Implications of Endogenous Cognitive Discounting

James Moberly¹

EEA-ESEM Congress

25th August 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

¹University of Oxford

Motivation

Cognitive discounting (Gabaix (2020)) is very powerful in resolving new Keynesian puzzles

Gabaix provides a method to calculate choice of attention, but takes as given when analysing the model as a simplification. This is the prevailing approach in the literature

Question: Do the results change materially when the discount factor is endogenous?

This paper: Yes. Policy analysis and estimation results change very considerably when discount factor is endogenous.

Methodology

 Take the Gabaix derivation for the optimal choice of attention given macroeconomic dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Generalize to a broader class of models
- Define "attention equilibrium"
- Existence of equilibrium in simple version of the model
- Develop algorithm to estimate the model

Theoretical Applications

Today:

Determinacy condition: Absent further assumptions, there always exists an indeterminate equilibrium when RE Taylor principle is violated, very different to exogenous discounting.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

See the paper:

- Changes in the Taylor Rule
- Average inflation targeting

Identification & Empirical Applications

Today:

- Identification: Exogenous discounting model suffers from weak identification, and endogenous discounting resolves this
- Great Inflation: Indeterminacy ruled out as a possible cause, unlike previous studies with exogenous discounting

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

See the paper:

External validation

Overview: cognitive discounting

The subjective time t expectation of output in t + h is the rational expectation discounted by $m \in [0, 1]$:

$$\tilde{E}_t y_{t+h} = m^h E_t y_{t+h}$$

Where y_t is the deviation of output from its steady state.

Allow separate discount factors for consumers m_c and firms m_f

Gabaix shows that this generates the aggregate Phillips and IS curves:

$$\pi_t = \beta M_f E_t \pi_{t+1} + \kappa y_t$$

$$y_t = M_c E_t y_{t+1} - \sigma (i_t - E_t \pi_{t+1})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Simple Model: Exogenous Attention (1)

$$\pi_t = \kappa y_t$$

$$y_t = M_c E_t y_{t+1} - \sigma(i_t - E_t \pi_{t+1})$$

$$i_t = \phi_\pi \pi_t$$

Solving the model:

$$\Rightarrow y_t = \delta(M_c) E_t y_{t+1}$$
$$\delta(M_c) = \frac{M_c + \kappa \sigma}{1 + \kappa \sigma \phi_{\pi}}$$

Determinacy condition:

$$\delta(M_c) < 1 \Rightarrow \phi_{\pi} > 1 - \frac{1 - M_c}{\kappa \sigma}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Simple Model: Exogenous Attention (2)

Determinacy:

$$y_t = 0$$

Indeterminacy:

Standard result for variance of an AR(1):

$$Var(y_t) = rac{Var(\zeta_t)}{1-\delta(M_c)^{-2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

As $\delta(M_c)$ approaches 1, $Var(y_t)$ becomes unboundedly large

Simple Model: Endogenous Attention

Now let's suppose attention is endogenously chosen. Following Gabaix (2020), attention is chosen as:

Refer to the optimal choice of attention using the mapping g_c :

$$g_c(M_c, \chi, oldsymbol{\xi_c}) = rg \min_{m_c \in [m_{c,d}, 1]} L_c(m_c, M_c, \chi) + C(m_c, oldsymbol{\xi_c})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Simple Model: Endogenous Attention (2)

Using Gabaix's suggested linear cost of attention:

$$g_{c}(M_{c}, \boldsymbol{\chi}, \boldsymbol{\xi_{c}}) = \max\left(1 - \frac{k^{2}}{E\left[\left(\frac{\partial c}{\partial m}\right)^{2}\right]}, m_{c,d}\right)$$

Definition: An equilibrium choice of attention is a choice of attention $M_c(\chi, \xi_c)$ such that:

$$M_c(\boldsymbol{\chi}, \boldsymbol{\xi_c}) = g_c(M_c(\boldsymbol{\chi}, \boldsymbol{\xi_c}), \boldsymbol{\chi}, \boldsymbol{\xi_c})$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Intuition: A choice of attention which implies a set of macroeconomic dynamics that in turn justify that choice of attention as optimal.

Simple Model: $\phi_{\pi} < 1$

Let's suppose $\phi_{\pi} < 1$. What equilibria exist?

Figure: Attention equilibria: $\phi_{\pi} < 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Simple Model: Adding Fundamental Shocks

Now add an AR(1) fundamental shock, \tilde{v}_t , with persistence $\rho_v > 0$

$$y_t = \delta E_t y_{t+1} - \tilde{v}_t$$

Does a determinate equilibrium exists? It depends on $Var(\tilde{v}_t)$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Simple Model: Equilibrium Refinement

Suppose that the economy was in determinate equilibrium in t - 1, so $y_{t-1} = 0$. If the economy "jumps" to an indeterminacy in t:

$$y_t = \delta^{-1} y_{t-1} + \zeta_t$$

Var $(y_t) = V$ ar (ζ_t)

Figure: Attention equilibria, assuming determinacy in the previous period

・ロト・日本・日本・日本・日本・日本・日本

Richer Model: Overview

Now let's allow for expectations terms in the Phillips curve:

$$\pi_t = \beta M_f(\boldsymbol{\chi}, \boldsymbol{\xi}) E_t \pi_{t+1} + \kappa x_t + \eta_t$$

$$x_t = M_c(\boldsymbol{\chi}, \boldsymbol{\xi}) E_t x_{t+1} - \sigma(i_t - E_t \pi_{t+1}) + \tilde{z}_t$$

$$i_t = \rho_i i_{t-1} + (1 - \rho_i)(\phi_\pi \pi_t + \phi_x x_t) + \varepsilon_t^{\mathsf{v}}$$

Now, the g mapping maps a vector $[m_c \ m_f]'$ into a set of macroeconomic dynamics into the optimal choices of m_c and m_f .

$$M(\chi,\xi)=g(M(\chi,\xi),\chi,\xi)$$

Requires extension of Gabaix framework to allow for interest rate smoothing and indeterminacy to calculate.

Identification: Setup

I take a calibrated example (specific calibration does not matter much).

I look for points of weak identification:

- Search over different values of ρ_z and ρ_η
- For each calibration, simulate the model
- Calculate the measure of weak identification proposed by Andrews and Mikusheva (2014)

Two different assumptions: (i) M_c and M_f are exogenous, (ii) both are endogenous.

Identification: Results

Weak identification throughout much of the parameter space with exogenous attention. Much stronger under endogenous attention.

(a) Exogenous Attention

(b) Endogenous Attention

A D > A P > A B > A B >

э

Figure: Strength of Identification under Exogenous and Endogenous Attention

Estimation: Great Inflation

Method: Bayesian estimation of endogenous attention model

Priors: Taken from Lubik and Schorfheide (2004) where possible

Attention problem: Set $k_f = 1.5$, $k_c = 4.5$, $m_{c,d} = m_{f,d} = 0.85$

Data: From FRED. De-meaned inflation (GDP deflator) and nominal interest rate (Fed Funds Rate). Negative of HP-filtered unemployment rate as output gap proxy. Three sub-samples: 1960:I to 1979:II, 1984:I to 2007:IV and 1990:I to 2007:IV

Other assumptions: Impose continuity solution and "attainability" refinement

Estimation Results (Great Inflation)

	Great Inflation (2 Determinacy		1960:I to 1979:II) Indeterminacy	
Parameter	Mean	90-pct. interval	Mean	90-pct. interval
ϕ_{π}	0.65	[0.55,0.76]	0.53	[0.52,0.62]
ϕ_{x}	0.51	[0.39,0.65]	0.48	[0.37,0.60]
θ	0.87	[0.83,0.92]	0.86	[0.82,0.89]
γ	2.90	[2.13,3.78]	3.42	[2.57,4.39]
$ ho_\eta$	0.74	[0.67,0.81]	0.86	[0.81,0.90]
ρ_z	0.80	[0.73,0.86]	0.76	[0.69,0.83]
$ ho_i$	0.56	[0.45,0.66]	0.56	[0.46,0.65]
$\sigma_{\eta}^{\varepsilon}$	0.12	[0.08,0.17]	0.08	[0.05,0.11]
$\sigma_z^{\hat{\varepsilon}}$	0.48	[0.36,0.63]	0.62	[0.47,0.81]
σ_v^{ε}	0.16	[0.14,0.19]	0.16	[0.14,0.19]
σ_{ζ}			0.12	[0.06,0.20]
m _f	0.93	[0.85,0.98]	0.98	[0.96,0.99]
m_c	0.85	[0.85,0.85]	0.85	[0.85,0.85]
Log ML		-53.0		-67.8

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Estimation Results (Great Moderation)

	1984:I to 2007:IV Determinacy		1990:I to 2007:IV Determinacy	
Parameter	Mean	90-pct. interval	Mean	90-pct. interval
ϕ_{π}	1.55	[1.00,2.17]	0.94	[0.49,1.47]
ϕ_{x}	0.73	[0.52,0.95]	0.69	[0.51,0.88]
θ	0.90	[0.87,0.93]	0.91	[0.88,0.93]
γ	4.02	[3.10,5.04]	3.49	[2.63,4.46]
$ ho_\eta$	0.66	[0.57,0.76]	0.63	[0.53,0.73]
ρ_z	0.91	[0.88,0.94]	0.90	[0.85,0.94]
$ ho_i$	0.84	[0.80,0.87]	0.83	[0.78,0.87]
$\sigma_{\eta}^{\varepsilon}$	0.08	[0.06,0.09]	0.08	[0.06,0.10]
$\sigma_z^{\dot{\varepsilon}}$	0.28	[0.22,0.35]	0.28	[0.22,0.36]
σ_v^{ε}	0.12	[0.10,0.14]	0.10	[0.09,0.12]
σ_{ζ}				
m _f	0.85	[0.85,0.89]	0.85	[0.85,0.88]
m _c	0.85	[0.85,0.85]	0.85	[0.85,0.85]
Log ML	84.4		64.0	

Note: Log ML under indeterminacy in the two sub-samples is 23.6 and 20.2 respectively.

Determinacy Regions

Figure: Counterfactual Determinacy Regions: Baseline Specification

イロト 不得 トイヨト イヨト

Great Inflation: Counterfactual Central Bank Losses

I assume $L = V(\pi) + \xi V(x)$. I use $\xi = 0.0625$ (based on commentary in Debortoli et al. (2019)).

Figure: Counterfactual Central Bank Losses

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Endogenizing cognitive discount factors materially changes policy analysis and estimation results

- Neglecting endogeneity of discount factors may be misleading, because we often use the model to entertain large changes in policy or macro environment
- The source of discounting matters: these are not just different ways of getting to the same model
- Adding exogenous discount factors leads to weak identification

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

More empirical work to validate sources of discounting and attention costs is highly important