
Based on results from the literature (see e.g. Aguiar and Hurst 2005; Broda et al. 2009;
Kaplan and Menzio 2016) as well as the findings outlined in Section 4.1 below, high-
spending, high-income, or households with fewer non-employed members are exerting less
shopping effort and pay higher prices for identical goods. To be in line with the predictions
from theory, the skewness of price distributions should therefore be decreasing in the
expenditure share coming from high-spending or high-income households, but increasing
in the share of demand from households with more non-employed members.

To test for the relationship between skewness and shopping derived from theory, I regress
the skewness of a price distribution (j, r, t) on the national expenditure shares of each
household group g, for variety j in the respective year y(t), excluding one household group
as a baseline. The specification is given in equation (4). To control for local economic
conditions and product characteristics, I include time-region fixed effects (µr,t) as well as
fixed effects for Nielsen-defined product modules (θm).6 All regressions are weighted by
the total amount of expenditures of the price distribution.

skewj,r,t = θm + µr,q +
G∑
g=2

βgsharej,g,y(t) + εj,r,q (4)

Results are reported in Table 1. Standard errors in parentheses are clustered at the
barcode-year level. In line with theoretical predictions, the skewness of price distributions

5I use annual and national shares as Nielsen is representative at this level. Using aggregate rather
than local shares is justified by the evidence on uniform price setting of large retail chains across locations
(see e.g. DellaVigna and Gentzkow 2019), who should therefore take national rather than local demand
composition into consideration for their price setting.

6I do not control for UPC fixed effects to exploit variation in expenditure shares across different
varieties. Nielsen-defined product modules are the first level of aggregation above UPCs and capture
product characteristics at a granular level. Examples of product modules in Nielsen are e.g. “fresh apples”
or “fresh oranges” for different categories of fresh fruits.
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is monotonically decreasing in the share of expenditure stemming from higher spending
households (column (1)). The coefficients should be interpreted as the relative skewness
compared to the omitted baseline group. For column (1): If a barcode is bought entirely
by households in the fifth quintile of the expenditure distribution, the skewness of its
price distribution decreases by 3.4 relative to a barcode bought entirely by the first
expenditure quintile. All differences vs. the baseline group are statistically significant at
the 99%-level. The finding is robust to measuring expenditure shares conditional on the
household head being between age 25-65, to account for spending patterns of student
and retiree households (column (2)). Similar findings pertain by income group, again
conditioning on working age households (column (3)), while skewness is monotonically
increasing in the number of non-employed household heads (column (4)). All findings
are well in line with the prediction from Proposition 3, conditional on shopping effort
decreasing in expenditures, income, and increasing for non-employed household members.

Table 1: Demand Composition and the Skewness of Price Distributions

by expenditures by expenditures by income by non-employment
(working age) (working age)

(1) (2) (3) (4)

quintile 2 −1.638∗∗∗ −1.467∗∗∗ 30k-60k −0.136 1 non-emp 0.864∗∗∗
(0.188) (0.170) (0.123) (0.092)

quintile 3 −2.309∗∗∗ −2.076∗∗∗ 60k-100k −0.824∗∗∗ 2 non-emp 1.011∗∗∗
(0.189) (0.167) (0.124) (0.172)

quintile 4 −3.067∗∗∗ −2.582∗∗∗ >100k −0.820∗∗∗
(0.172) (0.155) (0.087)

quintile 5 −3.412∗∗∗ −3.007∗∗∗
(0.153) (0.142)

FE module 795 795 795 795
FE Y:Q:SMC 3584 3584 3584 3584

Observations 3,026,551 3,026,404 3,026,404 3,026,551
Adjusted R2 0.034 0.033 0.031 0.031
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

In Appendix C.1, I report further robustness with respect to how the skewness of price
distributions is measured, exemplarily for the specification of column (1) of Table 1. Ta-
ble 5 reports results without using weights in the regression, computing the skewness
based on unweighted price observations or based on household weights only. All findings
are qualitatively and quantitatively robust to using alternative weighting schemes. The
pattern of skewness decreasing in expenditure is also robust when using Kelly’s mea-
sure of skewness, which is less sensitive to outliers.7 As Table 6 shows, the patterns
remain if considering only price distributions with at least 50 or 100 transactions, and
are quantitatively even larger for distributions with more frequent purchases.8

7Note here that the units of the coefficients are not comparable for Kelly’s measure of skewness and
hence no statements can be made about the relative magnitude of the results in column (2) of Table 5.

8This is despite controlling for time-region and product module fixed effects, i.e. despite a limited role
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All specifications considered suggest the same conclusion: The skewness of price distribu-
tions is negatively associated with the share of expenditure stemming from low shopping
households. I take this as strong evidence in favor of a response of posted price dis-
tributions to demand weighted shopping effort and proceed to studying its implications
below.

3 Equilibrium of Shopping and Demand Composition

Households’ consumption baskets and shopping effort are determined jointly with retail-
ers decision on offered prices in equilibrium. To study implications of the mechanism
outlined in the previous section, I therefore develop an equilibrium framework featuring
heterogeneous households with non-homothetic preferences and a choice of shopping ef-
fort, as well as endogenous price distributions for multiple varieties. The model allows
for a decomposition of expenditure inequality that takes into account equilibrium effects
of shopping on offered prices and provides a laboratory to study counterfactuals and the
consequences of aggregate shocks. In this section, I outline the model and discuss the
quantitative implementation and calibration. Results are presented in Section 4.

3.1 Households with Non-Homothetic Preferences and Shopping

Households are heterogeneous in their beginning of period asset holdings a and idiosyn-
cratic labor productivity z, which evolves exogenously according to a first order Markov
process. They decide jointly on their future asset holdings a′, quantities consumed of
each variety {cj}Jj=1 and shopping effort s. Households’ decision problem can be split
into two stages. In a first stage the household divides his resources between savings and
total expenditure e, i.e. the first stage solves

V (z, a) = max
e,a′

U(e) + βEz′|zV (z′, a′)

s.t. e+ a′ ≤ (1 + r)a+ zw

for composition effects.

16



The utility of expenditure U(e) is determined in a second stage by the household’s allo-
cation of consumption across varieties and choice for shopping effort, solving

U(e) = max
s,{cj}Jj=1

u(C)− v(s, e)

C =

[
J∑
j=1

((e)qj cj)
σ−1
σ

] σ
σ−1

J∑
j=1

pj(s)cj ≤ e

where u(·) are households preferences over a non-homothetic consumption aggregator C
and v(s, e) is the disutility of exerting shopping effort. The consumption aggregator C is
a non-homothetic CES function and a simplified version of the preference specification in
Handbury (2021). For given total expenditure e and shopping effort s, it yields a demand
system across varieties that can be defined in terms of expenditure shares ωj where the
optimal allocation satisfies

ωj
ωk

= e(1−σ)(qk−qj)
(
pj(s)

pk(s)

)1−σ

The parameters {qj}Jj=1 govern the expenditure elasticity of demand and for σ > 1 (i.e.
varieties being substitutes to each other) the relative expenditure share of variety j vs.
variety k

(
ωj
ωk

)
is increasing in total expenditures e iff qj > qk.

The price a household pays for any variety j is a decreasing function of his shopping
effort. Households’ optimal choice of shopping effort equalizes the marginal benefits of
relaxing the budget constraint by a reduction in prices with the marginal disutility of
effort such that

u′
(

e

P(s, e)

)
e

P(s, e)2

∂P(s, e)

∂s︸ ︷︷ ︸
marginal benefit
of relaxing BC

= −vs(s, e)︸ ︷︷ ︸
marginal disutility

of shopping

where

P(s, e) =

[
J∑
j=1

(
(e)−qj pj(s)

)1−σ
] 1

1−σ

∂P(s, e)

∂s
=

1

P(s, e)

J∑
j=1

[(e)−qj(1−σ) (pj(s))
−σ ∂pj(s)

∂s︸ ︷︷ ︸
return to
shopping

] < 0
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The relationship between prices and shopping effort, i.e. the return to shopping effort
∂pj(s)

∂s
< 0, is an equilibrium object and depends on the distribution of offered prices. I

focus on this relationship and equilibrium conditions in the goods market below.

3.2 Returns to Shopping and Equilibrium in the Goods Market

The distribution of offered prices for each variety Fj(p) is determined by retailers’ optimal
price setting as laid out in Section 2, given equilibrium search effort s̄j. Following Pytka
(2018), the distribution of effective prices for a single purchase of variety j by a household
exerting shopping effort s is given as

Gj(p|s) = (1− s)Fj(p) + s(1− (1− Fj(p))2)

Under the assumptions that households split their total demand for each variety into a
continuum of purchases and that every price observation is an i.i.d. random draw from
Fj(p), the average price paid per purchase of variety j is given by

pj(s
i) = EGj [p|si] = µFj − si

(
µFj − EFj [min{p′, p′′}]

)
(5)

such that
∂pj(s

i)

∂si
= −

(
µFj − EFj [min{p′, p′′}]

)
= const. < 0

Hence, the two constants µFj and ∂pj(s
i)

∂si
are sufficient statistics to capture the impact of

the price distribution of variety j on households’ behavior, i.e. all that households need
to know to decide on their demand for each variety and their shopping effort.

Solving for an equilibrium in the goods market requires finding a fix-point in households’
policies

{
{cj(z, a)}Jj=1, s(z, a), a′(z, a)

}
(z,a)

, the induced distribution of households across
states λ(z, a) and aggregate demand as well as demand weighted shopping effort for each
variety {Cj, s̄j}Jj=1 where

Cj =

∫
(z,a)

λ(z, a)cj(z, a)

and
s̄j =

∫
(z,a)

λ(z, a)cj(z, a)

Cj
s(z, a)

while the distribution of households across states is the stationary solution to the law of
motion

λ(z′, a′) =

∫
(z,a)

λ(z, a)Pr(z′|z)1a′=a(z,a)

In the full model, the type i of Section 2 is replaced by households state (z, a).
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3.3 Quantitative Implementation

To study the implications of equilibrium interactions between shopping effort and de-
mand composition, I solve the model numerically. Households’ spending-savings problem
is solved by a version of the endogenous grid method (EGM) in the spirit of Carroll (2006)
where U(e) is approximated numerically based on the optimal solution to the consump-
tion allocation and shopping problem. At the aggregate, I apply Broyden’s method to
solve jointly for a fixed point in all {s̄j}Jj=1. I calibrate the model at annual frequency.
The calibration proceeds in three steps: I first calibrate the income process outside of
the model, describe functional forms and set some parameters exogenously, and finally
calibrate all remaining parameters to match targets on expenditure composition, price
dispersion, and model aggregates.

Income Process

The process for idiosyncratic labor productivity is calibrated externally. To capture
higher moments of income risk as reported e.g. in Guvenen et al. (2021), I follow Ferrier
et al. (2022) and Mendicino et al. (2022) and assume an AR(1) process with innovations
from a Gaussian mixture, i.e.

log(z′) = ρ log(z) + ε

ε ∼

N (µε,1, σ
2
ε,1) with probability p

N (µε,2, σ
2
ε,2) with probability 1− p

I discretize the process with 16 states for z following the method of Farmer and Toda
(2017). The income process requires to calibrate 6 parameters, (ρ, p, µε,1, σ

2
ε,1, µε,2, σ

2
ε,2).

I impose µ2 = − p
1−pµ1 to obtain mean zero innovations and calibrate the remaining

parameters to match five moments of annual, equivalence scale adjusted, post-tax house-
hold labor earnings: The cross sectional variance of earnings, the standard deviation,
skewness, kurtosis of annual earnings growth as well as the difference between the 90th
and 10th percentile of annual earnings changes. Target values based on PSID data are
obtained from De Nardi et al. (2020).9 All targets are reported in Table 2 along with the
model counterparts. The associated parameter values are ρ = 0.91, σ1 = 0.59, σ2 = 0.23,
p = 0.082, and µ1 = −0.57.

9For more information on how the target values are constructed see their Appendix A.3.
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Table 2: Calibration Income Process

Targets (Annual) Model Data

Cross Sectional Variance (Levels) 0.61 0.57
Standard Deviation of Changes 0.33 0.33
Skewness of Changes -0.99 -0.98
Kurtosis of Changes 10.6 10.3
P90-P10 of Changes 0.53 0.64

Functional Forms and Exogenously Set Parameters

I assume standard CRRA preferences for u(·) and a disutility of shopping effort depending
on total expenditures e such that

u(c) =
c1−φ − 1

1− φ
and v(s, e) = ψ1 (e)ψ2

s

1− s

Disutility of shopping depending on total expenditure captures in reduced form that
households have to search more often for prices if they are making more purchases. In
this spirit, ψ2 measures economies of scale in shopping effort.

The calibrated version of the model features three varieties, i.e. J = 3.10 Varieties
should be considered close substitutes and can be thought of as different barcodes within
a Nielsen product module. Think of different varieties as types of apples, differing in
their quality, with households substituting towards higher quality (high qj) varieties as
they increase spending. I focus on this low level of differentiation across varieties as a
significant degree of non-homotheticities can only be observed at this granular definition
of a variety.11 In line with the evidence on low-level elasticities of substitution sampled
in Jaravel and Olivi (2021), I set σ = 2. Furthermore, I normalize q2 = 0 and κ1 = 1.

The CRRA parameter is set to φ = 2 in line with the literature and the annual real
interest rate to r = 0.02.

Endogenously Calibrated Parameters

The remaining parameters to be calibrated are (ψ1, ψ2, κ2, κ3, p̄1, p̄2, p̄3, β, w, q1, q3). I
impose q1 = −q3 and p̄j = a+ b(κj−κ1). This leaves 9 free parameters for which I target
9 moments. Targets can be divided into three groups:

At the aggregate level, I target a wealth to income ratio of 3, an average retail markup
of 1.45 following the results of Hall (2018), and normalize average expenditure in line

10Cosidering 4 or 5 varieties does not significantly alter results.
11See e.g. Jaravel (2019) and the findings presented in Appendix C.2.
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with the Nielsen data.12 While all parameters can influences all moments, the ones most
closely linked to the aggregate targets are ψ1, which governs average shopping effort and
hence aggregate markups, β for the wealth to income ratio, and the wage rate w for mean
expenditure.

Table 3: Targets and Model Fit

Target Value Model Source

baskets overlap Q1 vs. Q5 0.6328 0.6301 Nielsen
∆e substitution Q1 vs. Q5 0.072 0.071 Nielsen
∆e shopping Q1 vs. Q5 0.02 0.021 Nielsen
mean(CoVj) 0.1920 0.1927 Nielsen
CoV2 − CoV1 -0.0120 -0.0074 Nielsen
CoV3 − CoV1 -0.0201 -0.0240 Nielsen
average markup 1.45 1.4302 Hall (2018)
wealth/income 3 2.99
mean expenditure 0.964 0.964 Nielsen

A second set of moments targets price dispersion across varieties. Targets for price
dispersion are computed based on the same definition of a price distribution as in Section
2.3, i.e. pool transactions for a given barcode within a Scantrack region and a quarter.
To account for differences in the average price across barcodes in the data, I focus on
the coefficient of variation (CoV), i.e. the standard deviation of prices normalized by the
mean. I target the (expenditure weighted) average CoV across all price distributions. In
addition, I run the regression in equation (4) for the CoV, including on the right hand
side the quintiles of the expenditure distribution and target the implied differences in
the CoV across model varieties based on the endogenous demand composition (spending
shares across quintiles) in the model. Targets for price dispersion interact most closely
with the values for κ and p̄.

The final set of moments contains targets on expenditure composition across households.
To capture the (dis)similaritiy in households consumption baskets, I target the histogram
overlap of expenditure shares ωj between the first and the fifth quintile of the expenditure
distribution at the barcode level. Details on the construction of this target are provided in
Appendix C.2. The barcode-level overlap between the consumption baskets at the bottom
and top of the expenditure distribution is about 63%. In addition, I target the annual
savings (as a share of respective total expenditure) of households at the bottom quintile
of expenditures relative to the top quintile, due to (i) buying varieties that are cheaper on
average (savings from substitution) and (ii) paying less for identical varieties (shopping).

12The target for mean expenditure is computed by dividing households annual expenditure in Nielsen
by the mean and then truncating the distribution at the top at 4 times mean spending.
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Table 4: Model Parameters

Parameter Value

J 3
σ 2.0
φ 2.0
r 0.02

qj [−0.65 0 0.65]
ψ1 0.0035
ψ2 0.05
κj [1 1.04 1.22]
p̄j 2.6 + 1.5(κj − κ1)
β 0.9335
w 0.68

The former amounts to about 7.1% and the latter to 2.1% of annual spending.13 The
difference in shopping identifies ψ2 while the overlap in consumption baskets and savings
from substitution interact closely with relative expenditure elasticities q as well as κ and
p̄ across varieties.

Figure 2: Expenditure Distribution - Model vs. Data

Table 3 unites all targets and presents the model fit. The model is able to match all
targeted moments. Table 4 summarizes the calibrated parameter values. To provide
validation for the calibrated model, Figure 2 plots the model implied distribution of
expenditures (baseline) along with its counterpart from the Nielsen dataset. Note here
that while I normalize average expenditure and match three moments of expenditure
composition across households, no measure of disperion in household expenditures is
targeted in the calibration. Despite this, the model does remarkably well in capturing
the empirically observed distribution of expenditures. I take this as confirmation that

13More details on these targets in Section 4.1.
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the model provides a realistic framework for studing the equilibrium consequences of
shopping and non-homotheticities in households’ preferences.

4 Shopping, Demand Composition, and Inequality

With the calibrated model at hand, this section highlights implications of the equilib-
rium interaction of shopping and demand composition with retailers’ price setting. I
focus on implications for inequality among households and the insurance provided by ad-
justments in equilibrium prices. Section 4.1 studies the consequences of heterogeneity in
demand composition across goods in a stationary economy, while Section 4.2 highlights
implications of shifts in demand composition over time in response to aggregate income
losses.

4.1 Equilibrium Prices and Expenditure Inequality

Due to heterogeneity in demand composition across varieties, shopping effort has conse-
quences for the relative prices and especially markups retailers post for different items.
It is their optimal response to demand weighted shopping effort varying with the com-
position of buyers. This section shows the consequences of shopping effort’s interaction
with heterogeneity in demand composition across varieties for the interpretation of ex-
penditure inequality. I provide a decomposition of expenditures that can be applied to
both the data and the model, show that the model fits the data well along this dimen-
sion, and finally use the model to adjust the decomposition for the equilibrium effect of
heterogeneity in shopping on posted prices.

To decompose expenditure inequality in the data, I sort all barcodes (varieties) into groups
of close substitutes, defining a group as all barcodes within a Nielsen product model
measured in the same units.14 Total annual expenditure e for a given household is the
sum of spending over all barcodes in all groups. Spending per barcode is the average price
paid by the household per unit of variety j in barcode group k pjk times the total quantity
consumed cjk. Both prices and quantities are normalized to the unit of measurement for
any given good, e.g. for soft-drinks prices are per milliliters and quantities total milliliters
consumed. Further define p̄jk as the average price paid for variety j across all households
and p̃k as the average of p̄jk within group k. As an example for the product module “fresh
apples” measured in pieces, p̃k is the average price per apple across all households and

14I group barcodes with the same unit of measurement to make their per unit prices comparable across
products. Most product modules have one dominant unit of measurement and there is no systematic
difference across households in the unit dimension as Appendix C.2 shows.
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all types of apples, p̄jk the average price for one specific type of apple across households,
and pjk the average price one specific household pays for one specific type of apple.

We can rewrite total expenditures, decomposing the price a household pays per unit of
variety j such that

e =
∑
k

∑
j∈Jk

ejk =
∑
k

∑
j∈Jk

pjkcjk

=
∑
k

∑
j∈Jk

(pjk − p̄jk)cjk︸ ︷︷ ︸
shopping (direct)

+ (p̄jk − p̃k)cjk︸ ︷︷ ︸
substitution

+ p̃kcjk︸ ︷︷ ︸
quantity

The first term is the difference between what the individual household pays for the same
variety relative to other households, which can be interpreted as the direct effect of
differences in shopping behavior, i.e. for a given price distribution paying more or less for
the same variety. The second term can be seen as the effect of substitution among similar
goods (within a module/unit bin). The larger this term is, the more expensive products
a household buys from a range of similar varieties. The literature (e.g. Argente and Lee
2021; Bisgaard Larsen and Weissert 2020; Jaimovich et al. 2019) has interpreted a higher
price among close substitutes as households buying higher quality products. The last term
summarizes households’ counterfactual expenditure if there was no difference in shopping
effort and substitution across close substitutes, i.e. if everyone pays the same price for all
apples. The same decomposition can be applied to the model, where I consider only a
single (representative) group k and all three varieties j are considered close substitutes
within that group.

Figure 3a shows the results of the empirical decomposition by quintile of the expenditure
distribution, expressed as a fraction of total expenditure. Households at the bottom of
the distribution have about about 5.5% lower expenditure due to price differences within
module/unit bins, of which 1.5pp. are due to the direct effect of shopping and 4pp. due to
substitution across varieties. At the top of the distribution, price differences increase total
spending by 4%, 3.5pp. of which due to substitution. In between, the contribution of both
shopping and substitution is monotonically increasing in the expenditure of households.
The magnitudes of the contribution of the (direct) effect of shopping and substitution
are well in line with the findings e.g. Aguiar and Hurst (2007) or Bisgaard Larsen and
Weissert (2020) obtain with alternative methodologies.

We can also interpret these findings in terms of their contribution to expenditure in-
equality. Inequality is often measured as a ratio between the top and the bottom of the
distribution (e.g. Aguiar and Bils 2015). Define ẽ =

∑
k

∑
j∈Jk p̃kcjk as a household’s
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(a) data (b) model

Figure 3: Decomposition of Expenditures

counterfactual spending without any differences in shopping effort and consumption bas-
kets. The results of Figure 3a imply that expenditure inequality measured as the ratio
between spending of the top to bottom quintile of the expenditure distribution would
be about 10% lower when measured in counterfactual expenditure ẽ compared to true
expenditure e.15

In Table 7 in Appendix C.3 I regress the contribution of shopping and substitution on
households’ expenditure to show that both are robust to controlling for income and
household size as well as household and year-state fixed effects. To relate the lower price
paid for identical varieties to household shopping effort, I show in a similar regression
that the number of trips per purchase made, a common measure for shopping effort, are
a decreasing function of household expenditure.16

Figure 3b shows that the model is able to reproduce the empirical patterns. It is important
to note that only the differences for shopping and substitution between the lowest and
highest quintile are included in the set of targeted moments. The model does well at
reproducing the levels and shape of the empirical counterparts.

In the previous decomposition, the substitution term picks up differences in the posted
price distributions across varieties. The model allows to further account for the equi-
librium effect of shopping on offered prices. As Proposition 1 has shown, the effect of
shopping on posted prices operates through the markups retailers set in response to dif-
ferences in s̄. While I do not observe markups in the data, the model allows me to

15Figure 12 in Appendix C.3 shows that this number increases to 12% when considering the bottom
vs. top 10% of the expenditure distribution.

16See e.g. Aguiar and Hurst (2007) or Droste et al. (2019). Trips are normalized by the number of
purchases to control for shopping needs. Kaplan and Menzio (2015) show that a reduction in prices
is most effectively obtain by visiting more stores, or the same store more frequently, i.e. increasing the
number of trips per purchase.
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attribute differences in average markups across varieties to the equilibrium effect of shop-
ping. The substitution effect is reduced to differences in marginal costs. The adjusted
decomposition is given as

e =
∑
k

∑
j∈Jk

(pjk − p̄jk)cjk︸ ︷︷ ︸
shopping (direct)

+ (p̄jk − p̃k)cjk︸ ︷︷ ︸
substitution

+ p̃cjk︸︷︷︸
quantity

=
∑
k

∑
j∈Jk

(pjk − p̄jk)cjk + ((p̄jk − κjk)− (p̃k − κ̃k))cjk︸ ︷︷ ︸
shopping (direct+equilibrium)

+ (κjk − κ̃k)cjk︸ ︷︷ ︸
substitution

+ p̃kcjk︸ ︷︷ ︸
quantity

Figure 4 presents the results for the adjusted decomposition alongside the original results
from above. It shows that accounting for the equilibrium effect of differences in s̄ on
offered prices the contribution of shopping to expenditure inequality more than doubles,
making it equally important as differences in marginal costs across varieties. According to
this decomposition, shopping alone through its direct and equilibrium effects can account
for 5% of inequality in household expenditures.

(a) model (original) (b) model (adjusted)

Figure 4: Decomposition of Expenditures - Equilibrium Effects

In combination with non-homotheticities in preferences and the ensuing heterogeneity
in demand composition across varieties, shopping can provide significant insurance to
households through its effect on equilibrium prices. The previous literature such as Aguiar
and Hurst (2007), Pytka (2018), or Arslan et al. (2021) has focussed on how households
can reduce the price they pay for a given variety after e.g. a decline in income. The
findings outlined above show that additional insurance comes from the effect of low income
households’ collective shopping effort on the prices for the goods they purchase.

In this sense, non-homotheticities and the partial separation of demand into different
varieties reduces the externalitiy households exerting low shopping effort impose on their
high-shopping counterparts. The model economy allows for a quantification of this reduc-
tion in externalities as well as the remaining externality due to the non-zero overlap in
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households’ consumption baskets. To do so, I construct counterfactual price distributions
based on alternative values of s̄ across varieties.

For a full pooling counterfactual I equalize s̄ across all varieties, computing an aver-
age shopping effort by weighting individuals shopping policies with their share in total
demand across all varieties such that s̄ =

∫
(z,a)

λ(z,a)
∑J
j=1 cj(z,a)∑J
j=1 Cj

s(z, a). I fix households’
consumption baskets and shopping policies at their equilibrium values and compute the
change in prices and hence total expenditures if they were drawing from the distribu-
tions retailers would post if they faced the counterfactual s̄ for all varieties.17 The full
pooling line in Figure 5 plots the percentage change in expenditures across households at
different expenditure levels over the range of the model implied expenditure distribution.
If all households were pooled in a single price distribution, households at the bottom of
the expenditure distribution would spend 2% more on their consumption bundle while
households at the top could save 1% while buying the same basket. This is in line with
the results from the expenditure decomposition presented above.

Figure 5: Shopping Externality

To measure how much externality remains, I allow a household in state (z, a) to draw
for each variety from a price distribution that retailers’ would choose to post if all other
households were exerting shopping effort s(z, a), i.e. the same shopping effort as a type
(z, a) household. In this counterfactual, I obtain full separation. Figure 5 shows that the
remaining externality is sizeable. Holding shopping effort and consumption baskets fixed,
households at the bottom of the expenditure distribution could save an additional 15% if
they were drawing prices from a targeted price distribution, i.e. if retailers could perfectly
discriminate between household types. The highest spending households on the other
hand would pay up to 25% more in a world with perfect discrimination. The large size
of the remaining externality can be accounted for by the generally higher spending levels

17The exercise can be interpreted as the change in a Laspeyres price index.
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at the top of the expenditure distribution. While high-spending households consume
relatively less of the goods that are important in low-spending households’ baskets, they
still account for a sizeable share of expenditures across all varieties due to their higher
level of expenditures.18

4.2 Demand Shocks and the Cyclicality of Markups

While the previous section has focussed on the implications of heterogeneity in demand
composition across goods, this section studies the consequences of an interplay between
shopping and demand composition over time. In the model economy, I simulate a decline
in aggregate income of 3% holding all parameters fixed at steady state values. I consider
three different scenarios: In a first scenario all housholds are affected, i.e. I reduce the
labor earnings of all households by 3%. In a second scenario, I reduce aggregate income
again by 3% but concentrate the losses only on the top 25% households in the labor
earnings distribution – each of them affected proportionately to their labor earnings. In
a third scenario, I concentrate the same aggregate loss among the bottom 25% of the
labor earnings distribution.

(a) all (b) top (c) bottom

Figure 6: Markups and Aggregate Income Losses

Figure 6 plots the response of average posted markups by variety. Focussing first on
the case with all households affected, markups decline in response to a loss in aggregate
income. If losses are focussed at the top of the distribution, markups become even more
pro-cyclical, especially for varieties with higher q which are disproportionately consumed
by high-income households. In response to the same loss in aggregate income concentrated
among the bottom of the earnings distribution, markups in the model economy become
counter-cyclical. Hence the model implies that the procyclicality of retail markups in
response to aggregate income losses is decreasing in the share of the loss accounted for
by the bottom of the earnings distribution.

18Appendix C.2 shows that this is in line with the data.
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To understand the mechanism behind this result, I focus on the response of the low q

variety to a loss concentrated at the bottom of the earnings distribution. In the model,
with parameters fixed at steady state levels markups respond only to changes in demand
weighted shopping effort s̄. As equation (2) shows, changes in equilibrium shopping effort
can be driven either by changes in households’ shopping effort or in demand composi-
tion, i.e. the expenditure share stemming from low- vs. high-shopping households. I can
consider both drivers separately. Figure 7 plots the equilibrium response as a baseline
together with two counterfactuals: First, I fix demand composition at the steady state
level and change only shopping policies to households’ optimal choices along the path.
In a second counterfactual I fix households’ shopping policies and adjust only demand
composition.

Figure 7: Markup Decomposition

When adjusting only households’ shopping effort, markups decline in response to the
income loss. This is because households at the bottom have become poorer and try
to compensate by increasing their search for cheaper prices and reducing the cost of
consumption. What is responsible for the overall increase in markups is the change in
demand composition over time. As the bottom of the distribution loses income and has
to reduce expenditures, high-income households account for a larger share of demand.
These households were exerting lower shopping effort to begin with and therefore any
shift of demand composition towards them reduces s̄ and with it the price elasticity of
demand. Retailers face lower competition and find it optimal to increase markups. The
second effect dominates the increase in shopping effort at the bottom of the distribu-
tion and overall markups increase. For an income loss concentrated at the top of the
earnings distribution both effects work in the same direction: High-income households
increase their effort and demand composition shifts towards low-income (high-shopping)
households.
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The findings are in sharp contrast to the results of the previous section: While heterogene-
ity in demand composition across goods provides additional insurance by reducing the
markups charged on goods bought by low-income households, shifts in demand compo-
sition over time amplify inequalities: High-earning households are partially compensated
through a decline in posted markups when they are hit by an aggregate income loss.
Low-earning households might see markups rise if they lose income as retailers adjust
their price setting to their declining share in aggregate demand.

While an empirical investigation of the cyclicality of retail markups is beyond the scope
of this paper, empirical findings in the literature provide support to the results presented
above. Focussing on retail markups and using similar datasets to Nielsen but enriched
with data on wholesale cost, Anderson et al. (2020) find acyclical markups in response to
local unemployment shocks while Stroebel and Vavra (2019) find strongly procyclical re-
tail markups in response to changes in local house prices. This evidence can be reconciled
with the findings outlined above under the reasonable assumption that unemployment
risk is concentrated at the bottom of the income distribution while house prices affect
only homeowners who are concentrated at the middle and top of the distribution.

5 Conclusion

This paper revisits the role of households’ shopping behavior for inequality in consump-
tion expenditures, studying equilibrium interactions between heterogeneity in shopping
effort, demand composition, and optimal price setting. Heterogeneous consumption bas-
kets along the income distribution and higher shopping effort of the poor imply that
retailers face different price elasticities depending on their customer base and charge
higher markups for goods disproportionately consumed by richer households. I highlight
the basic intuitions in a standard framework of price posting under search frictions and
test theoretical predictions on the shape of offered price distributions in the Nielsen Con-
sumer Panel, finding strong empirical support for the proposed mechanism. To study
implications for inequality, I embed the simple framework in a quantitative model featur-
ing rich household heterogeneity, non-homothetic preferences, and endogenous shopping
effort, as well as endogenously determined price distributions for multiple varieties. The
calibrated model replicates salient features of expenditure inequality and price disper-
sion. It shows that equilibrium interactions between shopping effort, demand composition
across varieties, and price posting double the contribution of shopping effort to expen-
diture inequality relative to previous findings. The model also implies that the response
of markups to aggregate income shocks crucially depends on the incidence of the shock
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along the income distribution, due to shifts in demand composition over time. In ongoing
work, I study implications for the effectiveness of redistributive policies and the design
of consumption taxes.
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A Extensions to the Retailer Problem

A.1 Entry and Fixed Cost of Operating

Consider a version of the retailer problem outlined in Section 2.1 where retailers selling
variety j are subject to a per-period fixed cost of operating Kj and the total mass of
retailers Mj is determined endogenously by free entry. With all other notation as before,
the total profits of a retailer posting price p in the adjusted model are given by

π̃j(p) =
Cj
Mj

[(1− s̄j) + s̄j2(1− Fj(p))] (p− κj)−Kj =
πj(p)

Mj

−Kj

where πj(p) is retailers’ profits of posting p in the version of the model without fixed cost
of operating and a fixed mass one of retailers. To sustain an equilibrium distribution of
posted prices retailers have to be again indifferent beween all prices offered. Take two
offered prices p1 and p2, indifference requires

π̃j(p1) = π̃j(p2)

⇒πj(p1)

Mj

−Kj =
πj(p2)

Mj

−Kj

⇒πj(p1) = πj(p2)

The indifference condition between prices is independent of Mj and Kj, i.e. independent
of entry and fixed cost of operating, and identical to the condition in the orgininal model.
This implies the distribution of offered prices Fj(p) is identical to the model without
entry and fixed cost. To solve the model with fixed cost and entry, one can therefore first
recover the offered price distribution as well as the constant profits at any price on the
support of Fj(p), denoted π̄j, in the original model and solve for Mj given this solution.
Free entry requires zero total profits of operating, i.e. π̃j(p) = 0. The equilibrium number
of retailers therefore given by Mj =

π̄j
Kj

.

A.2 Heterogeneous Marginal Cost

Take the setup from Section 2.1 but consider a continuous distribution of retailers over
marginal cost, with CDF Γj(κ) and support [κj, κ̄j] and assume κ̄j = p̄j. I.e. consider a
distribution of active firms for which the support has to end at the maximum willingness
to pay, as no retailer with marginal cost above p̄j could ever make a sale with positive
profits. Profits of a retailer with marginal cost κ of posting price p for variety j are given
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by
πj(p, κ) = (p− κ) ((1− s̄j) + 2s̄j(1− Fj(p)))Cj

Define p(κ) as the set of prices maximizing πj(p, κ) for given Fj(p), i.e. the indifference
set of posted prices for a retailer with marginal cost κ.

A.2.1 Solving for the Distribution of Offered Prices

To solve for the equilibrium distribution of offered prices I follow closely the steps of
Burdett and Mortensen (1998) or Mortensen (2003) for a similar model of wage posting.

1. Properties of the Distribution

By similar argument as in Burdett and Judd (1983), the offered distribution Fj(p)
has no mass points, has a connected support, and the upper bound of the support of
Fj(p) is p̄j. Intuitively all three can be shown by providing a profitable deviation in
price posting if an offered price distribution is violating one of the three conditions.

2. Prices Posted Are Weakly Increasing in Marginal Cost

We can show that for any κ′′ > κ′, p′ ∈ p(κ′), and p′′ ∈ p(κ′′) it has to hold that
πj(p

′, κ′) > πj(p
′′, κ′′) and p′′ ≥ p′, i.e. profits are strictly decreasing and prices are

weakly increasing in marginal costs. To do so, note the following

π′j(p
′, κ′) = (p′ − κ′) ((1− s̄j) + 2s̄j(1− Fj(p′)))Cj (?1)

≥ (p′′ − κ′) ((1− s̄j) + 2s̄j(1− Fj(p′′)))Cj (?2)

> (p′′ − κ′′) ((1− s̄j) + 2s̄j(1− Fj(p′′)))Cj = πj(p
′′, κ′′) (?3)

≥ (p′ − κ′′) ((1− s̄j) + 2s̄j(1− Fj(p′)))Cj (?4)

Where the steps from (?1) to (?2) and (?3) to (?4) follow from the optimality of
p′ ∈ p(κ′) and p′′ ∈ p(κ′′) respectively and the step from (?2) to (?3) from κ′′ > κ′.
From above it is immediately clear that πj(p′, κ′) > πj(p

′′, κ′′), i.e. profits are
strictly decreasing in κ. To see that p′′ ≥ p′ note that (?1)− (?4) ≥ (?2)− (?3) > 0

and hence

(κ′′ − κ′) ((1− s̄j) + 2s̄j(1− Fj(p′))) ≥ (κ′′ − κ′) ((1− s̄j) + 2s̄j(1− Fj(p′′)))

which yields Fj(p′′) ≥ Fj(p
′) and therefore, as any cumulative distribution cannot

be decreasing, p′′ ≥ p′. So any price optimal at κ′ cannot be higher than any price
optimal at κ′′. Hence p(κ′) and p(κ′′) can intersect in at most one boundary point.
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With a continuous distribution of marginal cost, the latter also implies that p(κ)

has to be single valued.

3. The Price Distribution is a Shifted Distribution of Marginal Cost

By the single value property of p(κ)

Fj(p) = Fj(p(κ)) = Γj(κ)

and hence
F ′j(p(κ)) = fj(p(κ)) =

Γ′j(κ)

p′(κ)

4. The Price Function p(κ) Solves Retailers Profit Maximization

Analogue to before, the profits of a retailer with marginal cost κ posting price p are
given by

πj(p, κ) = (p− κ) ((1− s̄j) + 2s̄j(1− Fj(p)))

and the profit maximizing price satisfies

∂π

∂p
= (1− s̄j) + 2s̄j(1− Fj(p))− (p− κ)2s̄jF

′(p) = 0

which yields

1 =
(p− κ)2s̄jF

′(p)

(1− s̄j) + 2s̄j(1− Fj(p))

and by the result of 3.)

p′(κ) =
(p(κ)− κ)2s̄jΓ

′
j(κ)

(1− s̄j) + 2s̄j(1− Γj(κ))

This differential equation together with the boundary condition p(κ̄) = κ̄ = p̄ pins
down the unique solution to p(κ) and hence to F ′(p). The boundary condition holds
because the upper bound of any price distribution has to be at p̄ (else there are
profitable deviations) and a firm with marginal cost κ = κ̄ = p̄ will only be willing
to post this price.

5. Obtaining a Solution

Define
T (k) = log ((1− s̄j) + 2s̄j(1− Γj(κ)))
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such that
T ′(k) =

−2s̄jΓj(κ)

(1− s̄j) + 2s̄j(1− Γj(κ))

We can the rewrite the first difference equation pinning down the pricing function
as

p′(κ) = −(p(κ)− κ)T ′(κ)⇒ p′(κ) + T ′(κ)p(κ) = κT ′(κ)

Therefore any solution has to satisfy (multiply both sides by eT (κ) before integrating)

p(κ)eT (κ) =

∫ κ

κ

xT ′(x)eT (x)dx+ A = κeT (κ) − κeT (κ) −
∫ κ

κ

eT (x)dx+ A

where the second equality follows from integration by parts. Hence

p(κ) = κ+ e−T (κ)

[
A− κeT (κ) −

∫ κ

κ

eT (x)dx

]

Using the boundary condition p(κ̄) = κ̄ it follows that

A = κeT (κ) +

∫ κ̄

κ

eT (x)dx

The solution to the pricing function and the distribution of offered prices is hence
given as

p(κ) = κ+ e−T (κ)

∫ κ̄

κ

eT (x)dx = κ+

∫ κ̄

κ

(1− s̄j) + 2s̄j(1− Γj(x))

(1− s̄j) + 2s̄j(1− Γj(κ))
dx

with derivative

p′(κ) = 1− 1− (−2s̄jΓ
′
j(κ))

∫ κ̄

κ

(1− s̄j) + 2s̄j(1− Γj(x))

[(1− s̄j) + 2s̄j(1− Γj(κ))]2
dx > 0

and therefore

F ′(p) =
Γ′j(κ)

p′(κ)
=

1

2s̄j
∫ κ̄
κ

(1−s̄j)+2s̄j(1−Γj(x))

[(1−s̄j)+2s̄j(1−Γj(κ))]2
dx

=
[(1− s̄j) + 2s̄j(1− Γj(κ))]2

2s̄j(κ̄− κ)(1 + s̄j)− 4s̄2
j

∫ κ̄
κ

Γj(x)dx

We cannot conclude anything on how the profit margins (markups) per sale are
changing with marginal cost κ. To see this note that
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p(κ)− κ =

∫ κ̄

κ

(1− s̄j) + 2s̄j(1− Γj(x))

(1− s̄j) + 2s̄j(1− Γj(κ))
dx

and hence

∂(p(κ)− κ)

∂κ
= p′(κ)− 1 = −1 + 2s̄jΓ

′
j(κ)

∫ κ̄

κ

(1− s̄j) + 2s̄j(1− Γj(x))

[(1− s̄j) + 2s̄(1− Γj(κ))]2
dx

So whether markups are increasing or decreasing in marginal costs depends on the
shape of the distribution Γj(κ). Intuitively, retailers’ optimization trades of higher
margins (markups) against a decrease in demand, where the latter depends on the
distribution of prices which in turn depends on the distribution of marginal costs.

A.2.2 Quantitative Results under Uniform Marginal Costs

While an analytical characterization of how the moments of the price distribution re-
spond to changes in equilibrium shopping effort s̄j under heterogeneous marginal cost
is beyond the scope of this paper, I show robustness of the analytical results for the
baseline model by reporting numerical simulations. I assume a uniform distribution
of marginal cost over [κj, κ̄j] and consider parameterizations with p̄j ∈ {1, 2, 3, 4, 5},
κmin ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} such that κj = κminp̄j and κ̄j = p̄j. I take p̄j = 3

and κmin = 0 as the baseline and vary one parameter at a time, simulating 1,000,000
price draws for each combination of parameters and computing the mean and skewness
of the offered price distribution.

To highlight the properties of a solution to the model with heterogeneous κ, Figure 8
plots the pricing function p(k) and CDF Fj(p) as well as the analytical and simulated
PDF of a single calibrated version with κ̄ = p̄ = 2, κ = 1, s̄ = 0.75.

Figure 9 recovers the result of skewness being a strictly increasing function of average
search effort s̄. Other parameters do not have considerable influence on the skewness of
the price distribution. For the mean of posted prices the main mechanism pertains: For
any combination of parameters the average posted price is decreasing in shopping effort.
This is because the pricing function gets more and more concentrated at the maximum
willingness to pay when s̄ goes to zero.

Results for other types of distributions (exponential, logistic) as well as a version with a
discrete set of marginal-cost types yield similar conclusions: While under some calibra-
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Figure 8: Uniform Distribution - Example
Calibration with p̄ = 2, κ = 1, s̄ = 0.75.

tions small regions of skewness decreasing in shopping effort are possible, these usually
exist only for s̄j ≈ 1 and are associated with counterfactually low levels of price dispersion.
Further results are available upon request. Exploiting the skewness of price distributions
for an empirical test of the mechanism is therefore a reasonable approximation even in a
world with potentially heterogeneous marginal cost.
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Figure 9: Uniform Distribution - Simulations
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B The Nielsen Dataset

All empirical results are based on the Nielsen Consumer Panel, provided via the Kilts
Center for Marketing at Chicago Booth. The dataset is a nationally representative, an-
nual panel of around 60,000 US households who report on their consumption expenditures
at daily as well as demographic information at annual frequency. Demographic variables
include e.g. information on household composition, age, education, occupation, employ-
ment status, income, and location of residence. Nielsen applies several quality checks such
as minimum reporting restrictions before making the data available and keeps households
in the sample for multiple waves, with a median of three waves per household. Households
in the sample are provided with a device to record the prices and quantities of all pur-
chases made in stores by scanning the barcodes of the items they bought (or record prices
manually if the store is not participating in Nielsen’s sample). The focus of the dataset
is on grocery and drug stores, supermarkets and superstores, covering approximately
15% of total consumer spending, 40% of spending excluding durable goods, and 70% of
spending excluding durables and services, i.e. all results can be seen as representative for
non-durable consumption.19

Expenditure is reported at the barcode level. Nielsen organizes all barcodes into 10 de-
partments (e.g. dry groceries or fresh foods), which are then divided into 125 product
groups (e.g. snacks vs. pasta within dry groceries), and further split into about 1,100
product modules (e.g. potato chips vs. tortilla chips within snacks). Within product
modules each variety is uniquely identified by its Universal Product Code (UPC), exam-
ples of a UPC are e.g. a box of Pringles Sour Cream and Onion or a bag of Lay’s BBQ
within the module potato chips. For each purchase of a barcode at a store at a given
day, Nielsen records the quantity bought, the total price of the transaction, the value of
all coupons used as well as the unique store identifier of the location where the purchase
was made. Households’ purchases can further be grouped into shopping trips, where a
trip consists of all purchases of any barcode made by a household in a given store on a
given day.

Data is provided in annual waves and I use the waves of 2007-2019. Data is also available
for the period 2004-2006, but I focus on the later period due to a sample break between
2006 and 2007. All empirical results remain qualitatively unchanged if earlier waves are
included. Across all households the dataset contains a total of about 7.5 million shopping
trips and around 50 million purchases from a universe of 500,000 UPCs per wave.

19For further details on the dataset see e.g. Argente and Lee (2021), Kaplan and Menzio (2015),Droste
et al. (2019), Broda and Parker (2014) or Michelacci et al. (2020).
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No data on wealth is available in the Nielsen panel and income data is only available
as categorical variable and reported for the previous calendar year, while expenditure
on the consumption categories covered in Nielsen is well measured. This is why for
all baseline results on heterogeneity across households, I sort by their position in the
expenditure distribution. Whenever I refer to expenditure, I adjust households’ total
annual expenditure measured in the Nielsen dataset by the square root of household size
and (where applicable) sort them into quintiles/deciles based on their position in the
expenditure distribution in the year of observation. Wherever dollar values are reported,
these are inflation adjusted to 2019 USD.
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C Additional Empirical Results

C.1 Evidence on Demand Composition and Price Distributions

Table 5: Robustness

baseline Kelly unweighted unweighted only HH weights
regression skewness skewness

(1) (2) (3) (4) (5)

quntile 2 −1.638∗∗∗ −0.135∗∗∗ −1.802∗∗∗ −1.450∗∗∗ −1.627∗∗∗
(0.188) (0.036) (0.099) (0.153) (0.181)

quintile 3 −2.309∗∗∗ −0.226∗∗∗ −2.583∗∗∗ −2.100∗∗∗ −2.354∗∗∗
(0.189) (0.035) (0.095) (0.152) (0.180)

quintile 4 −3.067∗∗∗ −0.282∗∗∗ −3.374∗∗∗ −2.793∗∗∗ −3.062∗∗∗
(0.172) (0.034) (0.089) (0.148) (0.169)

quintile 5 −3.412∗∗∗ −0.382∗∗∗ −4.066∗∗∗ −3.151∗∗∗ −3.425∗∗∗
(0.153) (0.030) (0.082) (0.133) (0.151)

FE module 795 777 795 795 795
FE Y:Q:SMC 3584 3584 3584 3584 3584

Observations 3,026,551 2,832,442 3,026,551 3,026,551 3,026,551
R2 0.035 0.027 0.034 0.054 0.036
Adjusted R2 0.034 0.026 0.033 0.053 0.035
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 6: Minimum Number of Observations

Nmin = 25 Nmin = 50 Nmin = 100

(1) (2) (3)

quintile 2 −1.638∗∗∗ −2.289∗∗∗ −3.162∗∗∗
(0.188) (0.398) (0.873)

quintile 3 −2.309∗∗∗ −2.929∗∗∗ −4.268∗∗∗
(0.189) (0.412) (0.840)

quintile 4 −3.067∗∗∗ −3.797∗∗∗ −5.186∗∗∗
(0.172) (0.374) (0.811)

quintile 5 −3.412∗∗∗ −4.654∗∗∗ −6.436∗∗∗
(0.153) (0.325) (0.709)

FE module 795 539 268
FE Y:Q:SMC 3584 3584 3534

Observations 3,026,551 803,604 202,067
R2 0.035 0.059 0.111
Adjusted R2 0.034 0.054 0.094
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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C.2 Consumption Baskets and Separation in the Goods Market

To quantify non-homotheticities in the data, one needs to find a measure for the similarity
of consumption baskets. I define the consumption basket of any group g of households
i via the share of their annual total expenditure allocated to each good ωgj . This basket
share of good j for group g in a given year are given as

ωgj =

∑
i∈g
eij∑

j∈J

∑
i∈g
eij

The vector of basket shares for any given group can be seen as a distribution over a
discrete set of alternatives – the universe of available products. We can hence measure
the similarity of two such vectors, i.e. the consumption baskets of two groups of households
g and h, by computing the histogram overlap Ωg,h, given as

Ωg,h =
∑
j∈J

min
{
ωgj , ω

h
j

}
Note that under homothetic preferences and the law of one price we would have that
ωgj = ωhj ∀j, g, h and hence Ωgh = 1, so any deviation of the overlap from one can be
interpreted as a deviation from these assumptions. We conduct this analysis by groups
of households to smooth out variation in taste within groups and compute statistics at
the annual frequency to average out seasonal fluctuations.

Figure 10 reports the histogram overlap between the first and fifth quintile of the dis-
tribution of annual expenditures, defining a “product” at different levels of aggregation.
If products are broadly defined, e.g. at the Nielsen department level, the overlap in con-
sumption baskets is as high as 94% and even when considering product modules it is still
as high as 86%. Only at the lowest level of aggregation where products are unique UPCs
(the goods level) the overlap decreases drastically to 63%. I.e. consumption baskets of
high and low expenditure households exhibit a substantial mismatch driven by variation
in purchases of closely substitutable goods within Nielsen-defined product modules. For
the empirical decompositions in Section 4.1 it is also important to note that conditioning
on units of measurement within product modules does not alter the overlap substantially
compared to considering the entire module, i.e. there are no notable non-homotheticities
by unit of measurement.20

20The overlap between any other two quintiles of the expenditure distribution exhibits similar pat-
terns. Overlap at any level of aggregation decreases monotonically in the distance (difference in total
expenditures) between two groups.
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Figure 10: Consumption Basket Overlap - Top vs. Bottom Expenditure Quintile

Complementary evidence to the missing overlap in consumption baskets is a measure of
how important the demand of other households is for the goods that any group of house-
holds buys. First, to determine how important demand from any group of households g
is for a given good j, we define the good expenditure share (GS) of group h for good j as

GShj =

∑
i∈h

eij∑
g∈G

∑
i∈g
eij

We can then weight the good shares of group h with the consumption basket of group g
to compute the cross market share (CMS) of group h for the basket of group g, defined
as

CMSgh =
∑
j∈J

ωgjtGS
h
j

This statistic can be interpreted as the average expenditure share of group h in the basket
of group g and hence measures how important group h is for the demand of goods that
group g buys.

Figure 11 plots the cross market shares by quintile of the expenditure distribution at
the good (UPC) level. It shows that each group of households is substantially overrepre-
sented in their own consumption baskets. E.g. the lowest expenditure quintile is twice as
important for their own consumption basket as for the basket of the highest expenditure
quintile.
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Figure 11: Cross Market Shares

C.3 Expenditure Decomposition

Figure 12: Expenditure Decomposition – Deciles
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Table 7: Expenditure Decomposition - Regressions

shopping substitution trips per purchase

(1) (2) (3)

log(expenditure) 0.952∗∗∗ 3.399∗∗∗ −0.042∗∗∗
(0.069) (0.147) (0.001)

prime age 0.074 0.302∗∗∗ −0.001∗∗
(0.053) (0.111) (0.001)

HH size 0.506∗∗∗ 0.520∗∗∗ −0.032∗∗∗
(0.073) (0.146) (0.001)

income 0.086∗ 0.613∗∗∗ −0.001∗∗
30k-60k (0.050) (0.101) (0.001)

income 0.235∗∗∗ 1.178∗∗∗ −0.002∗∗∗
60k-100k (0.063) (0.128) (0.001)

income 0.431∗∗∗ 1.631∗∗∗ −0.002∗∗∗
>100k (0.080) (0.161) (0.001)

mean 0.15
year:state FE X X X
HH FE X X X
Observations 801,398 801,398 801,398
R2 0.818 0.803 0.888
Adjusted R2 0.765 0.745 0.855
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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