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Abstract

This paper addresses two related questions: How can we model the strategic use of a
pre-existing language? And, how should we capture different degrees of sharing that
language? The paper proposes an iterative procedure, interpreted as a mental process
on part of the sender, that associates a set of equilibria, which we dub language equi-
libria, with every combination of a sender-receiver game and a pre-existing language.
Every sender-receiver game has a language equilibrium. Language equilibrium makes
sharp predictions about joint distributions over types and actions in common-interest
games, in games with sender-preferred equilibria, and in games partial incentive align-
ment. This is the case when, as is frequently assumed, the language rich, but also
when the language is impoverished. Predictions are sensitive to the degree to which
language is shared. Importantly, unlike earlier suggestions for how to invoke the role
of a pre-existing language in sender-receiver games, language equilibrium makes pre-
dictions about language use.
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1 Introduction

The paper investigates the formation of meanings in use in communication games. We
consider games in which a privately informed sender sends a message to a receiver who then
takes an action. Payoffs depend only on the sender’s private information and the receiver’s
action. Messages are cheap talk. Their meanings in use correspond to the information they
convey and the actions they induce. If players have access to a pre-existing shared language,
we expect these meanings in use to depend on both that shared language and on strategic
considerations. The shared language provides the semantic meanings of messages, which,
under the influence of incentives, are transformed into meanings in use.

We capture this transformation through a mental process on part of the sender, formalized
as an iterative procedure. This mental process associates a set of equilibria with every
combination of a sender-receiver game and a pre-existing language. Given the game and the
pre-existing language the sender reasons until she reaches a rest point, an equilibrium, that
rationalizes her message use.

We model the pre-existing language as a receiver strategy, interpreted as the receiver’s
nonstrategic interpretation of messages. It serves as a starting point for a sequence of best
replies, with constraints on which best replies are admissible. This sequence converges to
a limit set of strategies. The process then associates a set of equilibria with that limit set.
Any such equilibrium is a language equilibrium, for the given pre-existing language. In the
simplest case, when the mental process converges to a single strategy profile, it identifies a
set of language equilibria that differ only in the receiver’s responses to off-path messages.

Every sender-receiver game has a language equilibrium. Language equilibrium makes
sharp predictions about joint distributions over types and actions in common-interest games,
in games with sender-preferred equilibria, and in games partial incentive alignment. This
is the case when, as is frequently assumed, the language rich, but also when the language
is impoverished. Predictions are sensitive to the degree to which language is shared. Im-
portantly, unlike earlier suggestions for how to invoke the role of a pre-existing language in
sender-receiver games, language equilibrium makes predictions about language use.

‘Meaning’ has been given different meanings and some (Quine [27], Wittgenstein [34]
in the interpretation of Kripke [20]) have expressed doubt about whether there are entities
that are meanings at all. Is there something that is denoted by ‘meaning,’ and is that
something shared? In this paper, we consider, inspired by Farrell [13], that there is a
pre-existing language with well-defined meanings. We formalize this pre-existing language
and different degrees of it being shared. We show that there is not necessarily a direct
correspondence between a shared language and how it is used, that imperfectly sharing a
language does not preclude it being useful, and that absence of a shared language rules out
effective communication even when interests are perfectly aligned.

Part of what appears to be captured by meaning is reference.1 We can, for example, think
of a name for an object as referring to the named object, as in ‘Wittgenstein’ referring to (or
denoting) Wittgenstein, the philosopher. Proper names, like ‘Wittgenstein’, ‘John Nash’, or

1Michaelson and Reimer [23] survey the topic of reference.
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‘Tucson’, which refer to particular objects, appear to be simple enough. John Stuart Mill
[24], for example, viewed a name’s meaning straightforwardly as the object referred to by
that name, its referent. Still, even something as seemingly simple as the meaning of proper
names turns out to be problematic. Frege [14] observed that the statement “Hesperus is
Phosphorus” (“The Evening Star is the Morning Star”) would be uninformative if meaning
were exhausted by reference – ‘Hesperus’ and ‘Phosphorous’ both denote Venus and therefore
have the same reference. Frege therefore distinguished between the ‘reference’ and the ‘sense’
of a name. The sense of an expression is what we grasp when we hear it. It determines
reference. Frege insisted on the objectivity of senses, thoughts held in common by mankind
(see Miller [25]), as a prerequisite for communication being possible. This resonates with
our finding that effective communication is incompatible with absence of a shared language.

There is a long tradition of tying meaning to truth.2 In a theory of reference (Frege [14])
the reference of an expression in a sentence is its contribution to the truth value of that
sentence: the sentence “Saguaros are green” is true, whereas “Saguaros are red” is false. Re-
placing “green” by “red” in the first sentence switches its truth value. The predicate “green”
acts as a function that maps objects into truth values. Possible world semantics views the
content/meaning of an expression as a function that indicates what that expression stands
for in different states of the world. Carnap [7] refers to these functions as “intensions.”
Intensions map states of the world to truth values; the predicate “is rich” maps into ‘true’
in all worlds in which the person referred to is rich. Davidson [11] proposes a theory of
semantics that is based on Tarski’s [31] theory of truth. One question concerning commu-
nication games is whether and how meaning in communication games can be grounded in
truth. A second related question is whether effective communication in games is necessarily
truthful. Regarding the first question, the mental process we propose here is rooted in a
language that lets the sender truthfully indicate her preferred receiver action. Regarding the
second question, we find that outside of common-interest games message use in a language
equilibrium is frequently systematically biased away from being truthful.

A widely accepted distinction is that between semantic meanings and meanings as mental
entities, which are tied to the use of language. Semantic meanings relate expressions in a
language to the world. In contrast, meanings as mental entities are psychological states that
may be the speaker’s intentions (Grice [17]) or beliefs (Lewis [21]). The distinction between
semantic meanings and meanings as mental entities parallels somewhat the distinction we
am interested in between the given meanings of a pre-existing language and the meanings in
use that arising as equilibrium phenomena in a game.

From a purely game-theoretic perspective, the meaning of a message is captured by what
players believe about each other’s strategies: A receiver having a belief about the sender’s
strategy, after observing any message consistent with that strategy can form a belief about
the sender’s type. We can think of that belief as the meaning of that message to the receiver.
Analogously, a sender having a belief about the receiver’s strategy can anticipate how the
receiver responds to any message and choose a message that induces an intended response.
We can think of that intention as the meaning of that message to the sender. In this game-

2The following discussion relies heavily on Speaks [29].
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theoretic account of meaning, there is no overt role for truth.
A problem with this purely game-theoretic conception of meaning is that, even if we

commit to a solution concept (like Bayesian Nash equilibrium), it does not pin down the
meanings of messages. Regardless of the incentive structure, for any solution we can find
another game-theoretically equivalent solution by simply permuting messages. Anything
that can be meant by one message can also be meant by any other message – messages are
exchangeable.

A closely related problem with the purely game-theoretic conception of meaning is that in
any communication situation in which interlocutors are given only a generic set of messages
(which have no plausible association with states of the world or actions), we would not expect
them to be able communicate. Having a large set of messages available is not enough to
make effective communication possible if the messages do not already relate to the world
in which the interlocutors interact. In terms of (Bayesian Nash) equilibria, in such an
artificially constructed situation, regardless of the incentive structure (including those with
perfectly aligned preferences), none of the equilibria in which the sender shares information
are plausible.

To make effective communication plausible, an additional ingredient is needed. That
ingredient is a pre-existing language. As Wittgenstein [34] (p.18) put it: “Can I say ‘bububu’
and mean ‘If it doesn’t rain I shall go for a walk’? – It is only in a language that I can mean
something by something.”

The role of a pre-existing language in making sense of behavior in communication games
was first explored by Farrell [13]. Farrell posits that there is a rich language with commonly
understood meanings. He appeals to richness to argue that for any equilibrium there are
unused messages that can be activated to express any desired meaning. While messages are
understood they are not necessarily believed. Farrell formulates a condition for an unused
message to be credible relative to an equilibrium: a message is credible if the types indicated
by that message gain relative to the equilibrium, and only those types gain. Farrell calls
such a message a credible neologism, and proposes to reject equilibria for which there is a
credible neologism. Equilibria that cannot be rejected are called neologism proof.

Neologism proofness predicts that there is effective communication in some games, in-
cluding when interests are perfectly aligned. In that case, and others, it rejects the ever
present “babbling equilibria” in which the sender’s messages do not vary with the type and
the receiver ignores messages. Rabin [28] gives a sui generis definition of when messages
are credible, independent of a solution concept. According to his definition, for example, a
message is credible for a set of types if all types in that set achieve their maximal payoff
conditional on the message being believed and all other types receive their lowest payoff.
Rabin’s idea combines with both rationalizability and equilibrium.

Not all communication games have neologism proof equilibria. When such equilibria
exist, neologism proofness places no constraints on message use in equilibrium. Rabin’s
credible message rationalizability makes sharp predictions about message use only for types
who have credible messages. In contrast, the language equilibrium concept we propose
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guarantees existence and predicts message use.3

It is intuitive, and Blume, DeJong, Kim and Sprinkle [4] demonstrate experimentally,
that there are regularities in the use of exogenously given message meanings if a meaningful
language is available. Crawford [10] proposes to account for such regularities with a level-k
model that is anchored in truthful behavior by senders. Level 0 senders are truthful; level
0 receivers best respond to level 0 senders; level 1 senders best respond to level 0 receivers;
level 1 receivers best respond to level 1 senders; etc. Cai and Wang [6] and Wang, Spezio,
and Camerer [33] conduct experiments on sender-receiver games and show that Crawford’s
level-k model applied to these games has explanatory power. It captures that senders are
excessively truthful, receivers are excessively credulous, communication varies systematically
with the bias, and senders inflate messages relative to truthfulness.

Truth matters, although in different ways, in the approaches of Farrell, Rabin, and Craw-
ford. Farrell’s credible neologisms are truthful statements. Rabin adds truth-telling as a
behavioral assumption, capturing the idea that agents will tell the truth as long as that is
consistent with incentives. Crawford anchors his level-k analysis in truth by assuming that
level-0 senders are truthful. The approach taken here is similar to that taken by Crawford
in that it anchors a mental process in truthful use of a pre-existing language and allows for
systematic departures from truth at rest points of the mental process. A key difference with
Crawford is the focus on making equilibrium predictions.

The goal of the present paper is to leverage the power of iterative reasoning to select
equilibria and predict language use. It aims to tether strategic meaning, as expressed in
message use, to semantic meaning, as given by a pre-established language. It proposes a
general model that anchors meaning in a language, respects the strategic motives of inter-
locutors, predicts equilibrium behavior for rational players, satisfies existence in all games,
and predicts message use for all types of the sender.

The paper employs four ideas to link (a pre-existing) language with its strategic use: (1)
(Anchoring) iterating best replies from the language; (2) (Non-proliferation) containing the
proliferation of best replies (by provisionally dropping unused messages, minimizing message
use, and adjusting best replies only when necessary); (3) (Expansion) minimally expanding
any limit set of strategies that is reached this way to the point where it includes a best
reply to every belief concentrated on that set and focussing on equilibria belonging to that
expansion; and, (4) (Restoration) restoring provisionally eliminated message in a way that
extends the equilibria obtained to the entire game. A language equilibrium (relative to the
pre-existing language in question) is any equilibrium identified in this manner.4

3Like Farrell and Rabin, Olszewski [26] explores the implications of a rich-language assumption: Given
an equilibrium, there is a set of beliefs the sender can induce in that equilibrium. Consider adding messages
that would permit the sender to induce additional beliefs. For any equilibrium there is a largest set of beliefs
that one can generate in this manner without tempting the sender to deviate from her equilibrium strategy.
If this set of beliefs is larger for equilibrium E than for equilibrium F , equilibrium E is said to have a richer
language. The criterion of having a richer language selects among equilibria and equilibria with maximally
rich languages exist. Note that language viewed this way is tied to an equilibrium. The question of how a
pre-existing language with fixed semantic meanings is used does not arise.

4When the language is common knowledge restoration is always possible. When players do not share a
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The proposed iterative procedure that links the pre-existing language to equilibria of
the game is meant to capture the sender’s deliberation: She contemplates what to say in a
given situation. She latches on to what seems natural according to the pre-existing language,
reflects on strategic implications, and stops when she has reached a point where everything
coheres. The assumptions that unused messages get provisionally eliminated, that message
use is minimized, and that message adjustments are only contemplated if they lead to strict
improvements help ensure that the deliberation comes to a conclusion – the sender is aware
that at some point she needs to speak and stop reflecting. Unlike in learning models, here
the language and players’ beliefs about language are fixed. The proposed iterative procedure
is conceived as a mental process that determines the sender’s message on a given occasion.

We model the pre-existing language as a function that assigns receiver interpretations
to messages. In addition to addressing the question of how that function helps determine
message use when it is common knowledge, the paper considers imperfectly shared languages.
Players may be uncertain about the language or have private information about it. Languages
being imperfectly shared imposes constraints on communication. The model uses translations
as a device for capturing these constraints. A translation is a mapping from sender messages
to receiver messages and is drawn from a set of possible translations. A translation limits
communication options if it is not an injective function; there may be uncertainty about
which translation has been drawn; and, sender and receiver may have private information
about which translation has been drawn. The translation apparatus is flexible enough to
accommodate (complete) absence of a common language, as in Crawford and Haller [9],
gradations of language sharing, as well as uncertainty and private information about language
constraints, as in Blume and Board [5], and Giovannoni and Xiong [15].

2 An informal introduction: examples

Consider a game, Game 1, between a sender and a receiver in which the sender’s payoff type
t belongs to the set T = {t1, t2} and the receiver takes actions a in the set A = {a1, a2, a3}.
After privately observing her payoff type, the sender sends a message m from the message
space M = {m1,m2,m3} to the receiver. In response to the sender’s message, the receiver
takes an action a ∈ A. Payoff types are equally likely and payoffs from any combination
(t, a) of a payoff type t and an action a are given in Figure 1, with the first entry denoting
the sender’s payoff and the second entry denoting the receiver’s payoff.

In addition to this standard structure of a sender-receiver game, assume that sender and
receiver have a common language λ : M → A, with λ(mi) = ai, i = 1, 2, 3. The language
gives the semantic meaning of messages. It can be interpreted as the conventional way of
referring to the receiver’s actions, when incentives are of no concern.

The solution concept proposed in this paper, language equilibrium, is meant to capture
the sender’s reasoning about which message to send, given her type. The basic idea is that

common language restoration may be an issue. For that reason, we declare every equilibrium a language equi-
librium if restoration is impossible for any candidate equilibrium obtained via anchoring, non-proliferation,
and expansion.
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t1

t2

a1 a2 a3

3,3 0,0 1,2

0,0 -1,3 1,2

Figure 1: Dropping messages

starting with the language λ, the sender iterates pure-strategy best replies until she reaches
an equilibrium. In order to make this work, it is necessary to deal with a number of issues
that may derail convergence: these include how to handle unused messages and how to deal
with situations in which the iteration settles on a set instead of a single strategy profile, e.g.,
by reaching a cycle.

In Game 1 the sender’s unique best reply against the receiver strategy r1 = λ, defined
by the language λ, is given by s1 = (t1 7→ m1, t2 7→ m3). Notice that s1 does not use
message m2. The iterative procedure we will use to define language equilibrium provisionally
drops unused messages. With message m2 out of the picture, the receiver has a unique
best reply r2 = (m1 7→ a1,m3 7→ a2) against s1. The sender’s unique best reply to r2 is
s2 = (t1 7→ m1, t2 7→ m1). The unused message m3 is (provisionally) dropped, the receiver’s
unique best reply in the game without messages m2 and m3 is the pooling action a3, and
the iterative procedure has converged. At this point messages m2 and m3 are restored and
a language equilibrium is defined as any equilibrium of the original game in which s2 is the
sender strategy and the receiver responds to message m1 with action a3.5

A few points are worth noting. First, in Game 1 Farrell’s neologism-proofness test rejects
all equilibria: Every equilibrium is a pooling equilibrium, with the receiver taking action a3

on the equilibrium path, and given any such equilibrium the message “I am type t1” is a
credible neologism. Type t1 prefers this message to be believed rather than receiving the
pooling payoff and type t2 prefers the pooling payoff to having this message believed. Second,
there is no credible message profile, as defined by Rabin: Type t1 would like to be identified,
but type t2 would have reason to mimic type t1; type t2 prefers not to be identified; and, type
t1 would not receive her maximal payoff if both types identified themselves as belonging to
{t1, t2}. Third, level-k reasoning would reach the same conclusion as language equilibrium,
for high enough levels and with suitable assumptions for how to deal with unused message.
Finally, language equilibrium is consistent with equilibrium by construction and, in this
game, makes a sharp prediction about message use: both types send message m1.

What if the iterative procedure just described instead of converging enters a cycle? Game
2 with the payoff structure in Figure 2 illustrates this problem and how we address it.

As before, suppose that the two payoff types t1 and t2 are equally likely, that the message
space is M = {m1,m2,m3}, and players have a common language λ with λ(mi) = ai,

5In games with a common language this type of restoration of message is always possible. Simply have
the receiver’s off-equilibrium responses to messages coincide with one of the responses to a message that is
sent in equilibrium.
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t1

t2

a1 a2 a3

0,9 9,0 0,8

9,0 0,9 0,8

Figure 2: A role for Prep-sets

i = 1, 2, 3.
The sender’s unique best reply against the receiver’s strategy r1 = λ, defined by the

language λ, is the strategy s1 = (t1 7→ m2, t2 7→ m1). Consider the reduced game, in which
the unused message m3 is provisionally dropped. The receiver’s unique best reply against
the sender’s strategy s1 in the reduced game is the strategy r2 = (m1 7→ a2,m2 7→ a1).
Iterating further generates a sequence of best replies that are unique at every step and form
a cycle. Denote the set of pure strategies that support this cycle by S′ × R′. The set of
strategies S′ × R′ does not support an equilibrium of the reduced game, in either pure or
mixed strategies. To satisfy the desideratum of having the iterative procedure reach rest
points that are equilibria, the procedure expands the set S′ × R′. Voorneveld [32] defines a
prep set as a set of pure strategy profile that includes a best reply to every belief concentrated
on that set. This inspires the definition of an S′×R′-prep set as a set of pure strategy profiles
in the reduced game that includes S′×R′ as well as a best reply to every belief concentrated
on that set. The procedure expands S′ × R′ to a minimal S′ × R′-prep set. Minimality is
with respect to set inclusion. A minimal S′ × R′-prep set does not strictly contain another
S′ × R′-prep set.

Given a receiver belief that assigns equal probability to all sender strategies in S′ the
receiver’s unique best reply in the reduced game is the strategy r̃ = (m1 7→ a3,m2 7→ a3).
Therefore, the strategy r̃ must be in any S′ × R′-prep set. Indeed, once that strategy is
included we have a minimal S′×R′-prep set and that set includes (a continuum of) equilibria
of the reduced game. In any such equilibrium both messages m1 and m2 are used with
positive probability and the receiver responds to both messages with the action a3. Finally,
we can restore the unused message m3 to the game. Therefore, in every language equilibrium
the sender uses both messages m1 and m2 and the receiver responds to all three messages
with the pooling action a3.

In Game 2 pooling, the only outcome supported by an equilibrium, passes Farrell’s test.
Neologism proofness does not, however, commit to which message or messages the sender
uses. Likewise, since there is no credible message profile, Rabin’s solution make no pre-
dictions about message use. A level-k analysis anchored at the language λ is inconclusive
without additional commitments to how to treat unused messages and to the number of
levels. Language equilibrium arrives at a sharp prediction: both message m1 and m2, and
only those messages, will be used and the receiver responds to all messages with action a3.

In both of our examples thus far the language has been common knowledge. The next
example suggests a way of modeling lack of common knowledge of the language and explores
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the consequences for effective communication and message use.

t1

t2

a1 a2 a3

10,10 9,0 0,9

9,0 10,10 0,9

Figure 3: Uncertainty about language

Consider Game 3 with the payoff structure in Figure 3, two equally likely payoff types t1
and t2, and a message space M = {m1,m2}. Rabin [28] uses the example to demonstrate that
the credibility of one message may depend on the credibility of other messages; Stalnaker
[30] elaborates on this by raising the possibility of “ignorance or error about credibility.”
We want to use this example to investigate the possibility and consequences of language not
being perfectly shared, in the sense that there may be uncertainty about how messages are
interpreted.

Rabin points out that the messagem1, interpreted as “my type is t1” is not credible, unless
m2 interpreted as “my type is t2” is credible: if m1 were credible but there was sufficient
doubt about the credibility of m2, then type t2 would prefer to send m1 (to receive the payoff
9 rather than the pooling payoff 0), undermining the credibility of m1. In Rabin’s case, with
the assumption that the language is common knowledge, this ends up being unproblematic
because the messages are jointly credible.

Suppose, as before, that there is a language λ with λ(mi) = ai, i = 1, 2, that corresponds
to the receiver’s interpretation of messages. Now, however, we want to capture the possibility
that when sending a message the sender is uncertain about how it is interpreted. In order to
have this be a material constraint, we add to the game a set of translations and a probability
distribution over that set. A translation θ : M →M maps intended messages into interpreted
messages.

Specifically, suppose the sender has doubts about her ability to convey to the receiver
her wish that action a1 be taken. She believes that there is a small chance that whatever she
says will be interpreted as asking for action a2. Formally, there are two translations θ′ and
θ′′, defined by θ′(m) = m and θ′′(m) = m2 for both m ∈ M. Assume that there is common
prior µ over translations with µ(θ′′) = p, where p satisfies 1

9
< p < 1.

It may help to have in mind the following scenario: The sender wants to either ex-
press qualified skepticism about a scientific claim, t1, or provide a qualified endorsement, t2.
The receiver interprets the sender’s messages as either qualified skepticism, a1, a qualified
endorsement, a2, or pays no attention, a3. The appropriate qualifications in the possible
statements the sender could make require careful wording and the sender may worry that
despite her best effort her statements are misinterpreted. In addition, she worries that the
receiver is aware of the possibility of misinterpretation and therefore pays no attention.

The iterative procedure singles out a language equilibrium as follows. The sender’s unique
best reply against the receiver’s strategy r1 = λ, defined by the language λ, is the strategy
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s1 = (t1 7→ m1, t2 7→ m2). Given that the sender uses the strategy s1, the receiver’s posterior
probability that the sender’s type is t2 after observing message m2 equals 1

p+1
. Therefore, as

long as p > 1
9
, the receiver has a unique best reply r2 = (m1 7→ a1,m2 7→ a3) to the sender’s

strategy s1. Against r2, the sender has a unique best reply s2 = (t1 7→ m1, t2 7→ m1). At
that point message m2 is dropped from the iteration. In any λ-equilibrium, the sender sends
message m1 exclusively. In order to have a λ-equilibrium, it is necessary that the receiver
responds to message m2 also with action a3. This implies that there is a unique λ-equilibrium
strategy profile (σ, ρ) = ((t1 7→ m1, t2 7→ m1), (m1 7→ a3,m2 7→ a3)).

Note that we get a sharp prediction about message use. The sender sends message m1 in
both states of the world. That message is natural for type t1 to send. Type t2 sends it out of
concern for otherwise being ignored. In the end, the sender expects to be ignored regardless
of the message send.

3 Setup

I consider sender-receiver games with a sender, S, who has private information about a payoff-
relevant state, and a receiver, R, who takes an action that affects both players’ payoffs. Prior
to the receiver taking his action the sender sends a message to the receiver. There is a finite
payoff type space T , a finite action space A, and a finite message space M .6 For any (finite)
set X, ∆(X) is the set of probability distributions over X. Players have a common prior
π ∈ ∆(T ) over the payoff type space, with π(t) > 0 for all t ∈ T. Players’ payoffs ui(t, a),
i = S,R, depend only on the sender’s payoff type t ∈ T and the receiver’s action a ∈ A.

I refer to the structure described thus far as the base game. In the base game messages
have no semantic meanings and are received as sent. The games considered modify the
base game by adding a language, which endows messages with semantic meanings, and by
introducing translations, which loosen the link between sent and received messages.

A language λ : M → A represents the receiver’s non-strategic interpretation of messages.
While the existence of such a language is assumed to be common knowledge, the sender may
be uncertain about that language. She may, for example, know that for every action a ∈ A
the receiver has a term ma ∈ M that refers to that action but may have no knowledge of
which term refers to which action. In that case every language λ′ = λ ◦ θ, where θ : M →M
is a permutation of M , is just as likely as the language λ from the sender’s perspective.

I assume that sent messages are subject to a translation θ : M → M. When the sender
sends a message m ∈M , the receiver observes the message θ(m) ∈M. Translations can but
need not be permutations. Translations are drawn from a common prior distribution µ over
a set of translations Θ, with µ(θ) > 0 for all θ ∈ Θ, and are not directly observed by either
the sender or the receiver.7

6Finiteness of the message space is not essential; in fact, one of the merits of the approach here is that
the cardinality of the message space is largely irrelevant. With a common language, for example, having any
number of synonyms for messages or having the message space be unbounded does not present a problem.

7Since M is finite, so is Θ.
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From the standpoint of an equilibrium analysis, adding a language to the base game has
no consequence. The language can always be ignored. Subjecting messages to translations,
in contrast, does impact the equilibrium structure whenever translations are not bijections or
there is uncertainty about the translation. It is through the solution concept that we propose,
which uses the language to select among equilibria, that language and translations become
intertwined. Uncertainty about the translation becomes uncertainty about language. That
way language and uncertainty about that language jointly determine the (set of) equilibria
that are selected.

Each player i receives a private signal hi about the translation from a finite set of signals
H i. The signal pair h = (hS, hR) is generated by a conditional probability system η : Θ →
∆(HS × HR) that assigns strictly positive probability to each pair of signals (hS, hR) ∈
HS×HR, i.e., Prob[(hS, hR)×Θ] > 0 for all (hS, hR) ∈ HS×HR. Denote player i’s posterior
probability of θ ∈ Θ given his signal hi by ηi(θ|hi). We say that player i learns the translation
if for each signal hi ∈ H i there is a translation θhi such that ηi(θhi |hi) = 1; that is, player i’s
signal reveals the translation.

After obtaining her private information
(
t, hS

)
∈ T × HS the sender sends a message

m ∈ M to the receiver. After observing (θ(m), hR) ∈ M ×HR the receiver takes an action
a ∈ A. A pure strategy s : T × HS → M of the sender maps pairs of payoff states and
sender signals about the translation into messages. A pure strategy r : M ×HR → A of the
receiver maps pairs of messages and receiver signals about the translation into actions. We
denote the sender’s set of pure strategies by S and the receiver’s set of pure strategies by
R. The corresponding sets of mixed strategies are ΣS = ∆(S) and ΣR = ∆(R), with typical
elements σ ∈ ΣS and ρ ∈ ΣR. Expected payoffs as a function of mixed strategy profiles (σ, ρ)
are denoted by U i(σ, ρ).

If the language λ is surjective, then λ is a rich language. If Θ is a set of permutations
of M , then the language λ is accessible.8 If Θ = {θ} is a singleton set, then the language λ
is a determinate language. A language that is both accessible and determinate is a shared
language. A shared language for which the translation θ is the identity mapping is a common
language. A language that is rich, accessible and determinate is a rich shared language, and
if θ is the identity, it is a rich common language. If Θ is the set of all permutations of M , µ
is the uniform distribution on Θ, and η(θ′) = η(θ′′) for all θ′, θ′′, then we have absence of a
shared language.

4 Language Equilibrium

The key idea for what we propose is exceedingly simple: starting with the language λ, iterate
pure-strategy best replies, changing strategies only when this increases payoffs, while at each
step eliminating unused messages. This generates a sequence of strategy profiles in games
with reduced message spaces. There is a limit game, with a reduced message space, and a

8The properties of Θ, µ and ηi, i = S,R, affect the use players can make of the language λ. In a broader
sense they are part of the language. For that reason, and to save on notation, we refer to accessibility as an
attribute of the language, and similarly for the attributes defined below.
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limit set of strategies in that “reduced game” that recur infinitely often. If the limit set of
strategies is a singleton, we have an equilibrium in the reduced game. Under some conditions
(e.g., if there is no uncertainty about translations) the equilibrium in the reduced game can
be extended to an equilibrium in the original game – by adding appropriate receiver responses
to off-path messages. If this is the case, we have a language equilibrium for the language λ,
or a λ-equilibrium.

Two issues have to be addressed. The procedure just described need not converge to a
single strategy profile and, even if it does, need not generate a profile that can be extended
to an equilibrium of the original game. To deal with the first issue, we take limit sets of
pure strategy profiles that are reached under this procedure (in the reduced games), S′×R′ ,
which always exist, and consider minimal sets of strategy profiles P that contain S′×R′ and
a best reply for each player to every belief that is concentrated on P. Each P is a prep set, as
defined by Voorneveld [32] that contains S′ × R′, and is minimal among all such sets. These
sets always exist and contain an equilibrium of the reduced game. If such an equilibrium can
be extended to an equilibrium in the original game, we designate the extension as a language
equilibrium of the original game. Finally, if none of the equilibria of reduced games identified
by this procedure can be extended to an equilibrium in the original game (which is only a
potential issue when there is uncertainty about translations), this is taken to indicate that
the language λ does not single out any of the equilibria of the original game. In that case,
all of the equilibria of the original game are designated as language equilibria of the original
game (for the language λ).

The proposed iterative procedure provisionally eliminates messages. This motivates in-
troducing reduced games on subsets of the original message space. For any subset M0 of
the message space M , define Θ(M0) = {m′ ∈ M |∃m ∈ M0, θ ∈ Θ such that m′ = θ(m)} as
the set of all messages that are possible for the receiver to observe if the sender is restricted
to sending messages in M0. For each M0 ⊆ M , use Γ(M0) to denote the game in which
the sender is restricted to sending messages in M0 and the receiver responds to messages in
Θ(M0). In the game Γ(M0), the sender’s set of pure strategies is S(M0) and the receiver’s
set of pure strategies is R(M0). The corresponding sets of mixed strategies are ΣS(M0) and
ΣR(M0).

For any game Γ(M0) and any set of strategy profiles S′ × R′ ⊆ S(M0) × R(M0), a set
P = PS × PR ⊆ S(M0)× R(M0) is an S′ × R′-prep set if it satisfies:

1. S′ × R′ ⊆ PS × PR; and,

2. Pi contains a best reply in Γ(M0) to every belief concentrated on P−i for i = S,R.

In our analysis, the sets S′ × R′ will be limit sets reached by iterating from the language
λ. There may not be an equilibrium strategy profile of the game Γ(M0) that is supported
on S′×R′. This motivates considering S′×R′-prep sets that are minimal with respect to set
inclusion. Minimal S′ × R′-prep sets are the smallest expansions of the limit sets S′ × R′ to
sets that satisfy a best-reply property and, as a result, support equilibrium strategy profiles
of Γ(M0). For any game Γ(M0) and any set of strategy profile S′ × R′ ⊆ S(M0) × R(M0),
denote the collection of all minimal S′ × R′-prep sets P , by P (S′ × R′) .
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Slightly abusing notation, we will use the same notation for sender strategies defined
for different codomains (i.e., message spaces) but identical images. More formally, for any
M ′ ⊆ M and any sender strategy s : T × HS → M ′ in Γ(M ′), if s(T × HS) = M ′′ ⊂ M ′,
we will also use s to denote the strategy s̃ : T × HS → M ′′ in Γ(M ′′) that is defined by
s̃(t, hS) = s(t, hS) for all (t, hS) ∈ T ×HS.

Central to the definition of a language equilibrium is an iterative reasoning process an-
chored at the language λ : M → A. To capture this reasoning process we will define a
λ-path, which is a sequence (Mk, sk, rk)

∞
k=1 of triples, each consisting of a message space, a

pure sender strategy sk, and a pure receiver strategy rk. Each sender strategy sk is a best
response to the receiver strategy rk; rk is a best response to sk−1; and, message space Mk is
the set of messages used by sk−1. In addition, M1 = M and r1 = λ. In the formal definition
of λ-paths we make use the following notation: For any pure receiver strategy r of the game
Γ(M ′), M ′ ⊆ M , define BRS(r) as the set of pure-strategy best replies of the sender in
Γ(M ′). Likewise, define BRR as the pure strategy best reply correspondence of the receiver
(in the relevant game). For the sender, in addition, define BRS(r) as the set of sender best
replies (in the relevant game) that are minimal with respect to the sets of messages used; that
is s ∈ BRS(r) if s ∈ BRS(r) and there is no strategy s′ ∈ BRS(r) that uses a strict subset of
the set of messages used by s. We refer to the set BRS(r) as the sender’s minimal-message
best replies to strategy r of the receiver.

Best replies in the definition of a λ-path are “sticky”: for either player, if a strategy
from the previous iteration remains a best reply, it is retained in the current iteration. We
also assume that the sender uses minimal-message best replies: when given a choice between
two best replies whose message sets are nested, she picks the one with the smaller set of
messages. The first of these properties rules out spurious iterations and helps minimize the
sets of strategies reached in the limit. The second property rules out that the receiver makes
spurious distinctions among sender types that have identical best replies.9

Definition 1 A sequence (Mk, sk, rk)
∞
k=1 with Mk ⊆M , sk ∈ S(Mk) and rk ∈ R(Mk) for all

k ≥ 1 is a λ-path if

1. M1 = M and r1(m,hr) = λ(m) for all m ∈ Θ(M1) and all hR ∈ HR;

2. for all k, sk ∈ BRS(rk) in Γ(Mk) – in addtion, if k > 1 and sk−1 ∈ BRS(rk) in Γ(Mk),
then sk = sk−1;

3. Mk+1 = sk(T ×HS); and,

4. for all k, rk+1 ∈ BRR(sk) in Γ(Mk+1) – in addition, if rk ∈ BRR(sk) in Γ(Mk), then
rk+1(m,hR) = rk(m,h

R) for all m ∈ Θ(Mk+1) and all hR ∈ HR.

9In addition, one might want to define a λ-path in terms of the game in which actions that are dominated
for the receiver have been eliminated. This would not affect any of our results, but does make a difference
in examples. A sender who believes that the receiver is rational should not expect to be able to induce
dominated receiver actions and should therefore never use such an expectation as a starting point for her
deliberations.
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To deal with cases in which λ-paths do not converge, we introduce λ-sets. A λ-set is a
minimal prep set that contains the limit set of strategies reached by a λ path in the game
Γ(M0), where M0 is the limit message space reached through successive deletion of unused
messages.

Definition 2 A set of pure strategy profiles S̃×R̃ in Γ(M0) is a λ-set for Γ(M0) if there is
a λ-path (Mk, sk, rk)

∞
k=1, M0 =

⋂∞
k=1 Mk and S̃×R̃ ∈ P ({

⋂∞
n=1

⋃∞
k=n {sk}} × {

⋂∞
n=1

⋃∞
k=n {rk}})

for the game Γ(M0).

By construction, a λ-set for a game Γ(M0) contains the support of an equilibrium in
Γ(M0). Any such equilibrium, we refer to as a λ-profile for Γ(M0).

Definition 3 A strategy profile (σ, ρ) in Γ(M0) is a λ-profile for Γ(M0) if there is a
λ-set S̃× R̃ for Γ(M0) with (σ, ρ) ∈ ∆(S̃)×∆(R̃) such that (σ, ρ) is an equilibrium strategy
profile in Γ(M0) .

Once we have a λ-profile for some game Γ(M0), the question arises whether we can
extend it to the original game by picking suitable receiver responses after the messages that
have zero probability to be observed by the receiver under the λ-profile. Conversely, and
equivalently, we can ask whether there is a way of reducing an equilibrium strategy profile of
the original game to a λ-profile of a game with a reduced message space. A strategy profile
(σ, ρ) in the original game Γ(M) is a λ-equilibrium profile if it is an equilibrium profile in
Γ(M) and there is a message space M0 ⊆M such that after restricting the receiver strategy
to messages that can be observed in Γ(M0) it is a λ-profile in Γ(M0). For any receiver
strategy ρ in Γ(M) and any M0 ⊆ M let ρ|M0 denote the restriction of ρ to messages that
can be received with positive probability in Γ(M0).

Definition 4 An equilibrium strategy strategy profile (σ, ρ) in Γ(M) is a λ-equilibrium
profile if either

1. there exists M0 ⊆M such that (σ, ρ|M0) is a λ-strategy profile in Γ(M0); or,

2. there is no equilibrium strategy profile (σ′, ρ′) in Γ(M) and M ′ ⊆M such that (σ′, ρ′|M ′)

is a λ-strategy profile in Γ(M ′).

For each player, a strategy that is part of a λ-equilibrium profile is a λ-equilibrium strategy.
The first condition, which we refer to as reducibility, can always be satisfied for some

equilibrium in a class of games that includes all games with a common language. When there
is uncertainty about the language, however, it may be impossible to satisfy reducibility. In
that case, the second condition ensures existence.

The following preliminary result establishes existence of λ-profiles. It is a simple conse-
quence of the fact that a λ-path either converges or reaches non-singleton limit set and that
any minimal prep set containing that limit set supports an equilibrium of the limit game
Γ(M0).
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Lemma 1 For every game Γ(M) and every language λ : M → A there exists M0 ⊆M and
a λ-profile for Γ(M0).

Proof: Existence of a λ-path follows from the fact that all games Γ(M ′) with M ′ ⊆M are
finite: Given any Mk ⊆ M and any receiver strategy in R(Mk) (sender strategy in S(Mk))
there exists a pure-strategy best reply for the sender (receiver) since the set of pure strategies
S(Mk) (R(Mk)) is finite. Given any Mk ⊆M and any pure sender strategy sk in Γ(Mk) the
set Mk+1 = sk(T ×HS) is well defined.

Given a λ-path (Mk, sk, rk)
∞
k=1, the set M0 =

⋂∞
k=1{Mk} is well defined and non-empty

since each Mk is a finite non-empty subset of Mk−1. For sufficiently large k, each sk is a pure
strategy in Γ(M0). Since there are finitely many such strategies, at least one must appear
infinitely often. Hence, the set

⋂∞
n=1

⋃∞
k=n {sk} is well-defined and non-empty. Likewise,

for sufficiently large k, each rk is a pure strategy in Γ(M0). Since there are finitely many
such strategies, at least one must appear infinitely often. Hence, the set

⋂∞
n=1

⋃∞
k=n {rk} is

well-defined and non-empty.
Trivially, the set PS×PR = S(M0)×R(M0) satisfies {

⋂∞
n=1

⋃∞
k=n {sk}}×{

⋂∞
n=1

⋃∞
k=n {rk}} ⊆

PS×PR and for every belief concentrated on P−i contains a best reply in Pi, i = S,R. Finite-
ness then implies that there must be a minimal set with that property. Hence, there is a
λ-set S̃× R̃ for the game Γ(M0).

Since the λ-set S̃ × R̃ is a Prep set for the game Γ(M0), it contains an equilibrium in
mixed strategies of Γ(M0). 2

The next result shows that whenever the set of translations is a singleton, every λ-
equilibrium profile can be obtained as an extension of a λ-profile to the entire game.

Lemma 2 For every game Γ(M) and every determinate language λ : M → A, if (σ̃, ρ̃) is a
λ-profile in Γ(M0), there is a λ-equilibrium profile (σ, ρ) in Γ(M) with (σ̃, ρ̃) = (σ, ρ|M0) .

Proof: Recall that λ is a determinate language if the set of translations contains a single
element, θ. Let (σ̃, ρ̃) be a λ-profile in Γ(M0). Since (σ̃, ρ̃) is an equilibrium profile in
Γ(M0), the receiver strategy ρ̃ specifies a best reply to all messages in θ(M0). Extend the
receiver strategy ρ̃ from the game Γ(M0) to the game Γ(M) by letting ρ(m) = ρ̃(m0) for all
m ∈ θ(M \M0) and some m0 ∈ θ(M0). In the game Γ(M), if the receiver uses the strategy
ρ, then every action the sender can induce by sending a message in M \M0 she can also
induce by sending a message in M0. Hence, if we let σ = σ̃, (σ, ρ) is an equilibrium strategy
profile for the game Γ(M) with (σ, ρ|M0) = (σ̃, ρ̃). 2

A key element of the definition of a λ-path and therefore of a λ-equilibrium is the re-
quirement that at each iteration unused messages are provisionally dropped. Like the re-
quirements that best replies are sticky and that the sender use minimal-message best replies,
provisionally dropping unused messages serves to contain the proliferation of best replies.
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The next example illustrates the role of provisionally dropping messages, while retaining
sticky best replies and minimal-message best replies; we will discuss the impact of the latter
two requirements later, in a more appropriate context.

Consider a sender-receiver game with the payoff structure in Figure 4, in which the two
payoff types are equally likely, the message space is M = {m1,m2}, and there is a common
language λ with λ(mi) = ai, i = 1, 2.

t1

t2

a1 a2

3,3 0,2

3,-3 0,2

Figure 4: Not dropping messages

The game has a unique λ-equilibrium: the sender sends m1 regardless of type and the
receiver responds to both messages with action a2.

Suppose, instead, that in the definition of a λ-path we did not prescribe to drop unused
messages. Given the receiver strategy r1 = λ defined by r(mi) = ai the following is a
sequence of pure-strategy best replies starting with the sender’s best reply s1 to r1:

s1 = (t1 → m1, t2 → m1)

r2 = (m1 → a2,m2 → a1)

s2 = (t1 → m2, t2 → m2)

r3 = (m1 → a1,m2 → a2)

s3 = (t1 → m1, t2 → m1)

. . .

Since the sender uses only one message at every iteration, clearly the minimal message
best reply condition is satisfied. Also, at every iteration each player’s payoff from changing
their strategy is strictly higher than from staying put and therefore the stickiness condition
is satisfied. Unlike with dropping messages, however, we do not get a sharp prediction for
language use. If we did not require that unused messages be dropped in the definition of a
λ-path, there would be language equilibria in which either only one of the messages is used,
as well as language equilibria in which both messages are used.
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4.1 Common-interest games

The following result characterizes language use in games in which sender and receiver agree
on which strategy profiles they prefer and they have a rich shared language. Following Blume,
Kim and Sobel [2], say that a game is a common-interest game if in the corresponding base
game there exists a strategy profile (σ∗, ρ∗) such that for any strategy profile (σ, ρ) either
Ui(σ, ρ) = Ui(σ

∗, ρ∗) for i = S,R, or Ui(σ, ρ) < Ui(σ
∗, ρ∗) for i = S,R. That is, there is a

unique efficient payoff pair.

Proposition 1 In a common-interest game with a rich shared language λ every λ-equilibrium
profile (σ, ρ) achieves the maximal payoff and satisfies ρ(m) = λ(m) for all messages m ∈M
that are received with positive probability.

Proof: For every payoff type t ∈ T let at ∈ arg maxa u
S(a, t). Since the language λ is rich, for

any t ∈ T and any action at ∈ A, there is a message mt ∈M1 with λ(mt) = at. Because the
language λ is shared and r1(m) = λ(m) for all m ∈ M1, each payoff type t ∈ T can achieve
her maximal feasible payoff by sending the message θ−1(mt). Since the sender has a strategy
that achieves her maximal feasible payoff against r1 for each of her payoff types, for every
λ-path the strategy s1 of the sender must achieve the maximal feasible payoff US(σ∗, ρ∗).

The common-interest assumption implies that a profile that achieves the sender’s maximal
payoff also achieves the receiver’s maximal payoff. Hence s1 and r1 are mutual best replies
in Γ(M1). Therefore r2 agrees with r1 in Γ(M2), where M2 = s1(T ). Since s1 is a minimal
message best reply to r1, s2 = s1 uses all messages in M2. For any λ-path, if sk and rk, are
mutual best replies in Γ(Mk) and sk uses all messages in Mk, then sk = sk+1, rk = rk+1, and
Mk+1 = Mk Hence, by induction, (sk, rk,Mk) = (s2, r2,M2) = (s1, r2,M2) for all k ≥ 2. This
implies that (s1, r2) is a λ-profile for Γ(M2).

The receiver strategy r2 in Γ(M2) agrees with r1 for all messages received with positive
probability given s1 and therefore satisfies r2(m) = λ(m) for all messages m ∈ M that are
received with positive probability. The result follows from Definition 4 and Lemma 2. 2

With absence of a shared language, communication is impossible. The following result
confirms that in this case pooling is the only feasible outcome and shows in addition that in
every λ-equilibrium all types of the sender send the same message.

Proposition 2 For every game Γ(M) with absence of a shared language, the set of λ-
equilibrium strategies of the sender equals {s ∈ S(M)|s(t′) = s(t′′),∀t′, t′′ ∈ T}.

This result differentiates the mental process that is captured through our iterative proce-
dure from learning. Given that the translation, while uncertain, is fixed, repeated interaction
would make it possible for sender and receiver to adjust their strategies toward effective com-
munication, with sufficiently aligned preferences.

Proof: With absence of a shared language the sender assigns equal probability to every
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possible translation, regardless of her signal. As a result, all of her strategies have the same
expected payoff against rk for all k ≥ 1, regardless of the receiver strategies rk. Thus every
strategy s1 ∈ S(M) is a best reply to rk for all k ≥ 1, independent of the specification of rk.
Since the sender is using minimal message best replies, s1 prescribes that all types use the
same message. Since for k > 1 if sk−1 ∈ BRS(rk) in Γ(Mk) we have sk = sk−1, it follows that
for every λ-path, sk = s1 for all k ≥ 1. 2

Having the language be shared, or even common, is not necessary for achieving efficient
communication in common-interest games. With a rich and accessible language, it suffices
that the sender learns the translation. In contrast, as we will see later, it is not enough that
the receiver learns the translation.

Proposition 3 In a common-interest game with a rich and accessible language λ, if the
sender learns the translation then every λ-equilibrium profile (σ, ρ) achieves the maximal
payoff and satisfies ρ(m,hR) = λ(m) for all messages m ∈ Θ(M) that are received with
positive probability and all receiver signals hR ∈ HR.

Proof: Recall that for every payoff type t ∈ T , at ∈ arg maxa u
S(a, t). For notational

convenience, write θ for θhS .
Since the language λ is rich and accessible and the sender learns the translation, for every

t ∈ T , every at ∈ A, and every hS ∈ HS there is a message mt ∈ M1 with λ(θ(mt)) = at.
Denote that message by mθ

t . Therefore, since the receiver strategy r1 satisfies r1(m,hR) =
λ(m) for all m ∈ Θ(M1) and all hR ∈ HR, each payoff type t ∈ T can achieve her maximal
feasible payoff against the strategy r1 by sending the message mθ

t . Hence the sender strategy
ŝ that is defined by ŝ(t, θ) = mθ

t for all t ∈ T and all θ ∈ Θ is a best reply to r1 and achieves
the sender’s maximal feasible payoff US(σ∗, ρ∗).

Since the sender has a strategy that achieves her maximal feasible payoff against r1, for
every λ-path the strategy s1 of the sender (which may be different from ŝ) must achieve the
maximal feasible payoff. The common-interest assumption implies that a strategy profile
that achieves the sender’s maximal payoff also achieves the receiver’s maximal payoff. Hence
s1 and r1 are mutual best replies in Γ(M1)

Therefore r2 agrees with r1 on M2 = s1(T × HS) and s2 = s1 uses all messages in M2.
For any λ-path, if sk and rk, are mutual best replies in Γ(Mk) and sk uses all messages
in Mk, then sk = sk+1, rk = rk+1, and Mk+1 = Mk. Hence, by induction (sk, rk,Mk) =
(s2, r2,M2) = (s1, r2,M2) for all k ≥ 2 and r2 agrees with r1 for all messages received with
positive probability given s1. This implies that (s1, r2) is a λ-profile for Γ(M2). The receiver
strategy r2 in Γ(M2) agrees with r1 for all messages received with positive probability given
s1 and therefore satisfies r2(m,hR) = λ(m) for all hR ∈ HR and for all messages m ∈ Θ(M)
that are received with positive probability.

We can extend the receiver’s strategy to Γ(M) by letting ρ(m,hR) = λ(m) for all ∈ M.
Hence there exists an equilibrium strategy strategy profile (σ, ρ) = (s1, ρ) in Γ(M) that
satisfies (σ, ρ|M2) is a λ-strategy profile in Γ(M2). This implies that every λ-equilibrium
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profile in Γ(M) must satisfy condition 1 in Definition 4 and thus be reducible to a λ-profile
for some M0 ⊂M.

The result follows by combining the facts that (1) every λ-strategy profile (s, r) for some
M0 achieves the maximal payoff and satisfies r(m,hR) = λ(m) for all hR ∈ HR for all
messages m ∈ Θ(M) that are received with positive probability and (2) every λ-equilibrium
profile is reducible to a λ-strategy profile for some M0. 2

With a rich and accessible language, as long as one of the players learns the translation,
a common-interest game has multiple equilibria that achieve the maximal payoff: If the
sender (or both players) learn the translation, any pure strategy profile (s, r) in which r is
surjective and s is a best reply to r given the realized translation θ is an equilibrium profile
that achieves the maximal payoff. Likewise, if only the receiver learns the translation, any
pure strategy profile in which s is an arbitrary separating strategy and r is a best reply to
s given the realized translation θ is an equilibrium profile that achieves the maximal payoff.

The language equilibrium selection, in contrast, differentiates among these cases. In the
case in which the sender learns the translation Proposition 3 shows that any λ-equilibrium
is efficient and satisfies that the receiver’s strategy conforms with the pre-specified language.
If, however, only the receiver learns the translation, language equilibria need not be either
efficient or, if they are efficient, conform with the pre-specified language. The following
example illustrates this.

t1

t2

a1 a2

1,1 0,0

0,0 2,2

Figure 5: Common interest

Suppose that payoffs are the ones given in Figure 5 and that the two payoff types are
equally likely; the message space is M = {m1,m2}; the set of translations is Θ = {θ1, θ2},
with θ1(mi) = mi and θ2(mi) = m3−i; µ(θi) = 1

2
, i = 1, 2, so that a priori both translations

are equally likely; and, the language λ satisfies λ(mi) = ai i = 1, 2. This is a common-
interest game with a rich and accessible language. Let HR = {hR1 , hR2 }, HS = {hS}, with
ηR(θi|hRi ) = 1, so that the receiver signals fully reveal the translation and the set of sender
signals is degenerate. Since the sender does not learn the translation and a priori both
translations are equally likely, she expects the receiver to observe each message with equal
probability independent of the message sent. Since λ is not a function of the translation,
against r1 = λ the sender expects to induce each receiver action with equal probability.
Hence, every sender strategy, including pooling on a single message, is a best reply against
r1 = λ. A minimal message best reply requires that s1 pools on a single message. If s1 is
pooling on m1 then r1 = λ is not a best reply to s1 (and therefore stickiness does not prevent
the receiver from updating his strategy), and for the receiver taking action a2 independent
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of the message received and the signal observed is a best reply. Let this be r2. s1 and
r2 are mutual best replies and hence the profile (s1, r2) is a λ-equilibrium profile. This λ-
equilibrium profile does not induce the common maximal payoff and the receiver strategy
does not conform with the language λ.

A game is an equilibrium-common-interest game if in the base game there exists an
equilibrium strategy profile (σ∗, ρ∗) such that for any equilibrium strategy profile (σ, ρ) either
Ui(σ, ρ) = Ui(σ

∗, ρ∗) for i = S,R, or Ui(σ, ρ) < Ui(σ
∗, ρ∗) for i = S,R. That is, there is a

unique payoff pair that is efficient in the set of equilibrium payoff pairs.
Propositions 1 and 3 do not extend to games with only equilibrium-common interest.

Consider Game 6 with the payoff structure in Figure 6, two equally likely payoff types t1
and t2, a message space M = {m1,m2,m3}, and a rich shared language λ with λ(mi) = ai,
i = 1, 2, 3, where the single translation is the identity map.10

t1

t2

a1 a2 a3

2,3 1,-3 0,1

2,-3 1,3 0,1

Figure 6: State-independent preferences

The game has a continuum of equilibria, with payoffs ranging from 0 to 1 for the sender
and from 1 to 1.5 for the receiver. There is a unique efficient equilibrium payoff pair with
a payoff of 1 for the sender and 1.5 for the receiver. This payoff pair can be achieved by a
strategy profile in which type t1 sends message m1, type t2 sends messages m1 and m2 with
probability 1/2 each, and the receiver responds to message m1 with an equal-probability
randomization over actions a1 and a3 and to both messages m2 and m3 with action a2.

The set M0 = {m1} is the unique subset of M with a λ-profile for M0. For the sender,
this λ-profile prescribes sending m1 regardless of the payoff type. The receiver responds to
m1 with action a3. The only way to extend this profile to all of Γ(M) is to have the receiver
respond to all messages with action a3. Hence, for this game there is a unique λ-equilibrium
profile. This equilibrium is inefficient and does not conform with the language.

Recall that in the definition of a λ-path best replies are “sticky”: if a strategy from the
previous iteration remains a best reply, it is retained in the current iteration. The next
example demonstrates that Propositions 1 and 3 would fail if we dropped stickiness in the
definition of a λ-path. Consider a sender-receiver game with the payoff structure in Figure
7, in which the three payoff types are equally likely, the message space is M = {m1,m2,m3},
and there is a rich common language λ with λ(mi) = ai, i = 1, 2, 3.

The following is a sequence of best replies with elimination of unused messages and
minimum-message best replies for the sender, starting with the sender’s best reply s1 to the
receiver’s strategy r1 = λ:

10This is a game with state-independent sender-preferences, which are analyzed by Lipnowski and Ravid
[22].

19



t1

t2

t3

a1 a2 a3

1,1 0,0 1,1

1,1 1,1 0,0

0,0 1,1 1,1

Figure 7: Payoff ties

1. s1 = (t1 → m1, t2 → m1, t3 → m3)

2. r2 = (m1 → a1,m3 → a3)

3. s2 = (t1 → m3, t2 → m1, t3 → m3)

4. r3 = (m1 → a2,m3 → a3)

5. s3 = (t1 → m3, t2 → m1, t3 → m1)

6. r4 = (m1 → a2,m3 → a1)

7. s4 = (t1 → m3, t2 → m3, t3 → m1)

8. r5 = (m1 → a3,m3 → a1)

At this point the roles of the messages m1 and m3 have been exchanged. This means that
there is a cycle in which the sender strategies s1 and s4 and the receiver strategies r2 and r5

appear infinitely often. The strategy profile in which the sender mixes with equal probability
over s1 and s4 and the receiver mixes with equal probability over r2 and r5 is an equilibrium
profile supported on this cycle. This equilibrium is inefficient and does not conform with the
language.

With sticky best replies the inefficiency is removed. There are multiple λ-equilibria, but
in all of these equilibria the receiver’s interpretation conforms with the language λ. This
seems plausible: the sender tells the receiver which action to take and the receiver, realizing
that it is a common interest game, complies.

4.2 Block-aligned preferences

In this section we examine language use for a class of games in which preferences are imper-
fectly aligned. There is a partition of the payoff type space such that payoff types in every
partition element strictly prefer to be thought of as belonging to their partition element
rather than to any other partition element. For every set of types T ′ ⊆ T , define BR(T ′)
as the set of receiver actions that are best replies to beliefs that assign positive probability
only to types t ∈ T ′.
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Definition 5 Players have block-aligned preferences for a nontrivial partition T =
{T1, . . . , TJ} of the payoff type space T if

1. arg maxa u
S(t, a) ⊆ BR(Tj), and

2. min
a∈BR(Tj)

uS(t, a) > max
a∈BR(T`)

uS(t, a)

for all t ∈ Tj, all j = 1, . . . , J , and all ` 6= j.

Game 8 with the payoff structure in Figure 8, four equally likely payoff types, the message
space M = {m1, . . .m5}, and a common language λ with λ(mi) = ai, i = 1, . . . , 5, has block-
aligned preferences for the partition T = {{t1, t2}, {t3, t4}}.

t1

t2

t3

t4

a1 a2 a3 a4 a5

5,2 1,6 -1,-1 -1,-1 4,3

1,5 5,2 -1,-1 -1,-1 4,3

-1,-1 -1,-1 5,2 1,6 4,3

-1,-1 -1,-1 1,5 5,2 4,3

Figure 8: Block-aligned preferences

In every λ-equilibrium, types t1 and t2 mix over messages m1 and m2 and types t3 and t4
mix over messages m3 and m4. In all of these equilibria, the receiver responds to messages
m1 and m2 with action a2 and to messages m3 and m4 with action a4. Note that the sender
ex ante prefers pooling to any λ-equilibrium, that there is no credible message profile, and
that λ-equilibria are not neologism proof: the set of types t1 and t3 has a credible neologism.

In Game 8 language equilibrium does not pin down language use exactly. It does, however,
place sensible constraints on language use that reflect the payoff structure. This holds more
generally. To show this, given a partition of the payoff type space, we define what it means
for language use to block conform with a language: Each sender type only induces received
messages whose pre-specified meanings according to the language are best replies to beliefs
concentrated on her partition element. The receiver responds to every received message
whose pre-specified meaning is a best reply to beliefs concentrated on a partition element
with an action that is a best reply to beliefs concentrated on the same partition element.

For any partition T of the payoff type space and every t ∈ T denote the partition element
that contains t by T (t).

Definition 6 Given a partition T of the payoff-type space, a set of strategy profiles Σ̃S ×
Σ̃R ⊆ ΣS × ΣR in Γ(M0) block conforms with the language λ if
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1. [σ(m|t, hS) > 0 and ηS(θ|hS) > 0]⇒ λ(θ(m)) ∈ BR(T (t)), ∀σ ∈ Σ̃S, t ∈ T, hS ∈ HS.

2. λ(m) ∈ BR(Tj)⇒ ρ(m,hR) ∈ BR(Tj), ∀ρ ∈ Σ̃R, j = 1, . . . , J , all messages m ∈ Θ(M0)
that are received with positive probability given some sender strategy σ ∈ Σ̃S, and all
receiver signals hR ∈ HR.

The next result ensures that if a limit set of strategies reached by a λ-path block conforms
with the language λ, then any minimal prep set containing that limit set also block conforms
with the language λ.

Lemma 3 Suppose that players have block aligned preferences for the partition T , that S′×
R′ ⊆ S × R in Γ(M0) block conforms with the language λ for the partition T , and that for
each m ∈ Θ(M0) there is a strategy s ∈ S′ such that message m is received with positive
probability, then every minimal S′ × R′-Prep Set in Γ(M0) block conforms with the language
λ.

Proof: Suppose that S′ × R′ satisfies the conditions in the statement of the Lemma for the
partition T . Let PS × PR be an S′ × R′-Prep Set in Γ(M0).

Eliminate all sender strategies from PS that do not satisfy Condition 1 for block con-
formity in Definition 6. Denote the resulting set by P̃S and observe that it is nonempty.
Eliminate all receiver strategies from PR that do not satisfy Condition 2 for block confor-
mity in Definition 6, with Σ̃S the set of mixed strategy profiles of the sender supported on
P̃S. Denote the resulting set by P̃R and observe that it is nonempty.

Since P̃R satisfies Condition 2 for block conformity, since every message available to the
sender induces a message in Θ(M0) that is received with positive probability by the receiver
for some sender strategy in S′ ⊆ P̃S, and since preferences are block aligned for the partition
T , every sender best reply in Γ(M0) to beliefs concentrated on P̃R satisfies Condition 1 for
block conformity. Since by assumption PS × PR is a Prep Set, PS must contain a best reply
for every belief that is concentrated on P̃R. Since, as we saw, all such best replies satisfy
Condition 1 for block conformity, they remain in P̃S. Thus P̃S contains a best reply to every
belief concentrated on P̃R.

Let σ′ ∈ ∆(S′) have full support on S′, let σ̃ ∈ ∆(P̃S), and for all ε ∈ (0, 1), let σ(ε) =
(1− ε)σ̃ + εσ′. Then σ(ε) ∈ ∆(P̃S) and σ(ε) induces every message in Θ(M0) with positive
probability. Since all strategies in P̃S satisfy Condition 1 for block conformity, for all ε > 0 the
strategy σ(ε) satisfies that condition. Since the strategy σ(ε) satisfies Condition 1 for block
conformity and it induces every message in Θ(M0) with positive probability, any receiver
best reply to σ(ε) satisfies Condition 2 for block conformity. Since PS ×PR is assumed to be
a Prep Set, and P̃R is obtained from PR by eliminating (only) strategies that do not satisfy
Condition 2, the set P̃R contains a best reply to σ(ε) for all ε > 0. Consider a sequence
(εn, ρ(εn))∞n=1 with lim

n→∞
εn = 0, ρ(εn) a best reply to σ(εn) and ρ(εn) ∈ P̃R. Since P̃R is finite,

there is a subsequence (εnj
, ρ(εnj

))∞j=1 and ρ̃ ∈ P̃R with ρ(εnj
) = ρ̃ for all j. By continuity
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of the payoff function, ρ̃ is a best reply to σ̃. Hence P̃R contains a best reply to σ̃ for all
σ̃ ∈ ∆(P̃S). Therefore, P̃S × P̃R is an S′ × R′-Prep Set. 2

Using this observation, we now show that with a rich and accessible language and block-
aligned preferences, all language equilibria block conform with the pre-specified language.
Types belonging to an element of the partition for which there is block alignment send
only messages whose pre-specified meanings are best replies to beliefs concentrated on that
element. The proof proceeds by showing that for every λ-path block conformity is preserved
at every iteration, then using Lemma 3 to establish that any set that is minimal in the
class of prep sets that contain the limit set reached in this manner block conforms with the
language, and finally to infer that any equlibrium supported on such a prep set must block
conform with the language.

Proposition 4 In games with block-aligned preferences and a rich and accessible language
λ, if the sender learns the translation then every λ-equilibrium profile (σ, ρ) block conforms
with the language λ.

Proof: For every payoff type t ∈ T , let at ∈ arg maxa u
S(a, t). For notational convenience,

write θ for θhS .
Since the language λ is rich and accessible and the sender learns the translation, for every

t ∈ T , every at ∈ A, and every hS ∈ HS there is a message mt ∈ M1 with λ(θ(mt)) = at.
Denote that message by mθ

t . Therefore, since the receiver strategy r1 satisfies r1(m,hR) =
λ(m) for all m ∈ Θ(M1) and all hR ∈ HR, each payoff type t ∈ T can achieve her maximal
feasible payoff against the strategy r1 by sending the message mθ

t .
Block alignment of preferences implies that

max
a
uS(t, a) = max

a∈BR(T (t))
uS(t, a) ≥ min

a∈BR(T (t))
uS(t, a) > max

a∈BR(T`)
uS(t, a)

for all T` 6= T (t). Hence, for every λ-path the strategy s1 satisfies Condition 1 in Definition 6.
Given the strategy s1, for any message m that the receiver observes with positive probability
and that satisfies λ(m) ∈ BR(Tj), he knows that message was sent by a type in Tj. Hence
r2 satisfies Condition 2 in Definition 6.

If sk satisfies Condition 1 in Definition 6, then for every message that has positive proba-
bility given sk the receiver can infer the partition element containing the type who sent that
message from the language λ. Therefore rk+1 satisfies Condition 2 in Definition 6 and for
every t ∈ T there is a message m ∈ sk(T ×HS) = Mk+1 with rk+1(θ(m), hR) ∈ BR(T (t)).

Since Mk = sk−1(T × HS) and rk ∈ BRR(sk−1) in Γ(Mk), the strategy rk specifies
responses only for message in Θ(Mk), all of which are received with positive probability
given sk−1. Given sk−1, if rk satisfies Condition 2 in Definition 6 and for every t ∈ T there is
a message m ∈Mk with rk(θ(m), hR) ∈ BR(T (t)) then sk satisfies Condition 1 in Definition
6.
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Hence, by induction for every (sk, rk+1) and every k ≥ 1, sk satisfies Condition 1 in
Definition 6 and given sk, rk+1 satisfies Condition 2 in Definition 6.

Since M is finite and Mk+1 ⊂ Mk in the sequence (M)∞k=1, there exists K ≥ 1 such that
Mk = M0 for all k ≥ K.

Let S′ =
⋂∞
n=1

⋃∞
k=n {sk} and R′ =

⋂∞
n=1

⋃∞
k=n {sk}. Note that for every message m ∈M0

there is a sender strategy in S′ for which m is sent with positive probability. Hence, the set
S′×R′ ⊆ S×R in Γ(M0) block conforms with the language λ and for each m ∈ Θ(M0) there
is a strategy s ∈ S′ such that message m is received with positive probability.

Let P = PS×PR ⊆ S(M0)×R(M0) be a minimal S′×R′-prep set in Γ(M0). Since S′×R′

satisfies the conditions of Lemma 3, the set P block-conforms with the language λ. Hence,
there there exists a λ-profile (σ0, ρ0) in Γ(M0) with support P , and every λ profile in Γ(M0)
block conforms with the language λ.

We can extend the receiver’s strategy to Γ(M) by letting ρ(m,hR) = ρ0(m0, hR) for all
m ∈ Θ(M) \ Θ(M0) and some m0 ∈ Θ(M0) and ρ(m,hR) = ρ0(m,hR) for all m ∈ Θ(M0)
and all hR ∈ HR. The sender strategy σ0 remains a best reply to ρ in Γ(M).

Hence, there exists an equilibrium strategy strategy profile (σ, ρ) = (σ0, ρ) in Γ(M) that
satisfies (σ, ρ|M0) is a λ-strategy profile in Γ(M0). This implies that every λ-equilibrium
profile in Γ(M) must satisfy condition 1 in Definition 4 and thus be reducible to a λ-profile
for some M0 ⊂ M. The result follows since every every λ profile in Γ(M0) block conforms
with the language λ. 2

4.3 Sender-preferred equilibria

One might suspect that if there is an equilibrium that maximizes the payoff of every type
of the sender, the sender would be able to induce that equilibrium. In this section we show
that this is the case with some qualifications.

A sender-receiver game is generic if uS(t, a′) 6= uS(t, a′′) for a′, a′′ ∈ A with a′ 6= a′′ and
for each T ′ ⊆ T the receiver has a unique best reply to the belief that equals the prior,
π, restricted to T ′. In the base game, an equilibrium is sender ideal if type t’s payoff is
maxa∈A u

S(t, a) for all t ∈ T.11

The proof of the main result in this section makes use of the following observation about
generic games.

Lemma 4 Suppose that a generic base game has a sender-ideal equilibrium. Then, if all
types with the same ideal action a ∈ A exclusively send message m ∈ M and no other types
send that message, action a is a best reply for the receiver to message m.

The game in Figure 9 (with two equally likely types and at least two messages) illustrates
the role of genericity in Lemma 4. The game has a sender-ideal equilibrium and both types
agree on the set of actions that induce their ideal payoffs. If, however, the two types pool
on a common message the receiver’s best reply is not one of these actions.

11This matches the sender’s favorite equilibria of Blume, Kim and Sobel [2].
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t1

t2

a1 a2 a3

3,3 3,0 0,2

2,0 2,3 0,2

Figure 9: Perils of pooling

Proof: Let A∗ := {a ∈ A|∃t ∈ T s.t. a = arg maxa′∈A u
S(t, a′)} be the set of receiver

actions that maximize some type’s payoff. For any action a ∈ A∗, define T (a) := {t ∈ T |a =
arg maxa′∈A u

S(t, a′)} as the set of types for whom action a is the preferred action. This set is
well defined by our genericity assumption. In a sender-ideal equilibrium each type t ∈ T (a)
sends only messages that induce action a.

Let σ be the strategy of the sender in a sender-ideal equilibrium e. For every m ∈ M
and t ∈ T , denote the receiver’s posterior probability of type t given message m by β(t|m).
For any a ∈ A∗, let M(a) := {m ∈M |∃t ∈ T (a) s.t σ(m|t) > 0} be the set of messages that
are sent with positive probability by some type in T (a).

Then, in the presumed equilibrium, for any a ∈ A∗ and any m ∈M(a),

a ∈ arg max
a′

∑
t∈T (a)

β(t|m)uR(t, a′).

For any m ∈M(a) let p(m) =
∑

t∈T (a) σ(m|t)π(t).

Then the receiver’s expected payoff from types in T (a) equals∑
m∈M(a)

p(m)
∑
t∈T (a)

β(t|m)uR(t, a) =
∑

m∈M(a)

p(m)
∑
t∈T (a)

σ(m|t)π(t)

p(m)
uR(t, a)

=
∑

m∈M(a)

∑
t∈T (a)

σ(m|t)π(t)uR(t, a)

=
∑
t∈T (a)

∑
m∈M(a)

σ(m|t)π(t)uR(t, a)

=
∑
t∈T (a)

π(t)uR(t, a)

The action a must be a maximizer of
∑

t∈T (a) π(t)uR(t, a′) since otherwise we could find

at least one message m ∈ M(a) for which a is not a maximizer of
∑

t∈T (a) β(t|m)uR(t, a′),
contradicting the assumption that we have an equilibrium. 2

The next result confirms the introductory conjecture for generic games with a rich and
accessible language whose base games have a sender-ideal equilibrium and in which the
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sender learns the translation. Furthermore the receiver responds to every message that he
receives with positive probability with an action that matches the pre-specified meaning of
that message.

Proposition 5 Suppose a generic game has a rich and accessible language λ and its base
game has a sender-ideal equilibrium. Then, if the sender learns the translation, every λ-
equilibrium profile (σ, ρ) achieves the sender’s maximal payoff and satisfies ρ(m,hR) = λ(m)
for all messages m ∈ Θ(M) that are received with positive probability and all receiver signals
hR ∈ HR.

Proof: In a generic game, for each type t there is a single receiver action aS(t) = arg maxa u
S(a, t)

that maximizes that type’s payoff. For notational convenience, write θ for θhS . Since the
language λ is rich and accessible and the sender learns the translation, for every t ∈ T , every
aS(t), and every hS ∈ HS there is a message mt ∈ M1 with λ(θ(mt)) = aS(t). Denote that
message by mθ

t .
Therefore, since the receiver strategy r1 satisfies r1(m,hR) = λ(m) for all m ∈ Θ(M1)

and all hR ∈ HR, each payoff type t ∈ T can achieve her maximal feasible payoff against the
strategy r1 by sending the message mθ

t .
Since in each iteration of a λ path the sender uses minimal-message best replies, we have

that for all types t and t′ with the same ideal action, s1(t, hS) = s1(t′, hS) for all hS ∈ HS.
Let A∗ be the set of all actions that are some type’s ideal action, and for any action a ∈ A∗,
let T (a) := {t ∈ T |a = arg maxa′∈A u

S(t, a′)}.
By our minimal-message best reply assumption, for any message m that the receiver

observes with positive probability given s1 and that satisfies λ(m) = a ∈ A∗, his posterior
belief is the prior concentrated on T (a). Hence, by Lemma 4 and genericity, r2(m,hR) = λ(m)
for all hR ∈ HR and all m ∈ s1(T ×HS) = M2.

Since each type t induces her favorite action at, and since by our minimal-message best
reply assumption all types with the same favorite action send the same message, for each
hS ∈ HS there is one and only one message in M2 that induces type t’s favorite action,
given strategy r2 of the receiver. This implies that s2 agrees with s1 on M2, that s2 and
r2 are unique best replies to each other in Γ(M2), and r2(m,hR) = λ(m) for all messages
m ∈ Θ(M2) and all hR ∈ HR.

It follows that for all k ≥ 2 we have Mk = M2, sk = s2, rk = r2, sk and rk are unique
best replies to each other in Γ(Mk), and rk(m,h

R) = λ(m) for all messages m ∈ Θ(Mk) and
all hR ∈ HR. Hence, there exists a set of message M0 and a λ-profile (σ0, ρ0) in Γ(M0), and
every λ profile (σ′, ρ′) achieves the sender’s maximal payoff and satisfies ρ′(m,hR) = λ(m)
for all messages m ∈ Θ(M) that are received with positive probability and all receiver signals
hR ∈ HR. Since the sender achieves her maximal payoff for every λ-profile, each λ-profile
can be trivially extended to a λ-equilibrium profile. 2

Proposition 5 applies to Game 10 with the payoff structure in Figure 10, two equally
likely payoff types t1 and t2, a message space M = {m1,m2,m3, m

′
3}, and a rich shared
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t1

t2

a1 a2 a3

1,3 0,0 2,2

0,0 1,3 2,2

Figure 10: Sender-preferred equilibrium

language λ with λ(mi) = ai, i = 1, 2, 3, and λ(m′3) = a3, where the single translation is
the identity map. Notice that if we dropped the minimal-message reply assumption in the
definition of λ-paths, there would be a λ-path with s1 = (t1 → m3, t2 → m′3) that would
converge to a separating equilibrium with σ = s1, in which the sender would not obtain her
maximal payoff. It seems implausible, however, that the receiver would be able to tell the
two types apart on the basis of which message exactly the sender chooses to indicate the
desire that action a3 be taken.12

For the result in Proposition 5 to hold, it is not enough that all sender types agree on
their favorite equilibrium in the base game. Let Σeqm

R denote the set of all receiver strategies
that are part of some equilibrium in the base game. An equilibrium of the base game is
sender optimal if type t’s payoff is

max
m∈M,ρ∈Σeqm

R

∑
uS(t, a)ρ(a|m)

for all t ∈ T.
The base game of Game 6 in Figure 6 has a sender-optimal equilibrium and satisfies our

genericity condition. The unique λ-equilibrium profile, however, results in a payoff 0 for both
types, whereas their payoff at a sender-optimal equilibrium is 1.

4.4 Finite CS games

In this section we examine language use in a class of games that may be thought of as an
adaptation of the setup of Crawford and Sobel [8] to a setting with finite type and action
spaces.

For any linear ordering ≤ of the set of types T and any t′, t′′, refer to the set [t′, t′′] :=
{t ∈ T |t′ ≤ t ≤ t′′} as an interval of types. The linear order ≤ of T induces a partial order
- on the set of intervals of T defined by [t′1, t

′′
1] - [t′2, t

′′
2] ⇔ t′1 ≤ t′2 and t′′1 ≤ t′′2. Observe

that in a generic sender-receiver game for every state t ∈ T , each player i has a unique ideal
point ai(t) = arg maxa u

i(a, t).
A generic sender-receiver game is a finite CS game if there exist orderings of types and

actions such that:
12Assuming nominal message costs as in Blume, Kim and Sobel [2] has a similar effect as adopting the

minimal-message best reply assumption. With nominal message costs, however, it would frequently not be
possible to extend λ-profiles to λ-equilibria for the entire game – there would be a tension between the
pre-specified meanings of messages and the incentive to use lower-cost messages.
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1. The functions ui are unimodal in a for all t ∈ T and i = 1, 2; i.e., a < a′ ⇒ ui(a, t) <
ui(a′, t) for all a′ ≤ ai(t) and a > a′ ⇒ ui(a, t) < ui(a′, t) for all a′ ≥ ai(t).

That is, for each state and each player, the player’s payoff is strictly increasing in the
action below the player’s ideal point and strictly decreasing above the player’s ideal
point.

2. The sender’s preference has an upward bias relative to the receiver: aR(t) < aS(t),∀t ∈
T.

3. The receiver’s ideal point is responsive: aR(t′) 6= aR(t) for all t, t′ ∈ T with t 6= t′

4. Each player i’s payoff function ui satisfies the single crossing condition13:

t2 > t1 and a2 > a1

implies
ui(a2, t1)− ui(a1, t1) > 0⇒ ui(a2, t2)− ui(a1, t2) > 0.

In a finite CS game, the sender has an incentive to exaggerate her type. This suggests
that in equilibrium the receiver may discount the pre-specified meaning of the messages that
he receives: after every message sent in equilibrium the receiver takes an action that is lower
than the action that matches the pre-specified meaning of the message. This is confirmed
by the following result.

Proposition 6 In any generic finite CS game with a rich and accessible language λ, if the
sender learns the translation, then for every λ-equilibrium profile (σ, ρ) and all messages
m ∈ Θ(M) that are received with positive probability,

1. λ(m) = aS(t) for some t ∈ T , and

2. ρ(m,hR) < λ(m) for all receiver signals hR ∈ HR.

Every message that is observed with positive probability has a pre-specified meaning that
matches some sender type’s ideal point and is discounted by the receiver.

Proof: Recall that for each type t there is a single receiver action aS(t) = arg maxa u
S(a, t)

that maximizes that type’s payoff. By assumption, for each hS ∈ HS, the sender learns the
translation θhS . For notational convenience, suppress the explicit dependence of the realized
translation on the sender’s signal hS and write θ for θhS . Since the language λ is rich and
accessible, for every t ∈ T and every realized translation θ there is a message mθ

t ∈M1 with
λ(θ(mθ

t )) = aS(t).
Therefore, since the sender learns the translation θ, since the receiver strategy r1 satisfies

r1(m,hR) = λ(m) for all m ∈ Θ(M1) and all hR ∈ HR, each payoff type t ∈ T has at least

13Genericity implies that we can ignore the possibility that ui(a2, t1)− ui(a1, t1 = 0 for a2 > a1.
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one way of inducing her ideal action against the strategy r1 by sending the message mθ
t .

Since at each iteration the sender uses minimal-message best replies, for all types t and t′

with the same ideal action, s1(t, hS) = s1(t′, hS) for all hS ∈ HS.
Since each type t can induce her ideal action by sending message mθ

t ∈M1, every message
m ∈ Θ(M1) that is received when the sender uses strategy s1 satisfies λ(m) = aS(t) for some
t ∈ T. Hence, for all m ∈ Θ(M2) where M2 = s1(T ×HS) there exists a type t ∈ T such that
λ(m) = aS(t). This establishes the first part of the proposition since Mk+1 ⊆ Mk for every
λ-path.

Let A∗ be the set of all actions that are some type’s ideal action. For any action a ∈ A∗,
let T (a) := {t ∈ T |a = aS(t)}. This is the set of types whose ideal action is a. Given the
single-crossing condition for the sender, for each a ∈ A∗ the set T (a) is an interval.

Since at each iteration the sender uses minimal-message best replies, s1 prescribes that all
types with the same ideal point send the same message, for any message m that the receiver
observes with positive probability given s1 and that satisfies λ(m) = a ∈ A∗, his posterior
belief is the prior concentrated on T (a). This receiver inference is unaffected by the receiver’s
signal hR ∈ HR. Hence, by genericity, the receiver has a unique best reply r2(m,hR) to all
m ∈ Θ(M2), which is independent of hR for all hR ∈ HR.

For each m ∈ Θ(M2) define T2(m) as the interval of types who induce (the received)
message m. Each message in m ∈ Θ(M2) induces a distinct sender ideal action. Therefore,
for each realized translation θ ∈ Θ, the collection of intervals {T2(m)|m ∈ θ(M2)} forms a
partition of T. Moreover, ignoring the indexing by messages, this partition is the same for
all θ ∈ Θ. Denote this partition by T2. The elements of any partition of T into intervals are
linearly ordered by ≺, the strict linear order associated with -.

For each m ∈ Θ(M2), λ(m) is the common ideal point of types in T2(m). Hence, for
each type t ∈ T2(m), aR(t) < aS(t) = λ(m). Therefore the single-crossing condition for the
receiver implies that for each m ∈ θ(M2), r2(m,hR) < λ(m) (this uses the fact that the
distributions obtained by concentrating the support of the prior on intervals [t′, t

′
] and [t, t],

with t′ ≤ t and t
′ ≤ t are MLRP ranked).

We now proceed by induction. We have established that for (s1, r2) there is a partition T2

of the type space T such that for every m ∈ Θ(M2) (where M2 = (s1(T ×HS)), the partition
element T2(m) is the set of types who induce message m, that this set is an interval, and
that r2(m,hR) < r1(m,hR) = λ(m)

Assume that for (sk, rk+1) there is a partition Tk+1 of the type space T such that for every
m ∈ Θ(Mk+1) (where Mk+1 = (sk(T×HS)), the partition element Tk+1(m) is the set of types
who induce message m, that this set is an interval, and that rk+1(m,hR) ≤ rk(m,h

R) < λ(m)
Genericity implies that for each type t ∈ T there is a unique message in Mk+1 that maximizes
that type’s payoff given the realized translation and receiver strategy rk+1.

Consider two messages m′,m′′ ∈ Θ(Mk+1) with Tk+1(m′) ≺ Tk+1(m′′). By the single-
crossing condition for the sender, these messages satisfy rk(m

′, hR) < rk(m
′′, hR). By the

single-crossing condition for the receiver and since t 6= t′ ⇒ aR(t′) 6= aR(t), these messages
satisfy rk+1(m′, hR) < rk+1(m′′, hR). By assumption, we also have rk+1(m′, hR) ≤ rk(m

′, hR)
and rk+1(m′′, hR) ≤ rk(m

′′, hR). Hence, the unimodality of the sender’s payoff function im-
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plies that given the receiver’s strategy rk+1 any type t ∈ Tk+1(m′′) strictly prefers inducing
the received message m′′ to inducing the received message m′.

Recalling that sk+1(T×HS) = Mk+2 ⊆Mk+1, and for each m ∈ θ(Mk+2) defining Tk+2(m)
as the interval of types who induce (the received) message m with the the strategy sk+1, this
implies that for every message m ∈ Θ(Mk+2), Tk+2(m) - Tk+1(m). Hence, from the single
crossing condition for the receiver rj+2(m,hR) ≤ rk+1(m,hR) < λ(m) for all m ∈ Θ(Mk+2).
Therefore, for (sk+1, rk+2) there is a partition Tk+2 of the type space T such that for every
m ∈ Θ(Mk+2) the partition element Tk+2(m) is the set of types who induce message m, this
set is an interval, and rk+2(m,hR) ≤ rk+1(m,hR) < λ(m).

Hence, for every message m ∈ Θ(M0), where M0 =
⋂∞
k=1Mk, the sequence (rk(m,h

R))∞k=1

is monotonically decreasing on a finite set, with rk(m, h
R) < λ(m) for all k > 1. Clearly this

sequence converges. Denote the limit by ρ(m,hR) and observe that ρ(m,hR) < λ(m). Hence
the sequence (rk)

∞
k=1 restricted to M0 converges to a function ρ̃ : M0 → A. We can ignore

the dependence of ρ̃ on HR.
Let (sk)

∞
k=2 be the sequence of the sender’s unique best replies sk to rk in Γ(Mk) for

k = 2, . . . ,∞. Since (rk)
∞
k=2 restricted to M0 converges, so does (sk)

∞
k=2 and the limit, σ̃ :

T ×HS →M0, is the unique best reply in Γ(M0) to ρ̃. Likewise, ρ̃ is the unique best reply
in Γ(M0) to σ̃.

Extend the receiver strategy ρ̃ from the game Γ(M0) to the game Γ(M) by letting ρ(m) =
ρ̃(m0) for all m ∈ θ(M \M0) and some m0 ∈ θ(M0). In the game Γ(M), if the receiver uses
the strategy ρ, then every action the sender can induce by sending a message in M \M0 she
can also induce by sending a message in M0. Hence, if we define σ : T ×HS →M by letting
σ(t, hS) = σ̃(t, hS) for all t ∈ T and hS ∈ HS, then (σ, ρ) is an equilibrium strategy profile
for the game Γ(M). 2

Game 11 with the payoff structure in Figure 11, four equally likely payoff types t1, . . . , t4,
a message space M = {m1, . . . ,m5}, and a common language λ with λ(mi) = ai, i = 1, . . . , 5,
is a finite CS game.

t1

t2

t3

t4

a1 a2 a3 a4 a5

4,1 3,5 1,2 -1,-1 -3,-3

0,0 4,1 3,5 1,2 -1,-1

-1,-1 0,0 4,1 3,5 1,2

-2,-2 -1,-1 0,0 4,1 3,5

Figure 11: The status of truth

The sender’s unique best reply against the language λ is the strategy s1 = (t1 → m1, t2 →
m2, t3 → m3, t4 → m4). The receiver’s unique best reply against the sender’s strategy
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s1 in the game in which message m5 has been eliminated is the strategy r2 = (m1 →
a2,m2 → a3,m3 → a4,m4 → a5). The sender’s unique best reply against the receiver’s
strategy r2 in the game in which message m5 has been eliminated is the strategy s2 = (t1 →
m1, t2 → m1, t3 → m2, t4 → m3). The receiver’s unique best reply against the sender’s
strategy s2 in the game in which messages m4 and m5 have been eliminated is the strategy
r3 = (m1 → a3,m2 → a4,m3 → a5). The sender’s unique best reply against the receiver’s
strategy r3 in the game in which messages m4 and m5 have been eliminated is the strategy
s3 = (t1 → m1, t2 → m1, t3 → m1, t4 → m2). The receiver’s unique best reply against the
sender’s strategy s3 in the game in which messages m3,m4 and m5 have been eliminated is
the strategy r4 = (m1 → a3,m2 → a5). Iterating further leaves the remaining message space,
{m1,m2} unchanged. In the game with that reduced message space the strategies s3 and r4

are unique best replies to each other. Hence (s3, r5) is a λ-profile. Since best replies are unique
at every step, it is the unique λ-profile. The λ-profile can be extended to an equilibrium
of the entire game by having the receiver use on-path responses after off-path messages.
In every λ-equilibrium (there is multiplicity because of different possible specifications of
off-path responses) the sender uses the strategy σ = (t1 → m1, t2 → m1, t3 → m1, t4 → m2).

Thus, in every λ-equilibrium types t1, t2 and t3 send a common message whose pre-
specified meaning is a request for action a1 and type t4 sends a message whose pre-specified
meaning is a request for action t2. Except for type t1 none of the types request their favorite
action, in terms of the language. They are all strategically distorting message meanings. The
receiver takes none of the messages that he receives with positive probability at face value.
Thus, while there is influential communication, message use is far from being a truthful
expression of intentions on the part of the sender, and messages are not being taken as
truthful by the receiver.

Neologism proofness rejects the pooling equlibrium outcome in Game 11, since type t4
has a credible neologism. It does not reject the partial pooling equilibrium outcome that
we observe in the language equilibria. It therefore agrees with the outcome prediction of
language equlibrium in this game, while being silent about message use in equilibrium.
Since there is no credible message profile, credible message rationalizability/equilibrium is
equally silent about language use in Game 11.

The language equilibrium prediction in finite CS games is robust to enlarging the message
space. One can add any number message, introduce any number of synonyms for messages,
or have the message space become infinite. With such an enlargement there will be a prolif-
eration of language equilibria, but they will only differ in terms of exchanging synonymous
messages. In Game 11, if for example we added a message m′1 with λ(m′1) = a1, in any
λ-equilibrium types t1, t2 and t3 would either send a common message m1 or a common
message m′1 and the receiver’s equilibrium interpretations of these messages would be the
same.
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5 Reflections on uncertainty about language

Blume and Board [5] capture language constraints through limitations on the sender’s ability
to send messages and the receiver’s ability to discriminate among messages. The transla-
tion apparatus employed here nests their constraints and links them to a language with
pre-existing meanings. Language equilibrium imposes additional constraints on message
use. Whereas Blume and Board analyze efficient equilibria of games with uncertainty about
the ability to send and differentiate among messages, language equilibrium captures and
emphasizes the requirement that message use be linked to the meanings in a pre-specified
language.

t1

t2

a1 a2 a3

10,10 9,0 0,9

9,0 10,10 0,9

Uncertainty about language

To get a closer look at the connection, consider two variations on Game 3 from Section 2.
For convenience, the figure above reproduces the payoff structure. Also, recall that there are
two equally likely payoff types t1 and t2, a message space M = {m1,m2}, a language λ with
λ(mi) = ai, i = 1, 2, and two translations θ′ and θ′′, defined by θ′(m) = m and θ′′(m) = m2

for both m ∈ M with a common prior µ over translations such that µ(θ′′) = p, where p
satisfies 1

9
< p < 1. With common knowledge of this structure, we found that there is a

unique λ-equilibrium in which the sender sends message m1 regardless of her payoff type.
Now suppose that instead of both players remaining uncertain about the translation, one

of them receives a perfectly informative signal while the other remains uninformed. Assume
that this fact is common knowledge.

First, suppose that it is the sender who becomes perfectly informed about the translation,
while the receiver remains uninformed. This mirrors the situation in Blume and Board, where
the sender is language constrained with probability p. In the event that she learns that the
translation is θ′, the identity mapping, she is unconstrained and can induce both messages
on the receiver side. Otherwise, she is limited to inducing the received message m2.

While the sender’s strategy space is richer now (she can condition on both her payoff
type and her language type), all that matters is her choice of message in the event the
translation is the identity mapping. Focussing on that part of the sender’s strategy, her
unique (partial) best reply against the receiver’s language is the (partial) strategy s1 =
((θ′, t1) → m1, (θ

′, t2) → m2). As before, with this (partial) sender strategy, the receiver’s
posterior probability that the sender’s type is t2 after observing message m2 equals 1

p+1
.

Therefore, as long as p > 1
9
, the receiver has a unique best reply r2 = (m1 → a1,m2 → a3)

to the sender’s strategy s1. Against r2, the sender has a unique minimal-message best reply
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s1 = ((θ′, t1)→ m1, (θ
′, t2)→ m1, (θ

′′, t1)→ m1, (θ
′′, t2)→ m1). At that point message m2 is

dropped.14

With m2 dropped, from here the iteration of best replies and elimination of messages pro-
ceeds as in the case where both players remain uninformed. There is a unique λ-equilibrium
strategy profile with the sender using message m1 regardless of type and the receiver re-
sponding with action a3 after all messages.

Second, suppose that it is the receiver who becomes perfectly informed about the transla-
tion, while the sender remains uninformed. This mirrors the situation in Blume and Board,
where the receiver is language constrained with probability p. In the event that he learns that
the translation is θ′, the identity mapping, he is unconstrained and can differentiate between
both sent messages. Otherwise, he is limited to treating both sent messages identically.

The sender’s unique best reply against the receiver’s language is the strategy s1 =
(t1 → m1, t2 → m2). Given the sender strategy s1, the receiver’s unique best reply is
r2 = ((θ′,m1) → a1, (θ

′,m2) → a2, (θ
′′,m2) → a3) (note that the receiver’s language type

θ′′ never observes message m1 and therefore does not have to condition on that message).
Against r2 the receiver has a unique best reply s2 = s1. Hence, there is a unique λ-strategy
profile, in which the sender sends message mi if her payoff type is ti, the receiver responds
with ai to mi if she can differentiate messages, and takes the action a3 otherwise.

I conclude this section with an observation about dropping unused messages in games
with language uncertainty. When there is language uncertainty, dropping a message may
have no effect on which messages are observed with positive probability by the receiver. As a
result, a message that that is not part of a sender’s best reply σ to a strategy of the receiver,
may become an indispensable part of the sender’s best reply to a strategy ρ of the receiver
that best responds to σ. It may be the case that a message become attractive as a result of
not being used. One could make the case that such messages should not be provisionally
eliminated.

Call a message m redundant given a sender strategy σ, if there exists a receiver best reply
to σ such no type strictly prefers sending message m. In the definition of a λ-path, one
might consider dropping a message only if it is redundant. This would make no difference
for any of our results – in particular, with a common language or when the sender learns
the translation, all unsent messages are redundant. The following example illustrates the
impact of only dropping redundant messages on the language equilibrium prediction.

Consider Game 12 with the payoff structure in Figure 12, four equally likely payoff types
t1, . . . , t4, a message space M = {m1, . . . ,m4}, a language λ with λ(mi) = ai, i = 1, . . . , 4,
and a set of translations Θ that consists of all bijections θ : M → M . Use θ∗ to denote the
identity mapping, so that θ∗(mi) = mi for all i = 1, . . . , 4. Assume that the common prior µ
over translations satisfies µ(θ∗) = 0.95, and µ(θ′) = µ(θ′′) for all θ′, θ′′ 6= θ∗.

The sender’s unique best reply against the language λ is the strategy s1 = (t1 → m1, t2 →
14If we did not restrict the sender to minimal message best replies, there would be other best replies for

the sender, including s1 = ((θ′, t1)→ m1, (θ
′, t2)→ m1, (θ

′′, t1)→ m2, (θ
′′, t2)→ m2). In that case m2 would

not be dropped and at the next step all sender strategies would be best replies. We would not get a sharp
prediction for message use.
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t1

t2

t3

t4

a1 a2 a3 a4

1,3 0,0.1 0,0 0,0

2,1 1,3 0,0 0,0

0,0 2,1 1,3 0,0

0,0 0,0.1 2,1 1,3

Figure 12: Dropping only redundant messages

m1, t3 → m2, t4 → m3). Even though message m4 is not sent by any type, it is received with
positive probability since all bijections are translations that have positive probability.

Given the sender strategy s1, the receiver’s posterior after observing m4 is the uniform
distribution on T. Therefore, the receiver’s unique best reply against the sender’s strategy
s1 is the strategy r2 = (m1 → a1,m2 → a3,m3 → a3,m4 → a2). Since a2 is the unique
maximizer of type t2’s payoff and only m4 induces that action, message m4 fails to be
redundant. Since message m4 fails to be redundant, it is not dropped in this iteration (and
similarly, for any other messages and iterations below).

The sender’s unique best reply against the receiver’s strategy r2 is the strategy s2 =
(t1 → m1, t2 → m1, t3 → m4, t4 → m2). From there, we get the following sequence of unique
best replies: r3 = (m1 → a1,m2 → a4,m3 → a2,m4 → a3), s3 = (t1 → m1, t2 → m1, t3 →
m3, t4 → m4), r4 = (m1 → a1,m2 → a2,m3 → a3,m4 → a4), s4 = (t1 → m1, t2 → m1, t3 →
m2, t4 → m3), . . . . Since s4 coincides with s1, and best replies are unique, we have a cycle.

Denote the set of pure sender strategies in this game by S and the set of pure receiver
strategies by R. Let S′ = {s1, . . . , s4} and R′ = {r1, . . . , r4}. These are the sets of strategies
that appear in the cycle that is generated by λ.

Let S′′ = {s ∈ S|s(t) = m1 if and only if t ∈ {t1, t2}} and R′′ = {r ∈ R|r(m) =
a1 if and only if m = m1}. S′ × R′ is a (strict) subset of S′′ × R′′. S′′ × R′′ is an S′ × R′-
curb set, i.e., it contains S′ × R′ and all best replies to beliefs concentrated on S′′ × R′′.15

There is a unique minimal S′ × R′-curb set, and it is contained in S′′ × R′′; this follows
from the fact that the intersection of any two S′ × R′-curb sets is an S′ × R′-curb set. Every
minimal S′×R′-prep set is contained in the minimal S′×R′-curb set and therefore in S′′×R′′;
this follows from the fact that the intersection of any S′ × R′-curb set and any S′ × R′-prep
set is an S′ × R′-prep set.

Hence, every λ-equilibrium has the property that types t1 and t2, and only those types,
send message m1. Furthermore, there is no pure-strategy λ-equilibrium. This follows, since
for any candidate for such an equilibrium there would be an unused message, and type t2
would strictly prefer sending that message.

15Basu and Weibull [1] define and discuss (minimal) curb sets.
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If instead of dropping only redundant messages we dropped all unused messages, there
would be a unique λ-profile with types t1 and t2 sending message m1 and types t3 and t4
sending message m2 (and the receiver best responding to those messages). This λ-profile,
however, cannot be extended to an equilibrium in the entire game. Thus dropping only
redundant messages gives us a sharper, and arguably more plausible, prediction in this
game.

6 Discussion

Our analysis of meaning in sender-receiver games is rooted in truth, interpreted as the non-
strategic meaning of messages, but does not require, or generally predict, that message use is
truthful. In some cases, when players have common interests or there is a sender-ideal equi-
librium, the theory predicts that the receiver responds to messages in accordance with their
pre-specified meanings. When preferences are only imperfectly aligned this correspondence
breaks down, although the pre-specified message meanings leave traces in players’ behavior.
With block-aligned preferences, the receiver responds to messages in accordance with pre-
specified meanings that match beliefs concentrated on blocks of sender types. In finite CS
games, the receiver systematically discounts the pre-specified meanings of messages received
in equilibrium.

The approach is versatile. It yields predictions in a large class of games, including games
in which there is uncertainty about language, games in which there is private information
about language, games with message spaces of any size, games in which there is any number
of synonyms for messages, etc. The analysis does not require but easily accommodates rich
language assumptions that are customarily made in this literature.

Beside Farrell, Rabin, and the level-k approach of Crawford, a few others propose ways
of giving a pre-existing language a role in the analysis of sender-receiver games. Blume [3]
uses sender trembles to induce exogenous message meanings – the trembles govern message
meanings for any message that is not used deliberately. Using Kalai and Samet’s [18] per-
sistence concept, he shows that in some classes of games message use is consistent with the
tremble-induced exogenous meanings. Gordon, Kartik, Lo, Olszewski and Joel Sobel [16]
impose the requirement that players use monotonic strategies in CS games. Monotonicity
can be thought of as a mild condition on language use. When combining the monotonic-
ity requirement with iterative deletion of dominated strategies, they find that with a finite
message space only the maximal messages are used. Kartik, Ottaviani and Squintani [19]
consider CS games with lying costs. The message space coincides with the type space and
types pay a cost that is increasing in the distance of messages from the truth. They show
that there are separating equilibria in which the sender exaggerates her type. Since the
receiver can back out the truth, he discounts the stated message meanings. Analogous to
Kartik et al, language equilibrium predicts language inflation in finite CS games, but without
introducing lying costs.

It is fairly common in this literature to think of a pre-existing language in terms of subsets
of the type space. Semantic meanings of messages are then of the form “my type belongs to
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the following set of types” or equivalently the prior restricted to the indicated set of types.
We chose, instead, to have a language be a mapping from messages to receiver actions. There
is no significant difference. One advantage of the approach chosen here is that there is a
natural correspondence between the set of all beliefs and the set of all best replies to some
belief. Thus modeling semantic meanings of messages in terms of receiver actions implicitly
permits semantics meanings that are probabilistic statements about types like “my type is
either s or t, but twice as likely to be s than t.”

The framework proposed in this paper permits us to capture different degrees of sharing
a language and to vary beliefs about what is shared. Davidson [12] is concerned with what it
means to share a language. He states, somewhat provocatively, that “there is no such a thing
as a language, not if a language is anything like what many philosophers and linguists have
supposed.” He proposes that what speaker and listener share on a give occasion is what he
calls a “passing theory.” Perhaps it is not too far off the mark to think of we call a language
plus what the sender believes the translation to be as what Davidson would refer to as the
sender’s belief about the receiver’s “prior theory” of interpretation. Likewise, a language
equilibrium in this paper, which is reached upon reflection starting from a language, shares
parallels with Davidson’s “passing theory.”

36



References

[1] Basu, Kaushik, and Jörgen W. Weibull [1991], “Strategy Subsets Closed Under
Rational Behavior” Economics Letters 36, 141–146.

[2] Blume, Andreas, Yong-Gwan Kim, and Joel Sobel [1993], “Evolutionary Sta-
bility in Games of Communication,” Games and Economic Behavior 5, 547–575.

[3] Blume, Andreas [1996], “Neighborhood Stability in Sender-Receiver Games,” Games
and Economic Behavior 13, 2–25.

[4] Blume, Andreas, Douglas V. DeJong, Yong-Gwan Kim and Geoffrey B.
Sprinkle [2001], “Evolution of Communication with Partial Common Interest,” Games
and Economic Behavior 37, 79–120.

[5] Blume, Andreas and Oliver J. Board [2013], “Language Barriers,” Econometrica
81, 781–812.

[6] Cai, Hongbin, and Joseph Tao-Yi Wang [2006], “Over-Communication in Strate-
gic Information Transmission Games,” Games and Economic Behavior 56, 7-36.

[7] Carnap, Rudolf [1947], Meaning and Necessity: A Study in Semantics and Modal
Logic, Chicago: University of Chicago Press.

[8] Crawford, V.P.and J. Sobel [1982], “Strategic Information Transmission,” Econo-
metrica 50, 1431–1451.

[9] Crawford, Vincent P. and Hans Haller [1990], “Learning how to Cooperate:
Optimal Play in Repeated Coordination Games,” Econometrica 58, 571-595.

[10] Crawford, Vincent P. [2003], “Lying for Strategic Advantage: Rational and Bound-
edly Rational Misrepresentation of Intentions,” American Economic Review 93, 133–
149.

[11] Davidson, Donald [1967], “Truth and Meaning,” in: Kulas J., Fetzer J.H., Rankin
T.L. (eds) Philosophy, Language, and Artificial Intelligence. Studies in Cognitive Sys-
tems, vol 2, Springer, Dordrecht.

[12] Davidson, Donald [1986], “A Nice Derangement of Epitaphs,” in: Grandy, Richard
and Richard Warner (eds) Philosophical Grounds of Rationality, Clarendon Press, Ox-
ford.

[13] Farrell, Joseph [1993], “Meaning and Credibility in Cheap-Talk Games,” Games
and Economic Behavior 5, 514–531.

37



[14] Frege, Gottlob [1892] “Über Sinn und Bedeutung,” Zeitschrift für Philosophie und
philosophische Kritik 100, 25–50; translated as “On Sense and Reference,” in P.T.
Geach and M.Black, (eds.), Translations from the Philosophical Writings of Gottlob
Frege, Oxford: Blackwell (1952), 56–78.

[15] Giovannoni, Francesco, and Siyang Xiong [2019], “Communication with Lan-
guage Barriers,” Journal of Economic Theory 180, 274-303.

[16] Gordon, Sidartha, Navin Kartik, Melody Pei-yu Lo, Wojciech Olszewski,
and Joel Sobel [2021], “Effective Communication in Cheap-Talk Games,” Working
Paper, University of California - San Diego.

[17] Grice, H. Paul [1957], “Meaning,” The Philosophical Review 3, 377-388.

[18] Kalai, Ehud and Dov Samet [1984], “Persistent Equilibria in Strategic Games,”
International Journal of Game Theory 13, 129–144.

[19] Kartik, Navin, Marco Ottaviani and Francesco Squintani [2007], “Credulity,
Lies, and Costly Talk,” Journal of Economic Theory 134, 93–116.

[20] Kripke, Saul A. [1982], Wittgenstein on Rules and Private language: An Elementary
Exposition, Harvard University Press, Cambridge MA.

[21] Lewis, David [1969], Convention: A Philosophical Study, Harvard University Press,
Cambridge, MA.

[22] Lipnowski, Elliot and Doron Ravid [2020], “Cheap Talk with Transparent Mo-
tives,” Econometrica 88, 1631–1660.

[23] Michaelson, Eliot and Marga Reimer [2019], “Reference,” The Stanford En-
cyclopedia of Philosophy (Spring 2019 Edition), Edward N. Zalta (ed.) URL =
https://plato.stanford.edu/archives/spr2019/entries/reference/

[24] Mill, John Stuart [1969], A System of Logic,, Longmans, Green, and Co., London.

[25] Miller, Alexander [2018], Philosophy of Language,, Routledge, New York, NY.

[26] Olszewski, Wojciech [2006], “Rich Language and Refinements of Cheap-Talk Equi-
libria,” Journal of Economic Theory 128, 164-186.

[27] Quine, Willard van Orman [1960], Word & Object, MIT Press, Cambridge, MA.

[28] Rabin, Matthew [1990], “Communication Between Rational Agents,” Journal of Eco-
nomic Theory 51, 144-170.

[29] Speaks, Jeff [2021], “Theories of Meaning,” The Stanford Encyclope-
dia of Philosophy (Spring 2021 Edition), Edward N. Zalta (ed.), URL =
https://plato.stanford.edu/archives/spr2021/entries/meaning/

38



[30] Stalnaker, Robert [2006] “Saying and Meaning, Cheap Talk and Credibility,” In:
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