Optimal Regulation of Credit Lines

Jose E. Gutierrez

CEMFI

EEA-ESEM 2022
Credit lines: An overview

- **Credit line** (CL): A commitment in which a bank promises funding on demand at *predetermined terms* (interest rate + fees)
Credit lines: An overview

- **Credit line** (CL): A commitment in which a bank promises funding on demand at *predetermined terms* (interest rate + fees)
- Important item in banks and firms’ financial statements
 → CLs represent 42% of Spanish firms’ bank financing (*Jiménez et al., 2009*)
Credit lines: An overview

• **Credit line** (CL): A commitment in which a bank promises funding on demand at *predetermined terms* (interest rate + fees)

• Important item in banks and firms’ financial statements
 → CLs represent 42% of Spanish firms’ bank financing (*Jiménez et al.*, 2009)

• Despite their importance, the literature on CLs is relatively scarce
Introduction

• In crises,
 → Riskier firms may be denied funding (due to violation of financial covenants)
 → Financially distressed banks may not be able to extend funding
Introduction

- In crises,
 - Riskier firms may be denied funding (due to violation of financial covenants)
 - Financially distressed banks may not be able to extend funding
- Losing access to liquidity when needed can negatively affect firms
• In crises,
 → Riskier firms may be denied funding (due to violation of financial covenants)
 → Financially distressed banks may not be able to extend funding
• Losing access to liquidity when needed can negatively affect firms
 → Passing up investment opportunities
Introduction

- In crises,
 - Riskier firms may be denied funding (due to violation of financial covenants)
 - Financially distressed banks may not be able to extend funding
- Losing access to liquidity when needed can negatively affect firms
 - Passing up investment opportunities
 - In extreme situations, being liquidated
Introduction

• In crises,
 → Riskier firms may be denied funding (due to violation of financial covenants)
 → Financially distressed banks may not be able to extend funding
• Losing access to liquidity when needed can negatively affect firms
 → Passing up investment opportunities
 → In extreme situations, being liquidated
• To prevent this, firms may run on their CL
• In crises,
 → Riskier firms may be denied funding (due to violation of financial covenants)
 → Financially distressed banks may not be able to extend funding

• Losing access to liquidity when needed can negatively affect firms
 → Passing up investment opportunities
 → In extreme situations, being liquidated

• To prevent this, firms may run on their CL
 → Funds are drawn down even though they are still not needed
This paper

- A contract-theoretical model of CLs w/
 → Aggregate uncertainty
This paper

• A contract-theoretical model of CLs w/
 → Aggregate uncertainty
 → A fire-sale externality in the liquidation value of firms
This paper

• A contract-theoretical model of CLs w/
 → Aggregate uncertainty
 → A fire-sale externality in the liquidation value of firms

• At an ex-ante stage
 → Firms and banks agree on CL contractual terms (interest rates + fees)
This paper

• A contract-theoretical model of CLs w/
 → Aggregate uncertainty
 → A fire-sale externality in the liquidation value of firms

• At an ex-ante stage
 → Firms and banks agree on CL contractual terms (interest rates + fees)
 → Banks choose pre-funding for cash reserves
This paper

- A contract-theoretical model of CLs w/
 - Aggregate uncertainty
 - A fire-sale externality in the liquidation value of firms
- At an ex-ante stage
 - Firms and banks agree on CL contractual terms (interest rates + fees)
 - Banks choose pre-funding for cash reserves
- Banks finance drawdowns w/ pre-funding & additional funding (as needs arise)
This paper

- A contract-theoretical model of CLs w/
 - Aggregate uncertainty
 - A fire-sale externality in the liquidation value of firms
- At an ex-ante stage
 - Firms and banks agree on CL contractual terms (interest rates + fees)
 - Banks choose pre-funding for cash reserves
- Banks finance drawdowns w/ pre-funding & additional funding (as needs arise)
- Additional funding is limited by banks’ capacity to repay
This paper

• A contract-theoretical model of CLs w/
 → Aggregate uncertainty
 → A fire-sale externality in the liquidation value of firms

• At an ex-ante stage
 → Firms and banks agree on CL contractual terms (interest rates + fees)
 → Banks choose pre-funding for cash reserves

• Banks finance drawdowns w/ pre-funding & additional funding (as needs arise)

• Additional funding is limited by banks’ capacity to repay

• In high liquidity need states, low pre-funding can cause liquidations
 → Cash-strapped firms w/o funding are liquidated (at fire-sale prices)
This paper

• A contract-theoretical model of CLs w/
 → Aggregate uncertainty
 → A fire-sale externality in the liquidation value of firms

• At an ex-ante stage
 → Firms and banks agree on CL contractual terms (interest rates + fees)
 → Banks choose pre-funding for cash reserves

• Banks finance drawdowns w/ pre-funding & additional funding (as needs arise)

• Additional funding is limited by banks’ capacity to repay

• In high liquidity need states, low pre-funding can cause liquidations
 → Cash-strapped firms w/o funding are liquidated (at fire-sale prices)
 → Anticipation of high liquidity needs may trigger a run
Literature review

• Contracting literature
Literature review

- Contracting literature
- Bank runs
Literature review

• Contracting literature

• Bank runs
 → Ivashina and Scharfstein (2010), Ippolito et al. (2016), Fernandez-Lafuerza and Gutierrez (2022)
Literature review

• Contracting literature

• Bank runs
 → Ivashina and Scharfstein (2010), Ippolito et al. (2016), Fernandez-Lafuerza and Gutierrez (2022)

• Bank regulation
Environment

• Four dates: $t = 0, 1, 2, 3$
Environment

• Four dates: \(t = 0, 1, 2, 3 \)
• Three types of risk-neutral agents
Environment

- Four dates: \(t = 0, 1, 2, 3 \)
- Three types of risk-neutral agents
 1. **Firms**
 - 1 unit of funds at date \(\tau \in \{1, 2\} \) may be needed to avert their liquidation
 - Access to an alternative but inefficient investment
Environment

- Four dates: $t = 0, 1, 2, 3$
- Three types of risk-neutral agents
 1. **Firms**
 - 1 unit of funds at date $\tau \in \{1, 2\}$ may be needed to avert their liquidation
 - Access to an alternative but inefficient investment
 2. **Banks** channel funds from investors to firms by means of CLs
 - (Junior) pre-funding E is raised at $t = 0$
 - D_1 and D_2 are raised at $t = 1$ and 2, respectively, as needed
Environment

• Four dates: $t = 0, 1, 2, 3$
• Three types of risk-neutral agents

1. **Firms**
 → 1 unit of funds at date $\tau \in \{1, 2\}$ may be needed to avert their liquidation
 → Access to an alternative but inefficient investment

2. **Banks** channel funds from investors to firms by means of CLs
 → (Junior) pre-funding E is raised at $t = 0$
 → D_1 and D_2 are raised at $t = 1$ and 2, respectively, as needed

3. **Investors** demand R_i at $t = 3$ for funds that are lent to banks at date $i = 0, 1, 2$

 $$R_0 > R_1 > R_2 = 1$$
Environment

- Four dates: $t = 0, 1, 2, 3$
- Three types of risk-neutral agents
 1. **Firms**

 - 1 unit of funds at date $\tau \in \{1, 2\}$ may be needed to avert their liquidation
 - Access to an alternative but inefficient investment
 2. **Banks** channel funds from investors to firms by means of CLs

 - (Junior) pre-funding E is raised at $t = 0$
 - D_1 and D_2 are raised at $t = 1$ and 2, respectively, as needed
 3. **Investors** demand R_i at $t = 3$ for funds that are lent to banks at date $i = 0, 1, 2$

\[R_0 > R_1 > R_2 = 1 \]

- At $t = 1$, the fraction α of firms in need of funds is publicly revealed

 - Firms privately learn at $t = 1$ whether and when cash will be needed
Sequence of events

$t = 0$
- Banks offer CL contracts (B, E):
 - B_s: Payment scheme
 - E: Junior pre-funding

$t = 1$
- α is realized
- Firms learn τ
- If ℓ is met or not needed, firm produces X and payment B_s is made to the bank
- If ℓ is not met, firm is liquidated at value Q

$t = 2$
- Remaining firms decide CL usage
- If needed, banks raise D_2

$t = 3$
- For each firm:
 - If ℓ is met or not needed, firm produces X and payment B_s is made to the bank
 - If ℓ is not met, firm is liquidated at value Q
Firms (I)

- **Measure one** of identical firms that may need $\ell = 1$ at date $\tau \in \{1, 2\}$
Firms (I)

• **Measure one** of identical firms that may need $\ell = 1$ at date $\tau \in \{1, 2\}$
• τ is iid and exclusively revealed to firms at $t = 1$ according to

$$
\tau = \begin{cases}
1, & \text{w.p. } \alpha_1, \\
2, & \text{w.p. } \alpha_2
\end{cases}
$$
Firms (I)

• **Measure one** of identical firms that may need $\ell = 1$ at date $\tau \in \{1, 2\}$
• τ is iid and exclusively revealed to firms at $t = 1$ according to

\[
\tau = \begin{cases}
1, & \text{w.p. } \alpha_1, \\
2, & \text{w.p. } \alpha_2
\end{cases}
\]

• Firms’ demand for liquidity will be equal to $\alpha \equiv \alpha_1 + \alpha_2 \leq 1$
Firms (I)

• **Measure one** of identical firms that may need \(\ell = 1 \) at date \(\tau \in \{1, 2\} \)
• \(\tau \) is *iid* and exclusively revealed to firms at \(t = 1 \) according to

\[
\tau = \begin{cases}
1, & \text{w.p. } \alpha_1, \\
2, & \text{w.p. } \alpha_2
\end{cases}
\]

• Firms’ demand for liquidity will be equal to \(\alpha \equiv \alpha_1 + \alpha_2 \leq 1 \)
• **Simplification:** \(\alpha_1 = 0 \) and \(\alpha = \alpha_2 \sim f(\cdot) \) is publicly revealed at \(t = 1 \)
Firms (II)

• At $t = 3$, the firm produces a cash flow

$$\tilde{x} = \begin{cases}
X, & \text{if not liquidated}, \\
Q(z), & \text{if liquidated},
\end{cases}$$

where z is the aggregate size of liquidations and $Q' < 0$.
Firms (II)

- At \(t = 3 \), the firm produces a cash flow

\[
\tilde{x} = \begin{cases}
X, & \text{if not liquidated,} \\
Q(z), & \text{if liquidated,}
\end{cases}
\]

where \(z \) is the aggregate size of liquidations and \(Q' < 0 \)
- At most \(Y < X \) can be pledged to outsiders
Firms (II)

• At $t = 3$, the firm produces a cash flow

\[
\tilde{x} = \begin{cases}
X, & \text{if not liquidated}, \\
Q(z), & \text{if liquidated},
\end{cases}
\]

where z is the aggregate size of liquidations and $Q' < 0$

• At most $Y < X$ can be pledged to outsiders

• Access to an alternative investment that yields a private return $\rho < 1$
Assumptions

A1. Continuation return $> \text{Liquidation return}$

\[X - R_1 > Q(0) \]
Assumptions

A1. Continuation return $>\text{Liquidation return}$

$$X - R_1 > Q(0)$$

A2. Spot lending is not feasible

$$Y < R_2 = 1$$
Assumptions

A1. Continuation return $> \text{Liquidation return}$

\[X - R_1 > Q(0) \]

A2. Spot lending is not feasible

\[Y < R_2 = 1 \]

A3. Firms in need of funds prefer investing funds in the project over investing them at ρ

\[\rho < X - Y \]
Banks

- Representative bank offers CL contract \((B, E)\) with sequential service constraint to the continuum of firms at \(t = 0\)
• Representative bank offers CL contract \((B, E)\) with sequential service constraint to the continuum of firms at \(t = 0\)
 → Access to 1 unit of funds
Banks

• Representative bank offers CL contract \((B, E)\) with sequential service constraint to the continuum of firms at \(t = 0\)
 → Access to 1 unit of funds
 → Payment scheme \(B_s \leq Y\)

\[
B_s = \begin{cases}
B_1, & \text{if drawdown happens at } s = 1, \\
B_2, & \text{if drawdown happens at } s = 2, \\
B_3, & \text{if no drawdown happens}
\end{cases}
\]
Banks

• Representative bank offers CL contract \((B, E)\) with sequential service constraint to the continuum of firms at \(t = 0\)
 -> Access to 1 unit of funds
 -> Payment scheme \(B_s \leq Y\)

\[
B_s = \begin{cases}
B_1, & \text{if drawdown happens at } s = 1, \\
B_2, & \text{if drawdown happens at } s = 2, \\
B_3, & \text{if no drawdown happens}
\end{cases}
\]

-> The bank commits to raise pre-arranged funding per committed funds equal to \(E\) and invest it in cash at \(t = 0\)
Banks

• Representative bank offers CL contract \((B, E)\) with sequential service constraint to the continuum of firms at \(t = 0\)
 → Access to 1 unit of funds
 → Payment scheme \(B_s \leq Y\)

\[
B_s = \begin{cases}
 B_1, & \text{if drawdown happens at } s = 1, \\
 B_2, & \text{if drawdown happens at } s = 2, \\
 B_3, & \text{if no drawdown happens}
\end{cases}
\]

→ The bank commits to raise pre-arranged funding per committed funds equal to \(E\) and invest it in cash at \(t = 0\)
→ Pre-arranged funding \(E\) is junior to funding raised at \(t = 1, 2\) (e.g., LT debt or equity)
The Allocation Problem

- In high liquidity need states, α may not be met: $D_1 + D_2 < \alpha - E$
 \[\rightarrow \text{Loan requests are granted sequentially (in random order) until no more funding can be raised by the bank} \]
The Allocation Problem

• In high liquidity need states, α may not be met: $D_1 + D_2 < \alpha - E$
 → Loan requests are granted sequentially (in random order) until no more funding can be raised by the bank

• If large liquidations are expected, firms in need of cash may draw down (run) at $t = 1$
The Allocation Problem

• In high liquidity need states, α may not be met: $D_1 + D_2 < \alpha - E$
 \rightarrow Loan requests are granted sequentially (in random order) until no more funding can be raised by the bank

• If large liquidations are expected, firms in need of cash may draw down (run) at $t = 1$

• Junior pre-funding E helps to sustain lending over a wider range of α’s
 \rightarrow Claims associated to E can be diluted to raise additional funds at $t = 1, 2$
 \rightarrow Yet, pre-funding E demands a higher return
Solving for the unregulated CL contract

The representative bank’s problem:

- Given aggregate liquidations \(z(\alpha) \), the expected payoff of the representative firm is maximized subject to
 1. Some incentive compatibility constraints that prevent opportunism
 2. The participation constraint of investors who provide \(E \)
Solving for the unregulated CL contract

The representative bank’s problem:

- Given aggregate liquidations $z(\alpha)$, the expected payoff of the representative firm is maximized subject to
 1. Some incentive compatibility constraints that prevent opportunism
 2. The participation constraint of investors who provide E

(+) Symmetric eq. can fully characterize the unregulated CL (B^U, E^U)
CL performance given \((B, E)\) for every \(\alpha\)
CL performance given \((B, E)\) for every \(\alpha\)

\[L_1, L_2 \]

\[45\text{-degree line} \]

\[\text{NR} \]

\[\begin{array}{c}
L_2: \text{Loans at } t = 2 \\
L_1: \text{Loans at } t = 1
\end{array} \]

Full-insured \(\alpha\)
CL performance given \((B, E)\) for every \(\alpha\)

\[
\begin{align*}
L_1, L_2 \\
1 &
\end{align*}
\]

45-degree line

Full-insured \(\alpha\)

\(L_2\): Loans at \(t = 2\)

\(L_1\): Loans at \(t = 1\)
CL performance given \((B, E)\) for every \(\alpha\)
Unregulated CL contract

• Trade-off of increasing E:
 → Wider realizations of α can be insured
 → Financing E is costlier
Unregulated CL contract

- Trade-off of increasing E:
 - Wider realizations of α can be insured
 - Financing E is costlier
- If high realizations of α are rare, E is optimally chosen s.t. the unregulated CL contract features liquidations & runs
Unregulated CL contract

• Trade-off of increasing E:
 → Wider realizations of α can be insured
 → Financing E is costlier

• If high realizations of α are rare, E is optimally chosen s.t. the unregulated CL contract features liquidations & runs

• Banks do not internalize the effect of liquidations on eq. liquidation values
 → Scope for regulation
Solving for the constrained efficient CL contract

The social planner’s problem:

- The expected payoff of the representative firm is maximized subject to
 1. Some incentive compatibility constraints that prevent opportunism
 2. The participation constraint of investors who provide E
 3. **Aggregate liquidations**
Constrained efficient CL contract

• Trade-off of increasing E:
 → Wider realizations of α can be insured + excessive liquidations can be avoided
 → Financing E is costlier
Constrained efficient CL contract

• Trade-off of increasing E:
 → Wider realizations of α can be insured + excessive liquidations can be avoided
 → Financing E is costlier

• Socially desirable to increase $E > E^U$
Implementation

• By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)
Implementation

- By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)

Result

If $E = E^*$, then the regulated eq. is constrained efficient.
Implementation

- By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)

Result

If $E = E^*$, then the regulated eq. is constrained efficient.

- Effects of regulation:
 - CLs become more expensive
Implementation

• By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)

Result

If $E = E^*$, then the regulated eq. is constrained efficient.

• Effects of regulation:
 → CLs become more expensive
 → Fewer costly liquidations in 'bad times'
Implementation

• By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)

Result

If $E = E^*$, then the regulated eq. is constrained efficient.

• Effects of regulation:
 → CLs become more expensive
 → Fewer costly liquidations in 'bad times'
 → A higher liquidation value is obtained if a liquidity need is not covered
Implementation

• By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)

Result

If $E = E^*$, then the regulated eq. is constrained efficient.

• Effects of regulation:
 → CLs become more expensive
 → Fewer costly liquidations in 'bad times'
 → A higher liquidation value is obtained if a liquidity need is not covered
 → A reduction in the occurrences of CL runs
Final Remarks

- In the unregulated competitive eq.,
 - CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
Final Remarks

- In the unregulated competitive eq.,
 - CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 - Effect of liquidations on liquidation values is not internalized
Final Remarks

• In the unregulated competitive eq.,
 → CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 → Effect of liquidations on liquidation values is not internalized
 → Chosen pre-funding is insufficient
Final Remarks

• In the unregulated competitive eq.,
 → CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 → Effect of liquidations on liquidation values is not internalized
 → Chosen pre-funding is insufficient

• A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation
Final Remarks

• In the unregulated competitive eq.,
 → CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 → Effect of liquidations on liquidation values is not internalized
 → Chosen pre-funding is insufficient

• A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation

• Though this requirement makes CLs more expensive, welfare improves
Final Remarks

- In the unregulated competitive eq.,
 - CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 - Effect of liquidations on liquidation values is not internalized
 - Chosen pre-funding is insufficient
- A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation
- Though this requirement makes CLs more expensive, welfare improves
 - More lending in high liquidity need states
Final Remarks

• In the unregulated competitive eq.,
 → CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 → Effect of liquidations on liquidation values is not internalized
 → Chosen pre-funding is insufficient

• A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation

• Though this requirement makes CLs more expensive, welfare improves
 → More lending in high liquidity need states
 → Higher liquidation values
Final Remarks

• In the unregulated competitive eq.,
 → CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 → Effect of liquidations on liquidation values is not internalized
 → Chosen pre-funding is insufficient

• A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation

• Though this requirement makes CLs more expensive, welfare improves
 → More lending in high liquidity need states
 → Higher liquidation values
 → Less frequency of runs
Appendices
Commercial and Industrial Bank Credit in the U.S.

Source: Ivashina and Scharfstein (2010)