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This paper addresses two related questions:

1. How can we model the strategic use of a shared pre-existing
language?

2. How can we capture constraints on and uncertainty about
what is shared?



Ludwig Wittgenstein: “Can I say ‘bububu’ and mean ‘If it doesn’t rain I
shall go for a walk’? – It is only in a language that I can mean something
by something.” (Philosophical Investigations, p.18)

��
Game theorist (caricature): “Meaning is constituted in equilibrium (or via
some other solution concept, if you prefer). No language is needed.”



Semantic meaning: meaning in a pre-existing language, use (to accom-
modate Wittgenstein), literal meaning, conventional meaning, . . .

Equilibrium meaning: Message meaning constituted in equilibrium.

The paper aims to resolve the tension between semantic meaning and
equilibrium meaning of messages.



A trivial example to illustrate equilibrium meaning and semantic
meaning.

t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 3,3 1,2

Coordination Game

• Two equally likely payoff types, t1 and t2.

• Three receiver actions a1, a2 and a3.

• The sender sends a messagem from the message spaceM = {m1,m2}.
• The receiver takes an action a ∈ {a1, a2, a3}.
• Each cell in the payoff table indicates first the sender’s and second the

receiver’s payoff for the corresponding type-action pair (t, a).

• Messages are “cheap talk” – they do not directly affect payoffs.



t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 3,3 1,2

Coordination Game

Here are some of the equilibria of this game:

1. ((t1 7→ m1, t2 7→ m2); (m1 7→ a1,m2 7→ a2))

2. ((t1 7→ m2, t2 7→ m1); (m1 7→ a2,m2 7→ a1))

3. ((t1 7→ m1, t2 7→ m1); (m1 7→ a3,m2 7→ a3))

4. ((t1 7→ m1 w/p α, t2 7→ m1 w/p α); (m1 7→ a3,m2 7→ a3))

5. ((t1 7→ m1 w/p α, t2 7→ m1 w/p β); (m1 7→ a3,m2 7→ a3)) where
α ≈ β

The equilibrium meaning of message m1 is “{t2}” in the second equi-
librium, and “{t1, t2}” in the third and forth equilibria, and something
close to “{t1, t2}” in the fifth equilibrium.

Equilibrium tells us next to nothing about how messages will
be used.



t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 3,3 1,2

Coordination Game

Add a language λ : M → A, with λ(mi) = ai, i = 1, 2 (a very specific
and somewhat impoverished language).

The language gives the semantic meaning of messages.

For now assume that the language is commonly known, i.e., it is a com-
mon language.

Observation: Simply adding the language does not affect any of the equi-
libria of the game – it can always be ignored.



The Puzzle
How does a pre-existing language combine with incentives, prior distribu-
tion, knowledge and belief, etc to determine equilibrium behavior, including
use of the pre-existing language?

A simple idea: Iterate best replies from the pre-existing language until
an equilibrium is reached:

1. The sender best responds to the language.

2. The receiver best responds to the sender’s best response.

3. The sender best responds to the receiver’s best responds to the sender’s
best response.

4. ....

Reminiscent of level-k reasoning anchored at the language
(Crawford, AER 2003).

The simple idea has many pitfalls. The talk points out the
most important ones and how to deal with them.



t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 3,3 1,2

Coordination Game

Implementing the simple idea: In the example, iterating best replies
from the common language λ : M → A, with λ(mi) = ai, i = 1, 2
trivially converges to the equilibrium

((t1 7→ m1, t2 7→ m2); (m1 7→ a1,m2 7→ a2)).



t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 3,3 1,2

Coordination Game

A problem with the simple idea: Iterating best replies from the
common language λ : M → A, with λ(mi) = ai, i = 1, 2, 3 (where we
have added a third message) does not converge.

There are sequences of best replies in which the sender keeps varying the
mixing probabilities for messages that induce identical receiver replies.

There generally are multiple best replies.

There are sequences of best replies that visit every pure separating strategy
of the sender infinitely often.



t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 3,3 1,2

Coordination Game

A fix for the problem with the simple idea:

• Iterate only over pure strategies.

• At every step pick a single best reply.

• At every step of the iteration, drop unused messages.

Then, in this example, for any common language λ : M → A, with the
property that for all a ∈ A there is at least one message m with λ(m) = a,

1. the iterative procedure converges;

2. it converges to a separating equilibrium;

3. message use matches the messages’ semantic meanings; and,

4. this works without any upper bound on the size of the message space.



Example: Dropping messages

t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 -1,3 1,2

Dropping messages

Assume that sender and receiver have a common language λ : M → A,
with λ(mi) = ai, i = 1, 2, 3.
The sender’s unique best reply against the receiver strategy r1 = λ, defined
by the language λ, is given by s1 = (t1 7→ m1, t2 7→ m3). The strategy s1
does not use messagem2, which is therefore dropped. With messagem2 out
of the picture, the receiver has a unique best reply r2 = (m1 7→ a1,m3 7→
a2) against s1. The sender’s unique best reply to r2 is s2 = (t1 7→
m1, t2 7→ m1). The unused message m3 is (provisionally) dropped, the
receiver’s unique best reply in the game without messages m2 and m3 is
the pooling action a3, and the iterative procedure has converged.



Example: Dropping messages and message restoration

t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 -1,3 1,2

Dropping messages

λ : M → A, with λ(mi) = ai, i = 1, 2, 3.
The iterative procedure has the message space converge to {m1}, has the
sender use the strategy s2 = (t1 7→m1, t2 7→m1), and has the receiver
respond to message m1 with action a3.

At this point messagesm2 and m3 are restored and a language equi-
librium is defined as any equilibrium of the original game in which s2 is
the sender strategy and the receiver responds to message m1 with action
a3.

Note: Message restoration is possible in every game with a
common language.



Relation to prior work

t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 -1,3 1,2

Dropping messages

λ : M → A, with λ(mi) = ai, i = 1, 2, 3.

None of the earlier work predicts messages use in this game:

1. Farrell’s neologism proofness criterion (GEB, 1993) rejects all equi-
libria – given any equilibrium (they all have the receiver take action a3),
type t1 has a credible neologism. Strictly speaking, it doesn’t even do
that: his rich-language assumption is not satisfied.

2. There does not exist any credible message profile à la Rabin (JET,
1990).



Relation to prior work

t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 -1,3 1,2

Dropping messages

λ : M → A, with λ(mi) = ai, i = 1, 2, 3.

3. Olszewski’s (JET, 2006) maximally rich language criterion does
not predict message use. A maximally rich language is entirely an equi-
librium phenomenon – it leaves no role for semantic meanings.

4. Crawford’s level-k construction (AER, 2003) is not aimed at singling
out equilibria and needs to be amended (e.g., by having unused messages
be dropped) to guarantee convergence.



Example: A role for prep-sets

t1

t2

a1 a2 a3

0,9 9,0 0,8

9,0 0,9 0,8

A role for Prep-sets

λ : M → A, with λ(mi) = ai, i = 1, 2, 3.

The sender’s unique best reply against the receiver’s strategy r1 = λ,
defined by the language λ, is the strategy s1 = (t1 → m2, t2 → m1). Con-
sider the reduced game, in which the unused message m3 is provisionally
dropped. The receiver’s unique best reply against the sender’s strategy s1
in the reduced game is the strategy r2 = (m1 → a2,m2 → a1). Iterating
further generates a sequence of best replies that are unique at every
step and form a cycle.



Denote the set of pure strategies that support this cycle by S′ × R′.

The set of strategies S′×R′ does not support an equilibrium of the reduced
game, in either pure or mixed strategies.

To satisfy the desideratum of having the iterative procedure reach rest
points that are equilibria, the procedure expands the set S′ × R′.



Voorneveld (GEB, 2004) defines a prep set as a set of pure strategy
profiles that includes a best reply to every belief concentrated on that set.

This inspires the definition of an S′×R′-prep set as a set of pure strategy
profiles in the reduced game that includes S′×R′ as well as a best reply to
every belief concentrated on that set.

The procedure expands S′ × R′ to a minimal S′ × R′-prep set.

Minimality is with respect to set inclusion.

A minimal S′× R′-prep set does not strictly contain another S′× R′-prep
set.



t1

t2

a1 a2 a3

0,9 9,0 0,8

9,0 0,9 0,8

A role for Prep-sets

λ : M → A, with λ(mi) = ai, i = 1, 2, 3.

Recall that S′ consists of s1 = (t1 → m2, t2 → m1) and s2 = (t1 →
m1, t2 → m2).



Given a receiver belief that assigns equal probability to all sender strategies
in S′, the receiver’s unique best reply in the reduced game is the strategy
r̃ = (m1 → a3,m2 → a3).

Therefore, the strategy r̃ must be in any S′ × R′-prep set.

Indeed, once that strategy is included we have a minimal S′ × R′-prep set
and that set includes an equilibrium of the reduced game. In any such
equilibrium both messages m1 and m2 are used and the receiver responds
to both messages with the action a3. Finally, we can restore the unused
message m3 to the game.

Therefore, in every language equilibrium the sender mixes
over the messages m1 and m2, and the receiver responds to
all three messages with the pooling action a3.



Example: Uncertainty about language

t1

t2

a1 a2 a3

10,10 9,0 0,9

9,0 10,10 0,9

Uncertainty about language

There is a language λ with λ(mi) = ai, i = 1, 2.

A translation θ : M → M maps intended messages into interpreted
messages.

Assume that there are two translations θ′ and θ′′, defined by θ′(m) = m
and θ′′(m) = m2 for both m ∈M. Assume that there is common prior
µ over translations with µ(θ′′) = p, where p satisfies 1

9 < p < 1.



t1

t2

a1 a2 a3

10,10 9,0 0,9

9,0 10,10 0,9

Uncertainty about language

The sender’s unique best reply against the receiver’s strategy r1 = λ,
defined by the language λ, is the strategy s1 = (t1 → m1, t2 → m2).

As long as p > 1
9, the receiver has a unique best reply r2 = (m1 →

a1,m2 → a3) to the sender’s strategy s1.

Against r2, the sender has a unique best reply s2 = (t1 → m1, t2 → m1).

At that point message m2 is dropped from the iteration.

There is a unique λ-equilibrium strategy profile (σ, ρ) = ((t1 →
m1, t2 → m1), (m1 → a3,m2 → a3)).



t1

t2

a1 a2 a3

10,10 9,0 0,9

9,0 10,10 0,9

Uncertainty about language

Rabin uses this example to illustrate how messages may only be jointly
credible.

Stalnaker borrows the example to raise the possibility of “ignorance or
error about credibility”.

Language equilibrium predicts message use and does not rely on credibility
to do so.



t1

t2

a1 a2 a3

11,12 1,0 6,10

8,0 1,12 13,9

Uncertainty about language – another example

The message space is M = {m1,m3}.
There is a language λ with λ(m1) = a1 and λ(m3) = a3.

There are two translations θ′ and θ′′, defined by θ′(m) = m and
θ′′(m) = m1 for both m ∈ M. Assume that there is common prior
µ over translations with µ(θ′′) = 1/2.

In every language equilibrium both sender types send message m1 exclu-
sively.

There is another equilibrium. In that equilibrium both sender types send
distinct messages. This equilibrium is the unique efficient equilibrium and
the unique equilibrium that survives iterative deletion of dominated strate-
gies (regardless of the order of deletion).



Four ideas that link a pre-existing language to its strategic
use:

1. Anchoring: iterate best replies starting from the language;

2. Non-proliferation: provisionally drop messages, minimize message
use (by using only minimal-message best replies), adjust best-replies
only when necessary;

3. Expansion: expand limit sets reached via iteration to minimal prep
sets;

4. Restoration: restore provisionally dropped messages.



The iterative procedure always converges.

When there is no uncertainty about language, the limit can always be
extended to an equilibrium in the entire game through restoration
of dropped messages.



Proposition 1 In a common-interest game with a rich shared lan-
guage λ every λ-equilibrium profile (σ, ρ) achieves the maximal payoff
and satisfies ρ(m) = λ(m) for all messages m ∈ M that are received
with positive probability.

With common interests, language equilibria are efficient, and equilib-
rium meaning coincides with semantic meaning.



Proposition 2 For every game Γ(M) with absence of a shared lan-
guage, the set of λ-equilibrium strategies of the sender equals {s ∈
S(M)|s(t′) = s(t′′),∀t′, t′′ ∈ T}.

With maximal uncertainty about language, there is only pool-
ing.

Comment: This illustrates why the proposed iterative procedure should
not be confused with a form of learning or evolution.

Absence of a shared language means that the translation is unknown but
fixed. With a fixed translation, players could learn to communicate effec-
tively in repeated interactions.



t1

t2

t3

t4

a1 a2 a3 a4 a5

5,2 1,6 -1,-1 -1,-1 4,3

1,5 5,2 -1,-1 -1,-1 4,3

-1,-1 -1,-1 5,2 1,6 4,3

-1,-1 -1,-1 1,5 5,2 4,3

Block-aligned preferences

M = {m1, . . . ,m5}, λ(mi) = ai, i = 1, . . . , 5.

In every λ-equilibrium, types t1 and t2 mix over messages m1 and m2 and
types t3 and t4 mix over messages m3 and m4. In all of these equilibria, the
receiver responds to messages m1 and m2 with action a2 and to messages
m3 and m4 with action a4. Note that the sender ex ante prefers pooling
to any λ-equilibrium, that there is no credible message profile, and that λ-
equilibria are not neologism proof: the set of types t1 and t3 has a credible
neologism.



Proposition 3 In games with block-aligned preferences and a rich and
accessible language λ, if the sender learns the translation then every
λ-equilibrium profile (σ, ρ) block conforms with the language λ.

With partial incentive alignment, there is coarse agreement between
semantic meaning and equilibrium meaning.



Finite CS games
Generic games for which there exist orderings of types and actions such
that:

1. The functions ui are unimodal in a for all t ∈ T and i = 1, 2.

2. The sender’s preference has an upward bias relative to the receiver:
aR(t) < aS(t),∀t ∈ T.

3. The receiver’s ideal point is responsive: aR(t′) 6= aR(t) for all t, t′ ∈ T
with t 6= t′

4. Each player i’s payoff function ui satisfies the single crossing condition:

t2 > t1 and a2 > a1

implies

ui(a2, t1)− ui(a1, t1) > 0⇒ ui(a2, t2)− ui(a1, t2) > 0.



Proposition 4 In any generic finite CS game with a rich and acces-
sible language λ, if the sender learns the translation, then for every
λ-equilibrium profile (σ, ρ) and all messages m ∈ Θ(M) that are re-
ceived with positive probability,

1. λ(m) = aS(t) for some t ∈ T , and

2. ρ(m,hR) < λ(m) for all receiver signals hR ∈ HR.

There is language inflation: Semantic meanings exceed equilibrum
meanings in every language equilibrium.



The End
'

'
' :


