Optimal and Fair Prizing in Sequential Round-Robin Tournaments: Experimental Evidence

Arne Lauber, Christoph March, Marco Sahm
University of Bamberg

EEA-ESEM 2022
Milano - August 25, 2022

Round-Robin Tournaments

Definition: A round-robin tournament (RRT) is a form of competition in which each participant is

- matched with each other participant in a sequence of pairwise contests,
- ranked according to the number of matches won,
- awarded a prize according to this ranking.

Applications in sports:

- Multi-player: sports leagues like the major European football leagues in England, Spain, Germany, and Italy.
- 4-player: first round (group stage) of the FIFA World Cup (since 1950) and UEFA European Championship (since 1980)
- 3-player: second round of the FIFA World Cup (1982), first round of the FIFA World Cup (from 2026 on)

Tournament Design

Objectives: Organizers of contests (in music, arts, or sports) usually aim at a fair/balanced/close and/or an intense competition.

Reasons: Fairness and intensity attract attention and exert positive externalities on the market for

- tickets (viewers),
- TV-contracts (broadcasters),
- merchandizing (sponsors).

Instruments: Effort is incentivized via (possibly multiple) prizes; e.g., in the group stage of the FIFA World Cup,

- two out of four (2026ff.: three) teams advance to the next round,
- each winner of a group is matched with a runner-up from a different group.

Motivation

Common wisdom: "In theory, a round-robin tournament is the fairest way to determine the champion from among a known and fixed number of contestants. Each contestant, whether player or team, has equal chances against all other opponents [...]. The element of luck is seen to be reduced as compared to a knockout system [...]." (Wikipedia, accessed on 21/08/2022)

Problem: Many RRT have a sequential structure

- in a canonical way (e.g. 3-player tournaments),
- due to technical constraints (e.g. capacity of the venue),
- due to economic considerations (e.g. more broadcasting time).

Questions:

- Are sequential RRT fair?
- Which prize structure induces the most intense RRT?

Theoretical Predictions

Theoretical Predictions

Laica et al (GEB, 2021) investigate the question theoretically:

- arbitrary number of (possibly heterogeneous) players,
- matches organized as general Tullock contests (including the APA-case),
- multiple arbitrary rank-dependent prizes.

Fairness: A RRT is

- ex-ante fair, if the players' ex-ante winning probabilities and expected payoffs depend only on their types.
- completely fair, if the winning probabilities and expected payoffs of the two players in each match depend only on their types..

Theoretical Predictions (ctd.)

Main findings of Laica et al (2021):

- RRT with 3 players are fair if and only if the second prize equals half of the first prize. Intuition:
- only first prize: discouragement effect for trailing players
- positive second prize: lean-back effect for leading players
- effects cancel out, if 2nd prize equals half of 1st prize (1st place requires twice as many wins as 2nd place)
- With more than three players, there is no prize-structure for which a sequential RRT is perfectly fair.

Theoretical Predictions by Match

Experiment

\qquad

Experimental Design

This paper: We test Laica et al's (2021) predictions in an experiment with the following features:

- RRT with three symmetric players,
- individual matches organized as all-pay-auctions,
- three treatments in which second prize equals $0 \%, 50 \%$, or 100% of first prize;
- total prize money in the RRT equals 6 Euro $=600$ points in each treatment,
- subjects play 20 repetitions with random rematching, but fixed player roles,
- elicitation of risk preferences and cognitive reflection levels,
- 4 sessions in the 0%-treatment and 3 sessions each in the 50% - and 100%-treatment.

Hypotheses

Let $a \in\{0,0.5,1\}$ denote the ratio of the second tho the first prize: Hypothesis 1: The tournament is most (least) intense, if $a=0.5(a=0)$.

Hypothesis 2: The tournament is most (least) fair, if $a=0.5(a=0)$.
Hypothesis 3: A prize structure with $a=0.5$ induces (i) a fair ranking, (ii) fair payoffs, and (iii) fair matches.

Hypothesis 4: The late moving player 3 will be (i) advantaged, if $a=1$, and (ii) disadvantaged, if $a=0$.

Hypothesis 5: After winning the first match,
(i) each player will decrease effort in her second match, if $a=1$,
(ii) players 1 and 2 will increase effort in their second match, if $a=0$.

Experimental Results (\rightarrow focus on final 13 rounds)

Total Effort

Total Effort

Total Effort

Result 1: The tournament is most (least) intense, if the second prize equals zero (the first prize).

Total Effort by Player

Efforts by Match

Note: black $\hat{=} 0 \%$-treatment; black box $\hat{=} 50 \%$-treatment; light gray $\hat{=} 100 \%$-treatment; $\Gamma:=\frac{\Sigma_{j} R_{J}}{3}$.

Average Winnings

Average Winnings: Relative Standard Deviation

Average Winnings: Relative Standard Deviation

Average Winnings: Relative Standard Deviation

Result 2a: The distribution of average winnings is most (least) fair, if the second prize equals 50% of the first prize (zero).

Average Payoffs

Average Payoffs: Relative Standard Deviation

Result 2b: The distribution of average payoffs is most (least) fair, if the second prize equals 50% of the first prize (zero).

Fairness in the Theoretically Fair Treatment

Result 3: The 50\%-tournament is not perfectly fair:
(a) Player 3 wins significantly less than players 1 and 2.
(b) Player 1 earns (significantly) more than player 2 (player 3).
(c) Only three out of seven possible matches are fair:

- the first match (player 1 vs. player 2),
- the second match of player 1 after she won her first match,
- the match of player 2 and player 3 , after both won their first match.

Further Results (ctd.)

Result 4: The late moving player 3 is

- advantaged in terms of winnings and payoffs in the 100%-treatment,
- disadvantaged in terms of payoffs (but not winnings) in the 0%-treatment.

Result 5: After winning the first match, subjects exhibit

- a lean-back effect in the 100%-treatment,
- a strategic momentum in the 0%-treatment when acting as player 2 .
- We obtain mixed results for the 50%-treatment. \rightarrow Psychological momentum?

Discussion

- First RRT experiment.
- Results reveal a trade-off between intensity \& fairness: 50%-treatment is fairest, 0%-treatment is most intense.
- Variation of over- \& underbidding with treatment and player role needs to be better understood.
- Behavioral dynamics within a given RRT are likely driven by strategic and psychological effects, that must be disentangled.
- Extensions:
- more than three players
- endogenous sequences of matches

