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Abstract

Assessing the quantitative relevance of match quality and search frictions for

house price dispersion is important for understanding house price formation and the

importance of uninsurable housing wealth shocks. In this paper, we use a unique

auction-level data set combined with a structural model of the housing transaction

process that includes frictional arrival and endogenous entry of buyers into bidding,

as well as information frictions between buyers and sellers to determine the impor-

tance of buyer taste heterogeneity for house prices and price dispersion. We find

that quality differences matter greatly for house price dispersion, well beyond what

“standard” hedonic pricing models may suggest, while buyer taste heterogeneity ac-

counts for essentially all remaining price dispersion. Our structural model implies

that list prices often deviate substantially from seller valuations, lending support

to theories of list price determination that feature strategic interactions between

sellers/agents and buyers.
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1 Introduction

Housing markets are characterized by substantial price dispersion even among properties

that share common features, such as location, type, size, and number of rooms. One

possible driver of this residual price dispersion is quality differences, which remain unob-

served to researchers, but which are observable to owners and potential buyers and are

reflected in sale prices. Nevertheless, even when one is able to better account for such

quality differences, using unit fixed effect approaches, there is still substantial price vari-

ation that remains unexplained. This unexplained price variation suggests other possible

drivers. One such alternative is the frictional process of searching and matching between

properties and buyers with heterogeneous tastes. This is a very natural candidate since

housing transactions are characterized by substantial trading delays and informational

frictions.1

Understanding the importance of frictional matching for house prices and price disper-

sion goes beyond understanding the workings of housing markets. Since housing wealth

tends to comprise a substantial share of household wealth, the nature of house price dis-

persion may determine whether home owners are exposed to potentially large uninsurable

(housing) wealth shocks. Indeed, if frictional matching plays an important role in driving

house price dispersion, then a buyer who has been lucky to match well with her current

home (and has paid a relatively high price for it) might later end up as the unlucky seller

of that same property when she has to either accept a lower price from a buyer that does

not value the property as much or continue searching and possibly facing costly delays.

In this paper we use a unique auction-level data set for Norway combined with a

structural model of the housing transaction process to determine the contribution of

match quality due to buyer taste heterogeneity and frictional matching to house prices

and price dispersion. We find that buyer taste heterogeneity can account for essentially

all of the price dispersion that is not accounted for by quality difference. Nevertheless

quality differences play the main role in driving house price dispersion, even well beyond

what hedonic pricing models suggest. Moreover, our structural model implies that there

is an important causal effect of the number of bidders on house prices and that list (or

asking) prices often deviate substantially from seller valuations.

Our data comprise detailed bidding-logs and information on viewers from all sales

handled by two of the largest realtors in Norway for the period 2010–2015. The data set

includes a unique bidder identifier, which allows us to compute the number of bidders

associated with each transaction but also to follow the bidding behavior of each unique

bidder in the auction. In addition, we have information on the list and sale dates, the list

price and sale price, as well as standard hedonics. In Norway, all bids and acceptances of

1There is a large literature in labor economics which argues that search and matching frictions are
important drivers of residual wage dispersion in labor markets (e.g. Postel-Vinay and Robin (2002)).
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bids are legally binding. This allows us to identify one specific date upon which transfer

of ownership is essentially determined.

Our structural model of the housing transaction process incorporates some features

of the Norwegian institutional context, but is also applicable to housing transactions in

other countries with institutional arrangements that may facilitate an auction-like format

of transactions in some cases. It features an entry game, whereby a number of potential

buyers (drawn randomly according to a distribution of viewers) observe the quality of

a property and determine how well the attributes are aligned with their idiosyncratic

tastes. In addition, they observe a signal of the seller’s reservation value in the form of

the list price. Importantly, we allow for some decoupling between the seller reservation

value and the list price in the form of a systematic mean bias of the list price from the

seller reservation value, as well as some dispersion between the two. Therefore, list prices

in our model are a biased noisy signal of the seller reservation value. This property of

the list price incorporates a number of theories of list price formation proposed in the

literature.

Upon observing this information about the property and the seller, buyers endoge-

nously choose whether to enter a bidding stage by paying a specific transaction cost or

to walk away. Importantly, the transaction cost does not scale with the quality of the

property, so that a potential buyer is more likely to enter bidding if the property has

higher quality. In addition, buyers are more likely to bid if they have sufficiently higher

idiosyncratic taste, or because the list price is lower. Since buyer entry decisions are

strategic substitutes, a larger number of potential buyers (i.e. viewers) leads to a lower

probability of buyer entry, other things equal.

At the bidding stage buyers observe the true seller reservation value. Due to imperfect

information at the entry stage, some buyers may actually have a lower valuation than

the seller, a situation we call informational mismatch. Indeed, it can be the case that

there are multiple buyers entering the bidding stage but the property does not end up

transacting in the end. Depending on the number of buyers who have chosen to enter

and who have a higher valuation than the seller reservation value, the transaction price is

either determined in a reduced-form negotiation process in the case of a single buyer or

through a second-price auction.2 These features of the model lead to rich selection effects

due to the interaction of quality with buyer and seller heterogeneity and the underlying

frictions, justifying a fully structural estimation.

We estimate our model using Simulated Method of Moments (SMM). Since our data

span a large number of different locations, types of housing, and time periods, we define a

number of segments based on property type (Small vs. Large apartments vs. Houses) and

also time period (each year in our sample). Given the need for segmentation and given

data coverage, we focus attention on segments in Oslo, the capital city of Norway. For

2If no buyers choose to enter the bidding stage, then the property ends up not selling.
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each segment, we construct moments based on an artificial data set of sales, in which we

pre-calibrate the viewer distribution to the empirical viewer distribution for that segment

in our data set. For our estimation, we let the mean and standard deviation of quality vary

by segment, while the dispersion in buyer idiosyncratic tastes, the mean and dispersion

of seller reservation values, the mean and dispersion of the list price bias or “wedge” from

the seller reservation value, and the transaction cost are time-invariant. All parameters

vary by housing type. Our identification of the dispersion in buyer-specific tastes relies

mainly on information contained in several key moments, including the price premium,

defined as the log difference between the sale price and list price, the probability of sale,

and the probability of a contested auction with 5 or more bidders bidding for a property.

The model matches the targeted moments very well, despite the substantial over-

identification in our baseline estimation (there are in total 54 moments against 18 param-

eters for each segment). It also performs well against a number of non-targeted moments,

including direct measures of buyer and seller valuations. Specifically, we use the detailed

bidding information from our data set to construct a lower and upper bound on the valu-

ations of bidders who participate in auctions (i.e. there are at least two bidders) and who

do not end up submitting the highest final bid, i.e. they “lose” the auction. Similarly, we

compute a proxy for the seller reservation value by considering bidding logs where the

seller makes a counter-bid.

We estimate a dispersion parameter for buyer-specific tastes of between 0.026 and

0.031, depending on the type of housing, which corresponds to an inter-quartile range

of between 0.04 and 0.048.3 In contrast, we find that the dispersion in seller reservation

values is substantially larger for Houses compared to Apartments. On the other hand,

there is substantial dispersion between list prices and seller reservation values in the case

of Apartments with an additional small negative mean bias in list prices, which lends

support to theories of list price determination that feature strategic elements.

Our estimated model parameters imply a much more important role of quality differ-

ences for price dispersion than suggested by “standard” hedonic pricing models. Indeed,

fully accounting for quality differences in our model implies an R2 statistic 98 to 99%.

In contrast, the typical hedonic regression tends to have an R2 of around 80 to 90%.

Therefore, there much of the “residual” house price variation from hedonic pricing models

is likely due to unobservable quality differences. However, we find that the remaining

variation in prices can be almost fully accounted for by match quality (determined by

the dispersion in idiosyncratic buyer tastes). Specifically, our estimated model implies

that match quality accounts for around 2.5 percentage points of the observed house price

dispersion in Oslo during 2010-2015. Moreover, match quality also impacts the observed

average price level, contributing around 4 to 5 percentage points to the observed average

prices in Oslo during 2010-2015. Beyond match quality, the dispersion in seller reser-

3We assume that buyer idiosyncratic tastes follow a type I extreme value distribution.
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vation values affects the observed house price dispersion for Houses with a much more

limited effect for Apartments.

We also show by estimating reduced-form regressions of the effect of number of bidders

on prices using simulated transaction data from our estimated model that there is an

important causal effect of number of bidders on prices even after fully controlling for

quality. Since bidder entry correlates positively with quality in our model, other things

equal, not accounting for quality leads to a substantial bias in the estimated effects of

bidders on prices. Whenever we fully account for quality, we recover a causal effect of one

more bidder of around 0.01 log points. This is surprisingly close to reduced-form estimates

in the literature, which provides one more independent validation for our structural model.

Related Literature

Our paper bridges two large strands of literature. First, our focus on understanding the

contribution of match quality to house price dispersion and the assumption of stochastic

arrival of (potential) buyers relate our paper to a growing literature on search frictions

in housing markets (Wheaton (1990), Krainer (2001), Novy-Marx (2009), Caplin and

Leahy (2011), Genesove and Han (2012), Carrillo (2012), Anenberg and Bayer (2013),

Diaz and Jerez (2013), Head et al. (2014), Ngai and Tenreyro (2014), Nenov et al. (2016),

Guren (2018), Guren and McQuade (2019), Ngai and Sheedy (2019), Moen et al. (2019),

Piazzesi et al. (2020), Grindaker et al. (2021), Kotova and Zhang (2021), Rekkas et al.

(2021) among others).4 Second, our explicit modeling of the transaction process, whether

through bargaining or as a second-price auction combined with a costly entry decision by

potential buyers brings our paper close to the literature on auctions versus negotiations

in housing markets (Ashenfelter and Genesove (1992), Mayer (1995), Lusht (1996), Merlo

and Ortalo-Magne (2004), Genesove and Hansen (2014), Han and Strange (2014), Chow

et al. (2015), Genesove and Han (2016), Arefeva (2020)).5

Our paper is most closely related to recent work by Genesove and Han (2016) and

Rekkas et al. (2021). Genesove and Han (2016) use survey data on number of bidders

combined with data on sale and list prices and a set of standard hedonics to estimate the

dispersion in buyer-specific valuations using a semi-structural approach. The key moment

the authors use for identification is the (reduced-form) coefficient of number of bidders on

(log) prices, which in a static auction setting with two or more bidders and independent

private values maps into the dispersion in buyer-specific tastes.6 We differ from and

complement this important paper in a number of ways. First, we rely on a fully-specified

4See Han and Strange (2015) for a review of this literature.
5See also McAfee and McMillan (1987), Levin and Smith (1994), and Bulow and Klemperer (1996,

2009) for theoretical treatments of auctions versus negotiations in the presence of entry costs.
6The authors report dispersion estimates for a number of underlying distributions for buyer-specific

tastes. For a type 1 extreme value distribution they report an inter-quartile range of around 0.09. Our
estimates suggest a lower interquartile range of between 0.04 and 0.048 depending on the type of housing.
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structural model of the transaction process, which can account for selection effects on the

set of transacted properties, due to the interaction of quality differences as well as seller

heterogeneity and information frictions with the endogenous buyer entry into bidding.

Second, our identification of buyer-specific taste dispersion relies on a different set of

moments, while we use the reduced-form coefficient of number of bidders on prices to

validate our estimated model. This is important for consistently identifying this key

parameter, since as we point out in Section 5.3.3, the reduced-form coefficient of number

of bidders on prices appears to be very sensitive to fully accounting for quality differences

across objects.

In independent and contemporaneous work Rekkas et al. (2021) study a rich struc-

tural housing search model, which they estimate using housing transaction data from

Vancouver. Some of the features of their model are qualitatively similar to ours. For

example, their model features price posting and directed search while in our model list

prices carry information about seller reservation values and thus affect the entry decisions

of potential buyers. There are also important differences, however. For example, their

model is dynamic, which allows them to explain the dynamics of list prices and why list

prices appear sticky over time. On the other hand, their model abstracts away from the

possibility of auctioned sales or informational mismatch whereby there is no trade despite

entry of bidders. These differences imply that the two models are complementary and

can be applied to housing markets with different institutional settings. Consequently,

the data used to discipline the two models are also different, with Rekkas et al. (2021)

relying on transaction-level data, while we exploit a unique auction-level data set with

full bidding logs. Still, despite these differences, the two papers reach a similar conclu-

sion, namely that quality differences (or property heterogeneity) play the main role in

explaining house price dispersion with search frictions/match quality having secondary

effects.

A number of other papers include match quality in quantitative models of the hous-

ing market with frictional search and matching. For example, Ngai and Tenreyro (2014),

Guren and McQuade (2019), and Ngai and Sheedy (2019) calibrate distribution param-

eters for aggregate match-specific quality. Carrillo (2012) and Guren (2018) separate

buyer idiosyncratic match quality from aggregate match quality, and estimate and cal-

ibrate parameters, respectively. However, unlike us they focus on other details of the

transaction process, abstracting away from the possibility of an auctioned sale as well as

the link between the list price and the seller reservation value. In addition, we use a much

more detailed bidding level data to estimate the parameters in our model. Kotova and

Zhang (2021) study empirically and theoretically the link between time-on-market and

residual price dispersion. Their main insight is that shocks to liquidity supply, such as

the flow of buyers relative to sellers, move time-on-market and residual price dispersion

in the same direction, while shocks to liquidity demand, such as the average holding cost
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of sellers, move those two quantities in opposite directions. Our findings that both buyer

and seller preference heterogeneity matters for (residual) price dispersion is consistent

with their findings. Where we differ is in our explicit focus on modeling the details of the

transaction mechanism with auctions with multiple bidders being important in the price

determination process, while in their framework prices are solely determined through bar-

gaining. Moreover, we are not explicitly interested in the determinants of market liquidity

and instead focus attention on understanding the drivers of price dispersion through a

structural estimation of a fully-specified structural model.7

Finally, our study is related to a growing literature on how list prices are set. This

literature shows that the list price does not necessarily equal the seller reservation value

(Horowitz, 1992; Taylor, 1999), although list prices often are equal to sale prices, a finding

that Han and Strange (2016) argue demonstrates the importance of the list price for

providing information to buyers about seller valuations.8 Conceptually, deviations of

list prices from (revealed) seller reservation values may be consistent either with some

strategic considerations involved in setting the list price or with seller dynamic learning

effects. Regarding the former theory, a growing literature suggests that strategic elements

are involved in setting the list price. According to that literature, sellers seek to achieve

the highest price by balancing a herding effect (Ku et al., 2006, Simonsohn and Ariely,

2008)) and an anchoring effect (Beggs and Graddy, 2009, Northcraft and Neale, 1987,

Bucchianeri and Minson, 2013). Anundsen et al. (2020) find that in Norway some sellers

set a list price that is, in fact, lower than the object’s appraisal value and they show that

a certain type of realtors tends to be associated with setting such a list price. They find

that a low list price reduces the sale price due to the anchoring effect. In contrast, Repetto

and Solis (2019) find that a house that is listed with a list price just below a round million

(Swedish kronor) achieves a sale price that is three to five percent higher than otherwise

expected. Our findings of a negative mean (log) wedge between seller reservation values

and list prices, as well as a positive dispersion in that wedge are consistent with strategic

considerations playing a role in setting the list price.

Turning to the learning effects theory, in an already classic paper, Merlo and Ortalo-

Magne (2004) show that list price reductions are rare, but when they happen, they tend

to be large and triggered by few bids. Merlo et al. (2015) argue that list prices are

sticky, but that a model with small menu costs can account for the phenomenon. Related

to that, Anenberg (2016) argues that seller uncertainty about prices and learning is

important for housing market dynamics. Herrin et al. (2004) find that in thin markets

7Nenov et al. (2016) conjecture that differences in the dispersion of buyer-specific tastes for different
housing types may be an important driver of transaction seasonality differences across the housing types.
Our parameter estimates by housing type are consistent with this conjecture.

8There are many determinants of the list price, e.g. the market situation (Haurin et al., 2013) and
loss aversion (Genesove and Mayer, 2001, Liu and van der Vlist, 2019). Han and Strange (2015) review
the literature on the microstructure of the housing market and the role played by the list price.
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well-informed sellers are less likely to change the list price.9 Even though we do not

explicitly include seller learning effects (for example, through the observed flow of bidders

during the duration of the auction), our findings of a positive dispersion in the wedge

between the list price and seller reservation value is consistent with a learning theory. The

negative bias in the wedge is a bit harder to rationalize via a learning theory, however,

since learning should lead to both upward and downward revisions in seller valuations.

The rest of the paper is organized as follows. We start by describing the institutional

details of the Norwegian housing market, before proceeding to lay out the structural model

in Section 3. Section 4 presents the data and details the estimation approach. Section 5

presents and discusses the results and counterfactuals. Finally, Section 6 provides brief

concluding comments.

2 Institutional setting

In this section we provide a brief overview of the institutional background of the Nor-

wegian housing market. A more detailed description can be found in Anundsen et al.

(2020).

When a seller decides to sell her house in Norway, she typically contacts a realtor

or several realtors. When the seller and the realtor reach an agreement in which the

seller becomes the realtor’s client, they initiate talks on when to post the advertisement,

what list price to announce, and dates for public showing(s) (open houses). The realtor

charges a commission that amounts to around 2% of the sell price. It is not common to

hire a buyer-agent. In fact, even though this practice can be found in other countries,

buyer-agents are almost non-existent in Norway. The realtor is required by law to take

into account the interest of both the seller and the buyer, and is obliged to give advice

to both seller and buyer on issues that may impact the selling process. There is detailed

regulation of what is required of the realtors and the information they need to furnish

the buyer with. However, the realtor is hired by and paid for by the seller, so it is in the

best interest of the realtor to make sure the client obtains a satisfactory sale price within

any time constraints imposed by the seller.

Together with the realtor, the seller decides on a list price. Having decided on the

list price, the realtor lists the house for sale, typically using the nationwide online ser-

vice Finn.no and national and local newspapers. The advertisement states the time of

potential public showings. It is common to have one or two showings. The realtor, or a

realtor assistant, is always present at showings, and the realtor answers questions to the

9Anundsen et al. (2020) also present evidence consistent with seller learning, albeit sellers seem to do
so only modestly. Beyond housing, studying eBay data, Einav et al. (2015) find patterns that indicate
that sellers experiment and learn what strategies to use, but also that sellers of similar items use different
strategies.
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potential buyers who inspect the unit. The public showing typically lasts for one hour.

Most often, the seller is not present.

The auction is arranged as an ascending bid English auction. Bids are placed by

telephone, fax, or electronic submission using digital platforms. The realtor informs the

participants (both active and inactive) of developments in the auction. Each and every

bid is legally binding and each and every acceptance of a bid is legally binding. When

bidders make their first bid, they typically submit proof of financing.10 The seller may

decline any bid. If the seller declines a bid above the posted list price, and announces

a new showing without adjusting the list price, the realtor risks being reported to the

authorities for knowingly mispricing the unit.11 The implication is that even though the

list price is not a reservation price, and thus allows the use of a strategic element, most

realtors and sellers shun illegitimately low list prices. Therefore, the list price contains

useful information about the seller’s reservation price.

When the auction is completed, every participant in the auction is entitled to see

the bidding log, which provides an overview of all the bids that were placed during the

auction. If no sale takes place, the seller advertises new showings. The time-on-market

(TOM) in Norway is typically low, and in the capital, Oslo, it is often not more than three

or four weeks. However, when the unit stays on the market for a longer time, the sales

process tends to transform from an auction type to a negotiation between the seller and

prospective buyers. The low TOM in Oslo is also associated with relatively quick bidder

entry. Table 1 shows the distribution of the difference in entry times between the first and

last bidder (based on the timing of their first bid) for Oslo rounded to the nearest hour.12.

The median difference in entry times is 2 to 3 hours depending on the type of housing.

Even at the 70th percentile of transactions, the difference in entry times is less than 24

hours. Therefore, most housing auctions in Oslo tend to feature near-simultaneous entry

by bidders.

3 Model

We set-up a stylized (partial) equilibrium model of buyer entry and simultaneous bidding.

The model is motivated by the Norwegian institutional context, but is also applicable to

housing transactions in other countries with institutional arrangements that may facilitate

an auction-like format of transactions.

10This practice is cloaked in some technicalities since bidders do not want to inform the realtor of the
maximum financing available to them.

11In practice, such reports are rare. There have been some cases with claims of specific realtors being
associated with artificially low list prices.

12This distribution is computed for transactions with at least two bidders
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Table 1: Distribution of difference in entry times between first and last bidder in Oslo,
Norway (in hours).

Type of unit 10th pctl 20th pctl 30th pctl 40th pctl 50th pctl 60th pctl 70th pctl 80th pctl 90th pctl
All 0 1 1 2 3 12 18 42 119
Small apt. 0 1 1 2 3 13 20 45 124
Large apt. 0 0 1 2 2 7 17 40 139
House 0 1 1 2 2 4 15 24 93

Note: The table shows distribution of the difference between the entry times of the first and last bidder
in rounded hours for transactions with at least two bidders in Oslo during 2010-2015. The entry time of
a bidder is determined by the time of their first bid. Small apartments have up to 2 rooms, while large
apartments have 3 or more rooms. Houses are defined as all remaining housing units, which consist of
row and semi-detached houses, and single-family homes.

3.1 Basic set-up

There is a single housing unit (“the house”) for sale owned by an agent (“the seller”), and

a large pool of potential buyers (“the buyers”). All agents in the economy are risk-neutral

and utility is transferable. Motivated by the Norwegian institutional context, we abstract

away from dynamics, such as making several sale attempts, future re-sale possibilities,

learning, and so on by modeling the housing sale as taking place in one period.13

The seller. We assume that the seller cares only about selling the house for a price at

or above her reservation value and abstract away from the costs associated with the sale

process and any actions by the seller, such as the setting of a list price or signaling of

private information, which we instead model in reduced-form.14

The seller’s reservation value is given by

ṽ(θ, e) = exp{θ + e}, (1)

where θ denotes the quality of the house, and e is an idiosyncratic seller preference. For

example, sellers may find their own house to be more or less valuable than the average

buyer (respectively, ē is positive or negative), because of a particular selection into who

chooses to sell their house (for example, to move as in Ngai and Sheedy (2019)). In

addition, if some sellers are relatively impatient to sell, because of a moving shock, for

example, that will be reflected in a lower average reservation value for the sellers. On

the other hand, e may reflect a dynamic option value of selling later on. For example,

heterogeneity in buyer tastes, which we describe below, implies that seller reservation

values should be positive on average (ē is positive), much like in any standard search

model (McCall, 1970). Finally, the dispersion in seller preferences may also be driven by

seller uncertainty about the value of the house (as in Anenberg (2016)).

13Such dynamic considerations would be reflected in some of our estimated parameters, as we explain
in Section 5.

14Also we abstract from any agency problems between the seller and realtor.
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The list price is assumed to be an imperfect signal of the seller’s reservation value

that buyers observe prior to their decision to enter bidding (see below). Specifically, we

assume that the list price is given by

a = ṽ(θ, e)× η, (2)

where ln η ∼ N
(
η̄, σ2

η

)
reflects any differences between the list price and seller’s reserva-

tion value. Therefore, we assume that there is asymmetric information between buyers

and sellers regarding seller valuations. As discussed in the related literature, this opens

up the possibility for signaling of reservation values and strategic behavior by the seller

through list prices. We abstract from explicitly modeling these signaling incentives by

directly modeling the “wedge” between the seller reservation value and the list price that

would arise with an endogenous choice by the seller. Notice that in the context of a

signaling game between the buyer and seller, η will reflect the mean signal distortion that

sellers engage in as in signal-jamming models à la Holmström (1999). As in these mod-

els, here buyers would rationally expect such a distortion and would adjust the observed

signal when making inferences about the seller reservation value.

Next, the variance σ2
η will reflect the signal informativeness, which in a signaling model

would be endogenously determined by the nature of equilibrium played, i.e. separating,

semi-separating, or pooling. For example, if σ2
η is relatively small, then list prices would be

very informative about seller valuations, as would be the case in a separating equilibrium.

Conversely, if σ2
η is large, then list prices would be uninformative about seller valuations

as would be the case in a pooling equilibrium.

The buyers. The number of potential buyers is given by, Bp.
15 Buyers have preferences

over the house that are comprised of a common component and an idiosyncratic or match-

specific component. The common component reflects quality differences between houses,

such as location, type, size, and age, but also whether the house has been recently ren-

ovated, distance to local (dis)amenities, a good view, etc. The idiosyncratic component

reflects horizontal differences that are buyer-house specific, such as relative proximity to a

buyer’s workplace, relative appeal of the house, the housing layout, lighting, and interior

decorations, relative preferences for certain types of local (dis)amenities, etc. Therefore,

we assume that a buyer’s valuation is given by,

w (θ, ui) = exp {θ + ui} = ṽ(θ, ui), (3)

where ui denotes the idiosyncratic taste of buyer i. We assume that buyers observe θ

perfectly, so there is no information asymmetries about the quality of the unit. Therefore,

15In our structural estimation, we will equate this number to the number of viewers that come to
showings.
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we abstract away from any inferences buyers may draw from the number of other bidders

present or from winning the bidding (see below). While interesting, we view these issues

as secondary to our main goal of understanding the role of match quality in house prices.

Also, we assume that ui is private information for each buyer. This assumption is realistic,

since each buyer evaluates the available information about their idiosyncratic preferences

privately.

We assume that in the population of houses, sellers, and buyers, θ, e, and the ui’s are

distributed independently of each other. Moreover, θ, and e, follow normal distributions16

θ ∼ N
(
θ̄, σ2

θ

)
, (4)

and

e ∼ N
(
ē, σ2

e

)
, (5)

respectively. Finally, ui is assumed to be distributed according to a Type I Extreme value

distribution with tail probability Pr {ui > x} = 1 − exp {− exp {−x/σu}}. Therefore σu

parameterizes the dispersion in buyer idiosyncratic tastes. For that reason we refer to σu

as the “dispersion” in buyer-specific tastes below.

We define

ã ≡ ln a− θ − η̄ = e+ ln η − η̄, (6)

so that

ã ∼ N
(
e, σ2

η

)
(7)

Therefore, given these distributional assumptions, the informational assumptions for

the buyers, and the assumption that buyers are fully rational, it follows that the posterior

belief about e for each buyer, given the list price a is

e|a ∼ N

(
1/σ2

e

1/σ2
e + 1/σ2

η

ē+
1/σ2

η

1/σ2
e + 1/σ2

η

ã,
1

1/σ2
e + 1/σ2

η

)
. (8)

Price determination

After observing θ, a, and their ui’s, potential buyers choose simultaneously whether to

enter a bidding stage. To enter that stage, a buyer must pay a cost of c > 0. If the

buyer does not pay the entry cost she collects an outside option, which is normalized

to 0. Therefore, the cost c will reflect both the true cost associated with the process

16Assuming a log-normal value for quality matches well the observed distributions of appraisals and
sale prices in the data. The assumption of normally distributed seller valuation is made for tractability,
since it simplifies the posterior distribution of e given the observed list price a.
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Figure 1: Model time-line.

Showing

Bp buyers observe θ,
a, ui (private), and Bp.
Update beliefs about e.

Bidding

B̃ buyers pay c.
Observe e.

B̃ = 0 or u(B̃) < e : No trade

B̃ = 1 and u(B̃) ≥ e : Trade at w(θ, e)

B̃ > 1 and u(B̃) ≥ e : Trade at w
(
θ,max

{
u(B), e

})

of buying a house, as well as an opportunity cost arising from the buyer’s true outside

option. After paying the cost c the buyer also learns the true value of e.

We let B̃ denote the number of buyers that enter the bidding stage. Below, it will

also be useful to define B = B̃ − 1 as the number of other buyers entering the bidding

stage from the perspective of a buyer that has chosen to enter. We assume that a buyer

who chooses to enter observes the realization of B perfectly, so that she knows how many

opponents she is bidding against.17

If B̃ = 0, then no transaction takes place. If B̃ = 1 (so B = 0), there is no auction,

and instead we assume that if the surplus from trading is positive, then the price is

determined via a negotiation process. In particular, we assume that the buyer makes a

take-it-or-leave-it offer to the seller, so the price equals the seller’s reservation value.18 If

B̃ > 1 (or B > 0), we assume that the price is determined in a second-price auction with

a reserve price of ṽ (θ, e).

Notice that given the ex ante information asymmetry, it is possible that even if B̃ > 0,

no trade takes place, since ex post, all buyers who enter the bidding stage may have lower

valuation than the seller reservation value. This will be the case if u(B̃) < e, where u(B̃)
denotes the largest order statistic of u = (u1, u2, . . . , uB̃). We can call this a situation of

informational mismatch. Whenever there is no informational mismatch, and given the

specific assumptions on the transaction process, we can write the transaction price as

p (θ,u, e) =

w (θ, e) , B̃ = 1

w
(
θ,max

{
u(B), e

})
, B̃ > 1

, (9)

where u(B) is the second (largest) order statistic of u. Figure 1 presents a time-line of

events in the model.

Buyer payoffs

Let W (B, θ, e, ui) denote the expected payoff for buyer i who has entered the bidding

stage, given that a total of B other buyers are present at that stage and given that

17This is without loss of generality given the second-price auction assumption and given that buyers
are risk neutral in the price (see McAfee and McMillan (1987)).

18Allowing for price determination via Nash bargaining leads to structural estimates of the bargaining
strength of the buyer close to one.
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ui > e. Let u−i = (u1, u2, . . . , ui−1, ui+1, . . . , uB̃) denote the vector of buyer-specific

valuations that exclude buyer i’s valuation. Then, in the case when B = 0, we have,

W (0, θ, e, ui) = (w (θ, ui)− w (θ, e)) . (10)

In the case when B ≥ 1, we have

W (B, θ, e, ui) = Pr
{

(u−i)(B) < ui

}
E

[
w (θ, ui)− p (θ,u, e)

∣∣∣∣ (u−i)(B) < ui

]
, (11)

or using equation (9),

W (B, θ, e, ui) = Pr
{

(u−i)(B) < ui

}
×{

w (θ, ui)− E
[
w
(
θ,max

{
(u−i)(B) , e

})∣∣∣∣ (u−i)(B) < ui

]}
. (12)

It is straightforward to show that W is increasing in θ and ui and decreasing in e, and B.

Lemma 1. A buyer’s expected payoff W in the bidding stage is increasing in θ and ui and

is decreasing in e, and B.

Proof. See Appendix B.

Buyer entry decisions

Since the idiosyncratic preferences ui are private information, buyers do not know the

exact number of other buyers that will enter the bidding stage at the time of their entry

decision but instead (rationally) anticipate that this number will follow a certain (en-

dogenously determined) distribution. Moreover, by Lemma 1, buyers will choose whether

to enter the bidding stage according to a cutoff rule. To see this, note that a buyer with

idiosyncratic taste u will choose to enter iff

EB
[
1{u>e}W (B, θ, e, u) |a

]
≥ c, (13)

where, EB [.] denotes expectation with respect to the (endogenously determined) distri-

bution of B.19 Since W is increasing in u, it follows that the left-hand side of Eq. (13)

is also increasing in u, so that there exists a unique idiosyncratic valuation threshold,

denoted by û (θ), which satisfies

EB
[
1{û(θ,a)>e}W (B, θ, e, û (θ, a)) |a

]
= c, (14)

19We assume that a buyer who is indifferent between entering and not chooses to enter the bidding
stage.
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such that a buyer enters iff ui ≥ û (θ, a). We can further simplify Eq. (14) using the

observation that a buyer with the threshold valuation ui = û (θ, a) has the highest valua-

tion among B + 1 buyers (for B ≥ 1) with zero probability. Put differently, a buyer with

the marginal idiosyncratic valuation û (θ, a) never expects to win an auction, and hence,

always receives a payoff of zero in that contingency. The only contingency when the buyer

receives a positive payoff (that would compensate for his entry cost c in expectation) is

when there are no other buyers, i.e. B = 0 and e < û (θ, a), so that there is a positive

surplus from trading. Therefore, Eq. (14) becomes

EB
[
1{û(θ,a)>e}W (B, θ, û (θ)) |a

]
= Pr {e < û (θ, a) |a}Pr {B = 0|a}×

{w (θ, û (θ, a))− E [ṽ (θ, e) |a, e < û (θ, a)]} = c. (15)

Hence, the expected payoff for the marginal buyer who enters the bidding stage equals

the probability that trade will take place multiplied by the probability that there will be

a negotiated sale and the difference between the buyer’s valuation and his expectation of

the seller’s valuation given the list price.

3.2 Buyer entry game

Given this set-up, we can define a symmetric (Bayesian) Nash equilibrium of the buyer

entry game as follows.

Definition. Given values of θ, a, and Bp, a symmetric (pure strategy) Bayesian Nash

Equilibrium of the buyer entry game consists of a buyer entry decision χ (u) ∈ {0, 1} and

a distribution of entering buyers, B̃, such that χ (u) = 1 iff condition (13) is satisfied,

and the distribution B̃ reflects the entry decision χ (u).

Given that entry follows the cutoff rule from Eq. (14), it follows that prior to drawing

the idiosyncratic preferences, the probability, q, of any given buyer entering the bidding

stage is given by

q (θ, a) = Pr
{
EB
[
1{ui>e}W (B, θ, e, ui) |a

]
≥ c
}

= Pr {ui ≥ û (θ, a)} , (16)

with û (θ, a) satisfying Eq. (14). Since idiosyncratic draws are i.i.d., the (ex ante) dis-

tribution of entering buyers, B̃, is therefore a Binomial distribution with parameters Bp

and q (θ, a). Similarly, the distribution of other buyers entering the bidding stage, B, is

Binomial with parameters Bp − 1 and q (θ, a). We summarize these observations in the

following equilibrium characterization result.

Proposition 1. Given values of θ, a, and Bp, there is a unique symmetric pure strategy

Bayesian Nash Equilibrium of the buyer entry game characterized by:
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� A cutoff valuation û (θ, a) that satisfies Eq. (14), such that a buyer enters and bids

iff u ≥ û (θ, a).

� An (ex ante) distribution of entering buyers which is Binomial with parameters Bp

and q (θ, a), where q satisfies Eq. (16).

Figure 2 illustrates the shape of the cutoff rule û in the top row (that is its dependence

on θ and a) and its dependence on model parameters in the remaining panels. Not

surprisingly, given Lemma 1, û is decreasing in θ. Intuitively, given a fixed entry cost

for bidding, a house that is more valuable (irrespective of the buyer’s own idiosyncratic

valuation) raises the buyer’s expected payoff from bidding for the house and thus induces

entry by buyers with lower idiosyncratic valuations. Put differently, higher quality houses

attract more bidders. The cutoff û is also increasing in a, so that a higher list price acts

on a buyer’s entry decision the same way as lowering the quality of the house. This is

because a signals a higher seller valuation e to buyers. Raising the average seller valuation

ē has a similar effect on û (bottom, right panel). Also, unsurprisingly, a higher bidding

cost, c, raises the cutoff value û, since buyers must expect to have a higher payoff from

bidding to counter the higher bidding cost. û is also increasing in the number of potential

buyers, Bp. Intuitively, a higher value of Bp raises the expected number of bidders, B̃,

which lowers the payoff to any single buyer from entering the bidding stage and raises

the cutoff û. This congestion effect is generally present in any entry game.

More interestingly, û is increasing in the dispersion of buyer idiosyncratic tastes.

Intuitively, a higher dispersion of buyer tastes raises the probability of having an extremely

high idiosyncratic valuation, which, in turn, raises the probability of any single buyer

entering the bidding stage. This results in a higher number of expected buyers, similarly

to the effect of Bp, thus, also raising the cutoff.

Increasing the dispersion of the list price has an ambiguous effect on û, since it depends

on the position of the list price. For a low list price that lets the buyer update towards

a lower value of e than the mean, higher dispersion ση, which makes the list price less

informative about the seller reservation value, implies that the buyer relies more on his

prior mean (i.e. ē). Consequently, the buyer expects a higher reservation value, and

the value of û increases. The opposite happens when the list price is high and the

informativeness of the list price goes down, so that the buyer relies more on the prior

mean to form expectations about e.

A higher dispersion of the seller reservation value has several effects. First, similar

to the effect of changing ση it affects the inference of the buyer about e, making the

buyer weight more the list price when inferring e. As with the effect of changing ση, the

position of the list price would matter for the direction of this effect. Second, it makes

more extreme values of e more likely by moving mass to the tails of the seller reservation

value distribution. Depending on the position of û relative to a, this may increase or lower
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the expected payoff from entering the bidding stage. In practice, however, this effect is

quantitatively small, as shown in the figure (bottom, left panel).

4 Data and Estimation

4.1 Data

We use bidding-logs and information on viewers and showings from all sales handled by

two of the largest real estate agencies in Norway, DNB Eiendom and Krogsveen over the

period 2010–2015. We consider the Oslo housing market, excluding units that belong to

a housing co-operative (“co-op units”).20

The data sets contain information on each bid placed in every housing sale handled

by these real estate agencies. The data sets also include a unique bidder id, allowing us

to compute the number of bidders in each auction. Additionally, both data sets contain

information on the list price, the exact sales date, the exact date when the unit was listed

for sale, attributes of the unit (size, address, unit type).

Before trimming, the data set contains 14,034 transactions and 133,224 bids. We start

by dropping units that have missing information on sell price, list price, or size. We then

truncate on the 1st and 99th percentiles of the sell, list, and size distributions. We also

drop all sales of units that are transacted more than three times during our sample period,

and units that have a negative time-on-market. If the bid-amount is missing, we drop

this bid. We also drop bids that are lower than 80% of the list price, unless that is the

winning bid. After this, we exclude some auctions with missing expiration dates and bids

expiring before they are received. Finally, we remove auctions for which the distance (in

days) between expiration of the previous bid and receiving a new bid is very long (99.5th

pct) or short (0.5th pct), and we truncate on the 1st and 99th percentiles of the number of

days elapsed between a realtor is hired and the unit is listed for sale. After trimming, we

are left with 12,028 transactions and 116,111 bids. The number of observations exluded

in each step and for each firm are described in Table A.1 in Appendix A.

For most of the analysis, we use data from both firms. However, the Krogsveen data

set has information on the number of people showing up at the open house, as well as

how many showings have been arranged before a sale takes place. That information is not

20Housing co-operatives were established in the post WW2 period to stimulate homeownership. The
different properties in the co-op are owned by the housing co-operative, whereas members of the co-op
buy shares which entitle them to occupy a specific unit in the co-op. The reason why we exclude co-ops
from our analysis is that the selling process for co-op units differs from that of self-owned units, and thus
from our model in Section 3. Specifically, co-ops always carry a “right of first refusal”, which gives the
option for members of the co-op (based on a seniority ranking) to purchase a unit at the highest accepted
bid without taking part in the bidding. Bidders participating in an auction for a co-op units, therefore,
also have to take into account the possibility that they may not buy the unit even if they placed the
highest bid.
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Figure 2: Comparative statics for û.
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contained in the DNB data, so we use the Krogsveen data for all calculations involving

number of viewers and number of showings.

We use the bidding-level data to extract information on time-on-market, sell prices,

list prices, and the spread between sell prices and list prices. In addition, we construct

measures of the number of viewers at the showing, and number of bidders.

Table 2 summarize the data. The first two columns show the summary statistics for

the full sample, the next two columns show summary statistics for sales involving only

one bidder, whereas the final two columns show summary statistics for sales with two or

more bidders.

The average sell-list spread is 6.1 percent and it is considerably higher for sales with

multiple bidders than for sales involving only one bidder. There are about 14 viewers on

average for sales involving multiple bidders, and approximately a third of the viewers end

up placing a bid. The ratio of bidders to viewers is similar in the one-bidder auctions and

these auctions have considerably fewer viewers. It is common to arrange two auctions

and the average time on market is only 14 days. Only 12 percent of the multiple-bidder

auctions end up with a sell price below the list price. For one-bidder auctions, about 39

percent of the units are sold with a sell price lower than the list price. The one-bidder

and multiple-bidder auctions are relatively similar in terms of sell price, list price, size,

time-on-market, and fraction of units that are apartments.

Since the model in Section 3 is static, it is best suited to describe a single attempt

at selling a house. Moreover, we are interested in the first such attempt, since the first

attempt reflects the bulk of the transactions that take place. We identify the first sale

attempt as the 4-week period from the listing date. We choose this cutoff, since the esti-

mated hazards of receiving a bid flatten after these periods, as Figure 3 shows. Therefore,

any auction-like transaction process with multiple bidders and bids likely take place prior

to these cutoffs, and if a housing unit does not sell by this period, it either goes through

a subsequent re-listing resulting in a new sale attempt or continues receiving sequential

offers from single buyers, which is a transaction process that our model does not represent

well. The probability of receiving a bid at the first attempt is 0.87 and the probability

that a sale occurs at the first attempt is 0.81. Conditional on receiving at least one bid,

the probability of selling at the first attempt is 0.94.

In Figure 4, we display time developments in four key indicators; mean sell-list spread,

mean time-on-market, mean number of bidders, and the percentage of units that are sold

at the first attempt. It is evident that there are cyclical movements in the Oslo housing

market over the period we consider. In particular, there is notable drop in the sell-list

spread in 2013, which is associated with a longer time-on-market, fewer bidders, and a

substantial drop in the percentage number of units sold at the first sales attempt.
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Figure 3: Bidding hazard.
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Note: The figure plots the estimated fraction of unsold properties that receive a bid in a given day against
the number of days since the listing date for properties in Oslo sold by the realtor firm Krogsveen. The
red line is LOESS-smoothed with a smoothing parameter of 0.2.

4.2 Estimation method

Next, we describe our estimation procedure, a number of parametric assumptions we

make, and also discuss the features of the data that we use to identify our structural

parameters of interest.

Since our data span a large number of different locations, types of housing, and time

periods, and each of these characteristics would have a direct effect on the underlying dis-

tribution of quality, the distribution of potential buyers, and potentially all other model

parameters, we define a number of sub-markets or segments and let a number of param-

eters of the estimated model vary by segment. Specifically, we define segments based on

housing type and size, and time period. For time periods, we consider separately every

year in our sample between 2010-2015, while for housing type and size we define three

categories, namely Small apartments, Large apartments and Houses. Small apartments

have up to 2 rooms, while large apartments have 3 or more rooms. Houses are defined

as all remaining housing units, which consist of row houses, semi-detached houses, and

single-family houses.
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Figure 4: Housing market developments in Oslo. 2010–2015.
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Note: The upper left panel plots the mean sell-list spread, the upper right panel shows the mean time-
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21



Table 2: Summary statistics for auction-level data. Segmentation on one versus multiple
bidders, 2010–2015

Full sample One bidder Multiple bidders
Variable Mean Std. Mean Std. Mean Std.
Sell (in 1,000 USD) 627.07 288.98 640.31 293.65 622.56 287.26
List (in 1,000 USD) 594.39 278.09 636.1 292.62 580.19 271.53
Square footage 915.55 488.34 941.45 492.03 906.73 486.8
Sell-List spr. (in %) 6.11 8 .85 5.07 7.9 8.03
No. bidders 2.98 2.09 1 0 3.66 2.02
No. bids 9.83 7.82 2.8 1.84 12.23 7.64
No. viewers 11.61 8.91 5.53 4.09 13.57 9.16
Bidders per viewer .33 .2 .3 .24 .34 .19
No. public showings 1.97 .98 1.9 1.19 1.99 .9
Viewers per showing 6.81 6.08 3.23 2.74 7.86 6.38
Time-on-market (days) 13.69 7.3 13.79 8.1 13.66 7
Perc. with sell < list 18.53 39.09 11.54
Perc. apartment 78.37 78.89 78.2
Prob. sell at first att. 0.82
Prob. bid at first att. 0.87
Prob. sell if bid at first att. 0.94
No. auctions 12,044 2,492 9,552

Note: The table shows summary statistics for auction-level data from DNB Eiendom and Krogsveen
over the period 2010–2015. Since the data from DNB Eiendom do not contain information on number
of viewers, these measures are calculated using only data from Krogsveen. We distinguish between units
sold in one-bidder auctions and units sold in multiple-bidder auctions. For each of the segments, the
table shows the mean and standard deviation (Std.) of a selection of key variables. NOK values are
converted to USD using the average exchange rate between USD and NOK over the period 2010–2015,
in which the exchange rate was USD/NOK = 0.1639

We estimate the model parameters using Simulated Method of Moments.21 Specifi-

cally, for each segment we construct a large number of artificial data-sets with size equal

to the number of observed sales in each segment. Each observation in these artificial

data-sets corresponds to a distinct instance of the buyer entry game described in Sec-

tion 3. Therefore, for each distinct dwelling in the artificial data-sets we draw a unique

combination of quality θ, seller reservation value e, list price a, as well as the number of

potential buyers, Bp, and a vector of idiosyncratic preferences for these buyers, u. Based

on these factors, we compute the entry cutoff û according to Eq. (14), the set of potential

buyers that enter the bidding stage given this cutoff, and the realized price, p, if a sale

takes place, according to Eq. (9).

We draw the number of viewers, Bp, from each segment’s empirical distribution of

viewers. Figure 5 plots this distribution for small apartments in 2011 and houses in 2014.

The probabilities are estimated by bins of number of viewers.22

21See the Appendix for details about the estimation algorithm.
22In the simulations, the probability of drawing any given number of viewers, within each bin, is

assumed uniform.
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Figure 5: Empirical viewer distribution.
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In our estimation, we let the dispersion and mean of quality, θ, vary by segment, while

for the remaining parameters – the dispersion in buyer idiosyncratic tastes, σu, the mean

and dispersion of seller reservation values, (ē and σe), the mean and dispersion of the log

of the list price “wedge”, η, (η̄ and ση), and the (log of the) entry cost c – we impose

time-invariance.23

4.3 Moments and identification

Next we discuss identification in our estimation framework. Formally, if we define a

moment function from the space of parameters to the space of moments, (local) identi-

fication requires that the Jacobian matrix of the moment function evaluated at the true

parameter values has rank equal to the number of parameters. More informally, each

parameter should change the moments in a “unique” way. In practice, the moments have

to also be “informative” about the parameters, so that the moment function is not close

to flat around the true parameter values. These two considerations guide our choice of

moments.

For each segment, we use 9 moments: (i) the mean (log) sale price (E(log p)), (ii)

the coefficient of variation of (log) price (CV (log p)) and (iii) (log) list price (CV (log a)),

(iv) the mean price premium, defined as the difference between the mean (log) sale price

and (mean) (log) list price (log p − log a), (v) and the mean price premium given only

one bidder, (vi) the probability that the sale price is lower than the list price, as well as

the sale probability – both (vii) unconditional, and (viii) conditional on there being at

least one buyer who enters the bidding stage. Finally, (xi) we target the probability of 5

bidder or more entering the bidding stage. Overall, we have 54 moments per unit type

and 18 parameters, so our model is substantially over-identified.

23We also perform the estimation by letting all parameters vary over time. The parameter estimates
for this estimation are similar to our baseline parameters and are included in the Appendix.
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Figure 6 shows how these moments respond to the model parameters for a specific

time period for the time-invariant parameters σu, σe, ση, and log c, while Figure 7 contains

a similar set of moment comparative statics plots for the quality parameters θ̄ and σθ.

Next we discuss briefly which moments are informative for each parameter and provide

brief intuition for these effects based on the mechanics of our model.

For σu the informative moments are the mean and coefficient of variation of the sale

price, the price premium, and also the sale probability and the probability that 5 or more

bidders enter the bidding stage. Intuitively, a higher dispersion of idiosyncratic tastes

increases both the mean price and price premium, as well as the probability that 5 or

more bidders enter, since it becomes more likely for several very high-valuation buyers

to enter bidding. It also increases the sale probability due to selection effects, since it is

easier for a larger set of housing units to attract a buyer with a sufficiently high willingness

to pay, despite the quality characteristics of the unit or the reservation value of the seller.

Finally, price dispersion also increases, since buyers have more idiosyncratic tastes but

also because of the aforementioned selection effects, whereby more lower quality units

can also sell.

For ση the most informative moments are the sale probability, particularly the sale

probability given at least one bidder and the probability that 5 or more potential buyers

enter. Intuitively, by Eq. (8), a higher dispersion ση increases the posterior variance

about the seller’s reservation value, thus worsening the quality of information available to

potential buyers when they make their bidding entry decisions. Consequently, there are

more instances of informational mismatch, whereby buyers with idiosyncratic preferences

lower than the seller’s true reservation value enter the bidding stage, which reduces the

share of transactions. A higher value of ση has an ambiguous effect on list price dispersion.

Intuitively, a higher value of ση exerts two effects on list price dispersion. On the one

hand, it mechanically increases list price dispersion. On the other hand, the informational

mismatch due to higher ση interacts with the list price (see Figure 2 and the discussion

preceding it), which leads to a selection effect for units with extreme values of the list

price. This effect tends to lower the list price dispersion among transacted units. Finally,

a higher dispersion in η tends to increase the probability that the sale price is below the

list price. Intuitively, if there is no dispersion in η, the sale price can never be below the

list price, since the list price equals the seller reservation value. With some dispersion

in η the list price and the seller reservation value are decoupled, so that it is possible

that the seller reservation value (and hence the sale price given at least one bidder with

sufficiently high valuation) lies below the list price. This mechanism also explains the

decrease in the price premium given at least one bidder as ση increases.

A higher value of σe has a similar effect to that of a higher value of ση on the sale

probability and the probability of having 5 or more bidders for similar reasons. However,

any selection effects due to informational mismatch are quantitatively weaker in that case.
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Consequently, a higher value of σe unambiguously increases list price dispersion. It also

increases the price premium, since it lowers the average (log) list price of units that end

up transacting. Finally, it increases price dispersion, since having more units with more

extreme values of the seller reservation value increase the probability that units sell with

only one bidder. For these units the price equals the seller reservation value, so a higher

dispersion of the seller reservation value mechanically increases price dispersion for those

units.

A higher entry cost c affects many of the moments. First, surprisingly, it exerts a

non-monotone effect on the sale probability. The reason for the non-monotonicity is the

following. On the one hand, since a higher value of c increases the cutoff û (see Figure

2), which, other things equal, lowers bidder entry and hence the sale probability. On the

other hand, the increase in the cutoff û leads to entering buyers having valuations, which

tends to reduce the impact of informational mismatch, leading to a larger probability of

sale given bidder entry. For very low values of c the second effect dominates, while the

first effect dominates for higher values of c.

An increase in the average seller reservation price, ē, reduces the sale probability, since

it reduces the entry of buyers. It also increases the average sale price, since for all objects

with a negotiated sale (i.e. only one bidder with valuation above the seller’s reservation

value) the price directly depends on the seller reservation value. However, a higher ē

decreases the price premium, since the average list price is more responsive to ē than

the average sale price. The average seller reservation price also affects price dispersion

negatively. This is due to a selection effect the average seller reservation price exerts on

the quality distribution of objects sold. Turning to the list price wedge, a change in η̄

leads to a mechanical change in moments involving the list price. For example, a higher

value of η̄ decreases the price premium, since it increases the average (log) list price. It

also increases the share of objects that sell below the list price.

Finally, regarding the quality distributions, the average quality parameter θ̄ has an

effect on all moments, but particularly so on the average sell price, the probability of sale,

as well as the probability that the sell price is below the list price. For the dispersion of

quality, there are only two informative moments: the dispersions in the sell price and the

list price.

Figures 6 and 7 illustrate how identification is achieved by the moments we have

chosen. Specifically, parameters influence the set of moments differently, and at least one

moment responds to a specific parameter. For example, we can identify separately σθ

from σu since the dispersion in the list price, CV (log a), responds to σθ but not to σu.

Similarly, σu influences a number of other moments like the average sale price E[log p],

and the probability of sale, Pr {sale}, while σθ does not influence these moments.
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Figure 6: Moment comparative statics.
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Note: s denotes the sell probability. p∗ denotes the price premium, log p − log a. The moments are
computed for the following parameter values: σθ = 0.3068, σu = 0.0257, σe = 0.0553, ση = 0.0089,
θ̄ = 6.7146, ē = −0.0001, η̄ = 0.0095, and c = 0.1426, also given by the vertical dotted lines.

26



Figure 7: Moment comparative statics for θ̄ and σθ.
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θ̄ = 6.0170, ē = 0.0115, η̄ = −0.0154, and c = 0.0999, also given by the vertical dotted lines.
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5 Results

5.1 Parameter estimates and model fit

Table 3 presents the parameter estimates from our baseline estimation. Table 4 shows

the simulated moments at the estimated parameters together with corresponding data

moments for segments with the best and worst fit.24 The simulated moments are for the

most part very close to their data counterparts, even for the segments with the worst fit.

This is reassuring since there is substantial over-identification in our estimation.

Table 3: Parameter estimates.

Small apt. Large apt. House
σu 0.0268 (0.0080) 0.0312 (0.0156) 0.0257 (0.0106)
σe 0.0076 (0.0079) 0.0097 (0.0155) 0.0553 (0.0120)
ση 0.0439 (0.0073) 0.0392 (0.0128) 0.0089 (0.0110)
ē -0.0008 (0.0069) 0.0166 (0.0117) -0.0001 (0.0093)
η̄ -0.0136 (0.0072) -0.0111 (0.0133) 0.0095 (0.0099)
c 0.0781 (0.0061) 0.0744 (0.0111) 0.1426 (0.0095)

Note: Standard errors in parenthesis. σu, σe, ση, ē, η̄, and c are constrained to vary only by housing
type, whilst remaining parameters may vary between years.

We estimate a sizable and fairly similar dispersion parameter for buyer idiosyncratic

tastes across all housing types.25 In contrast, the dispersion in seller reservation values

differs substantially across housing types and is substantially higher for houses compared

to apartments. The estimated cost of bidding entry is close to zero across all housing types

though about twice as high for houses compared to apartments. This is to be expected

since transaction costs (in the form of brokerage fees and fees paid to the state) scale up

with the average value of the property type.26 The average of the seller-specific reservation

value, ē is estimated to be very close to zero apart from the large apartments segment

where it is slightly positive, though with a substantial standard error. Overall, this

suggests that on average there are no systematic differences between seller log reservation

values and the dwelling’s underlying quality (though with a substantial dispersion in the

case of houses, as already explained).

Next, we examine the list price “wedge”, η. There is substantial dispersion in η,

particularly for apartments, reflecting a partial disconnect between list prices and seller

valuations, and suggesting that list prices are imperfect signals for seller reservation val-

24Table A.2 in the Appendix includes the estimated parameters for the distribution of θ, while Table
A.3 in the Appendix shows the simulated and data moments for all segments.

25These dispersion parameters translate into a distribution with inter-quartile range of between 0.04
and 0.048.

26In Norway, there is a 2.5 percent stamp duty, to be paid upon each transaction. Furthermore, all
placed bids are binding, so that a buyer who bids always assumes that they may acquire the property
(and pay the associated monetary transaction costs) at that bid.
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ues in the case of apartments. Moreover, the estimated mean “wedge” is negative for

apartments. This points to to a systematic downward bias in list prices relative to seller

valuations, reflecting potential attempts by real estate agents to attract more bidders via

a list price discount. This bias appears largest for the Small apartments segment. Both

of these results suggest that strategic pricing plays an important role in the Oslo housing

market, as emphasized by Anundsen et al. (2020).27

Table 4: Target moments for segments with best and worst fit.

Best Worst
Moment Model Data Model Data
E[log p] 6.747 6.757 6.064 6.074
E[p∗] 0.036 0.057 0.045 0.070
E[p∗ | B = 1] -0.011 0.007 0.012 0.014
CV (log p) 0.046 0.046 0.053 0.053
CV (log a) 0.046 0.046 0.054 0.054
Pr(sale) 0.765 0.753 0.916 0.856

Pr(sale | B̃ > 0) 0.941 0.915 0.964 0.949

Pr(B̃ ≥ 5) 0.071 0.177 0.068 0.190
Pr(p ≤ a) 0.271 0.190 0.197 0.129
Segment House, 2012 Small apt., 2011
Loss 0.0533 0.2293

Note: The table shows targeted moments in the baseline estimation for individual segments with the
greatest and smallest losses. p∗ = log p− log a.

5.2 Validation

In Table 5, we compare the performance of the model against a number of non-targeted

moments. The estimated model gets fairly close to most non-targeted data moments.

However, the average number of bidders tend to be a bit higher than in the data and so

does the average ratio of bidders to viewers. Similarly, the probability of having only one

bidder tends to be a bit lower in the model than in the data. One explanation for these

discrepancies is that the observed bidding data is naturally truncated from below given

that in reality bidding entry is sequential rather than simultaneous as in our model and

the auction format is of a dynamic ascending-bid (English) auction rather a simultaneous

second-price auction. Therefore, in the data only lower valuation bidders who enter early

would be reflected in the bidding records, whereas lower valuation bidders who come late

to the bidding may choose to not bid at all if the current highest bid is already above

their valuation and hence not appear in the bidding records.

Next, we validate the estimated model against a direct measure of buyer valuations.

This is a particularly important validation of our model, since one of the main aims of the

27A complementary explanation for the large values of ση is that sellers update their valuation between
the time the list price is set and the time the house is sold, as in Anenberg (2016).
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Table 5: Non-targeted model moments.

E[B̃] SD(B̃) Pr(B̃ = 1) E[B̃/Bp]
# Type Year Model Data Model Data Model Data Model Data
1 Small apt. 2010 2.689 2.684 1.467 1.976 0.232 0.296 0.629 0.429
2 Small apt. 2011 2.916 3.052 1.620 1.999 0.206 0.215 0.593 0.406
3 Small apt. 2012 3.037 3.222 1.665 2.308 0.189 0.222 0.581 0.371
4 Small apt. 2013 2.972 2.684 1.624 1.921 0.196 0.310 0.592 0.377
5 Small apt. 2014 3.896 2.999 1.883 2.109 0.094 0.250 0.429 0.308
6 Small apt. 2015 4.238 3.258 1.927 2.372 0.066 0.247 0.385 0.238
7 Large apt. 2010 2.660 2.681 1.511 1.728 0.253 0.251 0.523 0.397
8 Large apt. 2011 2.811 3.097 1.639 1.964 0.238 0.221 0.512 0.373
9 Large apt. 2012 2.761 3.154 1.588 2.200 0.240 0.233 0.523 0.343
10 Large apt. 2013 2.767 2.789 1.582 2.064 0.238 0.266 0.520 0.358
11 Large apt. 2014 3.679 2.717 1.835 1.717 0.112 0.254 0.385 0.274
12 Large apt. 2015 4.007 2.837 1.924 1.835 0.086 0.277 0.357 0.238
13 House 2010 3.085 3.211 1.740 2.108 0.205 0.218 0.556 0.367
14 House 2011 2.960 2.828 1.695 1.964 0.222 0.267 0.588 0.319
15 House 2012 3.049 3.019 1.719 2.017 0.209 0.231 0.576 0.345
16 House 2013 3.209 2.869 1.784 2.036 0.189 0.271 0.545 0.317
17 House 2014 3.811 2.915 2.005 1.966 0.129 0.245 0.393 0.274
18 House 2015 4.152 3.150 2.070 2.097 0.098 0.249 0.323 0.218

Note: The table shows non-targeted moments in the baseline estimation for individual segments. p∗ =
log p− log a.

estimation is to understand the contribution of buyer preference heterogeneity to house

prices. Specifically, we use the detailed bidding information from our data set to construct

a lower and upper bound on the valuations of bidders who participate in auctions (i.e.

there are at least two bidders) and who do not end up submitting the highest final bid, i.e.

they “lose” the auction. The lower bound is based on the highest bid that a losing bidder

submits in the bidding log, while the upper bound is based on the bid that is submitted

by another bidder subsequent to the bidder’s highest bid. The reason for constructing

both a lower and upper bound to the bidder valuation rather than treating the bidder’s

highest bid as their valuation is that jump bidding and counter-bidding is prevalent in

the auction bidding logs. Indeed, around 25% of bids following a losing bidder’s highest

bid have a bid increment of at least 50,000 Norwegian krone, which represent more than

1% of the average sell price of units in our sample. Figure 8 plots the distribution of

the logged lower and upper bounds of losing bidder valuations constructed as explained

above. As the Figure shows, the upper and lower bounds are fairly close. Moreover,

unconditionally, the upper-bound distribution is essentially a rightward shifted version of

the lower-bound distribution.

Next, Tables 6 compares the model and data-derived bidder valuation distributions

based on the mean and standard deviation of the log valuation. We make this comparison
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Figure 8: Losing bidder valuations.
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Note: The graph plots the lower and upper bounds of losing bidder valuations in the data, all in logs.
The lower bound is based on the highest bid that a losing bidder submits in the bidding log, while the
upper bound is based on the bid that is submitted by another bidder subsequent to the bidder’s highest
bid.
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by housing type and year. Overall the model-generated bidder valuations have means and

standard deviations in line with the data generated moments, particularly for the upper

bound measures (denoted by UB in the table). For example, the standard deviation of

the log losing bidder valuation is between 0.289 and 0.438 in the model and between 0.276

and 0.471 for the upper bound measure.28

Table 6: Non-targeted model moments for log valuations of auction losers.

Mean Std. dev.
# Type Year Model Data Model Data

LB UB LB UB
1 Small apt. 2010 6.030 5.958 5.951 0.302 0.753 0.331
2 Small apt. 2011 6.085 5.989 6.004 0.320 0.324 0.321
3 Small apt. 2012 6.181 6.049 6.056 0.308 0.589 0.321
4 Small apt. 2013 6.167 6.078 6.090 0.298 0.312 0.301
5 Small apt. 2014 6.178 6.083 6.095 0.304 0.314 0.307
6 Small apt. 2015 6.305 6.191 6.206 0.294 0.299 0.295
7 Large apt. 2010 6.141 6.137 6.152 0.398 0.415 0.412
8 Large apt. 2011 6.289 6.251 6.265 0.403 0.441 0.440
9 Large apt. 2012 6.349 6.209 6.223 0.409 0.451 0.447
10 Large apt. 2013 6.315 6.273 6.293 0.389 0.415 0.412
11 Large apt. 2014 6.331 6.276 6.290 0.413 0.416 0.413
12 Large apt. 2015 6.508 6.453 6.463 0.438 0.476 0.471
13 House 2010 6.668 6.644 6.660 0.289 0.278 0.276
14 House 2011 6.669 6.723 6.731 0.304 0.334 0.300
15 House 2012 6.761 6.761 6.773 0.305 0.300 0.298
16 House 2013 6.827 6.798 6.808 0.296 0.293 0.290
17 House 2014 6.804 6.832 6.841 0.304 0.313 0.301
18 House 2015 6.883 6.925 6.938 0.306 0.310 0.307

Note: The model-generated mean of (standard deviation of) log valuation is given by the conditional
expectation (standard deviation) of log ṽ(θ, ui), conditional on sale, B̃ > 1, ui < u(B̃), and ui ≥ û. The
data-generated moments are based on the highest bid that a losing bidder submits in the bidding log
(LB), and on the bid that is submitted by another bidder subsequent to the bidder’s highest bid (UB)
for objects sold in the first attempt as defined in Section 4.1.

Finally, similar to the data-derived distribution of bidder valuations, we use our de-

tailed bidding logs data to compute a proxy for the seller reservation value by considering

bidding logs where the seller makes a counter-bid. Specifically, we take the first counter-

bid the seller makes in that case. In our model, we equate this to either (i) a situation

with entry of only one bidder or (ii) a situation with multiple bidder entry where at most

one bidder has a valuation above the seller reservation value. These are precisely the

situations in the data where a negotiated sale occurs. Table 7 compares the mean and

28The lower bound measure (denoted by LB in the table) is consistently below the upper bound and
model-generated mean log valuation, which is consistent with the way the two measures are constructed.
In terms of standard deviations, the LB and UB measures are quite similar apart from two of the small
apartment segments (in year 2010 and 2012), where the standard deviation of the LB measure is around
2 times larger, which likely reflect substantial outliers in terms of low bids.
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standard deviation of the model generated log seller reservation value given these events,

and the mean and standard deviation of the log of the seller counter-bid in the data. The

model-generated log seller reservation value has consistently lower mean compared to the

data-generated counterpart but very similar standard deviation. The discrepancy in the

mean values likely reflects strategic aspects of the negotiation between buyer and seller

whereby the seller’s first counterbid (i.e. the seller’s first counteroffer) would consistently

exceed her reservation value.

Table 7: Non-targeted model moments for log seller reservation values.

Mean Std. dev.
# Type Year Model Data Model Data
1 Small apt. 2010 5.977 5.983 0.302 0.288
2 Small apt. 2011 6.023 6.079 0.321 0.287
3 Small apt. 2012 6.121 6.172 0.309 0.279
4 Small apt. 2013 6.111 6.190 0.299 0.257
5 Small apt. 2014 6.094 6.231 0.304 0.324
6 Small apt. 2015 6.214 6.372 0.294 0.314
7 Large apt. 2010 6.077 6.223 0.400 0.406
8 Large apt. 2011 6.215 6.244 0.404 0.340
9 Large apt. 2012 6.283 6.306 0.411 0.363
10 Large apt. 2013 6.250 6.396 0.390 0.421
11 Large apt. 2014 6.230 6.383 0.413 0.421
12 Large apt. 2015 6.388 6.520 0.437 0.464
13 House 2010 6.627 6.716 0.292 0.301
14 House 2011 6.624 6.696 0.306 0.318
15 House 2012 6.720 6.799 0.308 0.301
16 House 2013 6.788 6.827 0.299 0.338
17 House 2014 6.762 6.772 0.305 0.308
18 House 2015 6.845 6.960 0.306 0.296

Note: The model-generated mean (standard deviation) of the seller’s reservation value is given by the
conditional expectation (standard deviation) of log ṽ(θ, e), conditional on sale and either (i) a situation
with entry of only one bidder (i.e. B̃ = 1) or (ii) a situation with multiple bidder entry (B̃ > 1), where
at most one bidder has a valuation above the seller reservation value. The data-generated moments are
based on the first counterbid a seller makes for objects where the seller makes a counterbid and which
are sold in the first attempt as defined in Section 4.1.

5.3 Counterfactual exercises

Next, we use the estimated model in a number of counterfactual exercises. First, we

assess the contribution of quality towards prices and price dispersion. Next, we assess

the contribution of match quality via idiosyncratic buyer tastes for average prices and

price dispersion. We also examine the importance of seller reservation values, as well as

the informational frictions (the list price “wedge”). Third, we assess the effect of number

of bidders on house prices in our model, and compare them against estimates from other
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studies.

5.3.1 Effects of quality

Table 8 shows the average log price and the standard deviation of log price by type of

housing based on data from the estimated model together with the average and standard

deviation of log price net of the common quality component θ. Several things stand

out from this table. First, quality is the main driver of the average price and price

dispersion according to the estimated model. This is not surprising as attributes, such

as size and location are the main drivers of house prices in essentially all pricing models

used in research and by practitioners. More interestingly, the unexplained variation from

fully accounting for quality differences is much lower than that implied by R2 statistics

from “standard” hedonic regressions. Using the last row from the table to compute an

implied R2, one obtains values in the range of 98 to 99%. In contrast, the typical hedonic

regression tends to have an R2 of around 80 to 90%. Table 9 reports R2s from such a

typical model (Model 1 in that table). In contrast models that regress the log sell price on

log list price (Model 2 in the table) or use an appraisal value as an explanatory variable

(Model 3 in the table) produce much higher values of R2 and in line with the implied R2

from Table 8.

Therefore, when fully accounted for quality explains most of the variation in sale

prices and to a similar extent as regressions that include the list price or appraisal values

(which also fully account for quality). Put differently, estimating “standard” hedonic

models leaves substantial “unexplained” variation due to unobservable quality differences.

Still, even after fully accounting for quality, θ, there remains a sizable “residual” price

component that is driven by buyer/seller preference heterogeneity and frictions.29 Next,

we turn to a decomposition of that residual price dispersion.

Table 8: Contribution of quality θ to mean and standard deviation of log sell prices.

Small apt. Large apt. House
E[log p] 6.1414 6.2921 6.7571
E[log p− θ] 0.0366 0.0484 0.0400
SD(log p) 0.3064 0.4125 0.3034
SD(log p− θ) 0.0282 0.0290 0.0344
V ar(log p− θ)/V ar(log p) 0.850 % 0.494 % 1.287 %

Note: The table reports the mean and standard deviation of log price and log price minus heta in the
estimated model for the three different types of housing, as well as the ratio of the variance of log price
minus theta over the variance of log price. Small apartments have up to 2 rooms, while large apartments
have 3 or more rooms. Houses are defined as all remaining housing units, which consist of row and
semi-detached houses, and single-family homes.

29Note that quality may still impact that residual price component indirectly due to selection effects.
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Table 9: Adjusted R2 for hedonic regression models.

Model 1 Model 2 Model 3
Type of unit R2 Obs. R2 Obs. R2 Obs.
Small apt. 0.846 5705 0.961 5952 0.959 3162
Large apt. 0.878 1616 0.969 1738 0.968 944
House 0.795 2044 0.932 2123 0.930 991

Note: The table reports the adjusted R2 for 3 regression models with log of sell price as dependent
variable. Model 1 is a standard hedonic regressions with log size, log size squared, indicator for lot size
greater than 1000 square meters (for houses), log of common debt, year-by-month fixed effects, postal
code fixed effects, and indicators for four construction periods. Model 2 has log of list price and log of
common debt as regressors. Model 3 has log of appraised value and log of common debt as regressors.
Each model is estimated for a specific type of unit in Oslo for the period 2010-2015. Small apartments
have up to 2 rooms, while large apartments have 3 or more rooms. Houses are defined as all remaining
housing units, which consist of row and semi-detached houses, and single-family homes.

5.3.2 Effects of preference heterogeneity and frictions

Table 10: Counterfactual effects on the mean “residualized” price, log p̃.

Counterfactual Small apt. Large apt. Houses Note
Baseline 0.0366 0.0484 0.0400 Baseline mean
σu → 0 −103.11% −104.21% −111.75% No dispersion in buyer tastes
σe → 0 2.10% 2.64% −1.35% No dispersion in seller reservation values
ση → 0 2.43% 2.80% 1.23% Symmetric information
ē = 0 0.96% −22.34% 0.08% Mean zero seller reservation value

Note: The table shows the percent change of mean log sale price less θ given the parameter estimates
in Table 3, when changing parameters as indicated by the first column. The first row gives the mean
“residualized” price (in log points) at the parameter estimates.

Table 11: Counterfactual effects on the dispersion of the “residualized” price, log p̃.

Counterfactual Small apt. Large apt. Houses Note
Baseline 0.0282 0.0290 0.0344 Baseline std. dev.
σu → 0 −87.62% −89.62% −55.62% No dispersion in buyer tastes
σe → 0 0.64% 0.87% −18.71% No dispersion in seller reservation values
ση → 0 1.25% 2.40% −0.32% Symmetric information
ē = 0 −0.41% 5.29% −0.04% Mean zero seller reservation value

Note: The table shows the percent change of the standard deviation of log sale price less θ given the
parameter estimates in Table 3, when changing parameters as indicated by the first column. The first
row gives the standard deviation of the “residualized” price (in log points) at the parameter estimates.

Next, we examine the importance of buyer and seller preference heterogeneity and

the informational frictions for prices and price dispersion. Following the discussion from

the previous section, we focus on the “residualized” (log) price after removing the direct

effects of quality on price. Therefore, we examine the object log p̃ = log p− θ. Tables 10

and 11 show how the mean and standard deviation of the “residualized” price changes for

the different housing type segments in a number of counterfactual exercises. To assess the
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contribution of match quality to the mean and standard deviation of the price premium,

we first reduce the idiosyncratic dispersion in buyer tastes, σu, to (close to) zero (Row

2 in Tables 10 and 11). In this case, the average premium is reduced by around 100

percent for all housing types, while the standard deviation goes down by between 55 and

90 percent, which translates into a reduction of between 0.02 and 0.025 log points. This

is substantially larger than the contribution of the dispersion in the seller reservation

values (Row 3), apart from houses, where σe also has a non-negligible effect. The list

price wedge dispersion, ση (Row 4), has a negligible effect on both the mean and standard

deviation of prices, suggesting a fairly limited quantitative role of informational mismatch

at the estiamted parameters. Finally, lowering the mean seller valuation (Row 5) has a

substantial effect on the average “residualized” price only for large apartments where this

mean value was estimated to be relatively large in magnitude.

Overall, these exercises point to match quality being the main driver of “residualized”

house price dispersion with match quality accounting for around 2.5 percentage points of

the observed house price dispersion in Oslo during 2010-2015. Moreover, match quality

is also important for the observed average price level and contributed around 4 to 5

percentage points to the observed average prices in Oslo during 2010-2015.

5.3.3 Effects of number of bidders on prices

Using our estimated model for each sub-market we generate simulated sales data and

estimate the following regression

logPh = α + β1B̃h (+β2θh) + εh, (17)

in which B̃ denotes the number of bidders for property h. Therefore, we examine the

effect of number of bidders on the final sale price using a reduced-form regression that is

often estimated in the literature. Table 12 shows the coefficient estimates for the different

segments. After fully controlling for quality, the effect of one more bidder on log prices

is around 0.01. If instead we do not control for quality, we obtain substantially larger

coefficient estimates of between .026 and 0.045. Therefore, the coefficient estimates with

and without controlling for quality provide bounds on the estimated effect of number

of bidders on prices in reduced-form regressions, depending on how successfully one can

control for housing quality. Interestingly, the coefficient estimates after controlling for

quality are quite close to estimates reported in other empirical studies. For example,

Genesove and Han (2016) estimate a reduced-form coefficient of bidders on log prices of

0.011 for a North American housing market, while Hungria-Gunnelin (2013) estimates

a coefficient of around 0.04 using data for Stockholm, Sweden. Finally, Anundsen et al.

(2020) estimate an effect of between 0.02 and 0.03 for Norway. This provides another

validation for our estimated model.
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Table 12: Counterfactual effect of number of bidders on sale prices.

Housing type B̃ B̃ | θ
Small apt. 0.0349 0.0126
Large apt. 0.0454 0.0126
House 0.0257 0.0096

Note: The table shows the estimated coefficients of the regression logPh = α + β1B̃h + β2θh + εh,
without (first column) and with (second column) a quality control, θ, in the regression.

6 Conclusion

Using a unique auction-level data set for housing sales in the Norwegian capital Oslo, we

estimate a structural model of the housing transaction process, which explicitly includes

the (endogenously determined) possibility of negotiated versus auctioned sales. We find

that quality matters substantially more for price dispersion than “traditional” hedonic

pricing models would suggest, pointing to the importance of unobserved heterogeneity

in the housing market. Beyond quality, buyer taste heterogeneity matters the most for

any “residual” price dispersion, with the distribution of seller reservation values mattering

only for some types of housing. Finally, there’s a partial disconnect between list prices

and seller reservation values, particularly for apartments, which implies that buyers face

imperfect information about seller reservation values when making bidding decisions,

leading to informational mismatch.

One important insight from our analysis is that match quality matters not just for

price dipsersion but for average house prices as well. However, the relative importance of

match quality for house prices versus price dispersion depends on the underlying bidding

costs that potential buyers face. Larger bidding costs reduce bidder entry, thus leading

to a lower average price, but also to higher price dispersion. Therefore, any policy that

tries to “cool” down the housing market and house price appreciation by slowing down

bidder entry via either macro-prudential tools or direct regulation of the housing market

transaction process would have the unintended effect of increasing price dispersion and

subjecting home owners to greater uninsurable housing wealth risk. Moreover, such

policies may have spillover effects on the spending decisions of existing homeowners,

and hence, aggregate economic activity. We find these issues to be important for future

research on this topic.
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A Additional tables and results

Table A.1: Data trimming

Step: Both firms Krogsveen DNB
Bids Trans. Bids Trans. Bids Trans

Initial data set (excl. Coops) 60,217 6,003 73,007 8,031 133,224 14,034
Drop missing sell, ask, size 59,932 5,928 72,289 7,742 132,221 13,670
Truncate on 1st and 99th pct. of size, ask, sell 57,479 5,678 69,170 7,410 126,649 13,088
Drop all transactions of units with more than three sales 57,225 5,646 68,800 7,368 126,025 13,014
Drop if TOM < 0 57,150 5,630 68,800 7,368 125,950 12,998
Drop missing bids or if bid < 80% of list price† 54,586 5,629 66,534 7,368 121,120 12,997
Additional constraints (see tablenotes) 50,621 5,122 63,188 6,922 113,809 12,044

Note: The table shows the different steps taken when trimming the data. We show the number of bids
and transactions after each step, both for the full sample of both firms, as well as for the individual
firms. †: We do not drop bids lower than 80% of the list price if it is the winning bid. The additional
constraints are: We drop the entire auction (all bids) if one bid is missing expiration date and there are
less than 5 bidders, or if more than one bid is missing the expiration date of the bid. In addition, drop
only the bid with missing expiration date if there are more than 5 bidders and only one bid has missing
expiration date. We drop the entire auction if the bid expires before it is received and there are less than
5 bidders, or if more than one bid expires before it is received. In addition, drop only the bid that expires
before it is received if there are more than 5 bidders and only one bid expires before it is received. We
drop the entire auction if the distance (in days) between expiration of the previous bid and receiving a
new bid is very long (99.5th pct) or short (0.5th pct) and there are less than 5 bidders, or if more than
one bid has a long/short distance (in days) between expiration of the previous bid and receiving a new
bid. In addition, drop only the bid that has a long/short distance (in days) between expiration of the
previous bid and receiving a new bid if there are more than 5 bidders and only one bid has a long/short
distance (in days) between expiration of the previous bid and receiving a new bid. Finally, we truncate
on 1st and 99th pct of number of days elapsed between ready for sale date and date of hiring the realtor.
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Table A.2: Parameter estimates (all parameters).

Small apt. Large apt. House
σu 0.0268 (0.0080) 0.0312 (0.0156) 0.0257 (0.0106)
σe 0.0076 (0.0079) 0.0097 (0.0155) 0.0553 (0.0120)
ση 0.0439 (0.0073) 0.0392 (0.0128) 0.0089 (0.0110)
ē -0.0008 (0.0069) 0.0166 (0.0117) -0.0001 (0.0093)
η̄ -0.0136 (0.0072) -0.0111 (0.0133) 0.0095 (0.0099)
c 0.0781 (0.0061) 0.0744 (0.0111) 0.1426 (0.0095)
σθ,2010 0.3029 (0.0011) 0.4035 (0.0018) 0.2905 (0.0020)
σθ,2011 0.3214 (0.0006) 0.4085 (0.0010) 0.3052 (0.0020)
σθ,2012 0.3088 (0.0012) 0.4135 (0.0020) 0.3068 (0.0008)
σθ,2013 0.2992 (0.0120) 0.3928 (0.0284) 0.2975 (0.0162)
σθ,2014 0.3048 (0.0115) 0.4178 (0.0291) 0.3052 (0.0167)
σθ,2015 0.2951 (0.0098) 0.4434 (0.0260) 0.3072 (0.0167)
θ̄2010 5.9851 (0.0093) 6.0675 (0.0220) 6.6207 (0.0151)
θ̄2011 6.0324 (0.0092) 6.2062 (0.0227) 6.6216 (0.0177)
θ̄2012 6.1294 (0.0082) 6.2725 (0.0211) 6.7146 (0.0162)
θ̄2013 6.1187 (0.0010) 6.2408 (0.0025) 6.7798 (0.0008)
θ̄2014 6.1107 (0.0012) 6.2336 (0.0019) 6.7432 (0.0010)
θ̄2015 6.2353 (0.0031) 6.3961 (0.0050) 6.8172 (0.0095)

Note: Standard errors in parenthesis. σu, σe, ση, ē, η̄, and c are constrained to vary only by housing
type, whilst remaining parameters may vary between years.
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B Omitted proofs from model

Proof of Lemma 1

To show that W is increasing in θ, note that for B = 0,

W (0, θ, e, ui) = (w (θ, ui)− w (θ, e)) = exp {θ} (exp {ui} − exp {e}) ,

and similarly for B > 0,

W (B, θ, e, ui) = exp {θ}Pr
{

(u−i)(B) < ui

}
×{

exp {ui} − E
[
exp

{
max

{
(u−i)(B) , e

}}∣∣∣∣ (u−i)(B) < ui

]}
.

Direct inspection of these expressions immediately implies that W is increasing in θ.

To show that W is increasing in ui and decreasing in e, note that this is trivial for

B = 0. For B > 0, we rewrite W as

W (B, θ, e, ui) = exp {θ}
[
Pr
{

(u−i)(B) < ui

}
exp {ui}

−Pr
{

(u−i)(B) < e
}

exp {e} −
∫ ui

e

exp {x}ψB (x) dx

]
,

where ψB (x) denotes the probability density function of the largest order statistic of

(u−i). Differentiating with respect to ui, we get

∂W

∂ui
= exp {θ}

[
ψB (ui) exp {ui}+ Pr

{
(u−i)(B) < ui

}
exp {ui} − exp {ui}ψB (ui)

]
= exp {θ}Pr

{
(u−i)(B) < ui

}
exp {ui} > 0.

Similarly, differentiating with respect to e, we get

∂W

∂e
= exp {θ}

[
−ψB (e) exp {e} − Pr

{
(u−i)(B) < e

}
exp {e}+ exp {e}ψB (e)

]
= − exp {θ}Pr

{
(u−i)(B) < e

}
exp {e} < 0.

Finally, to show that W is decreasing in B, first of all note that

W (0, θ, e, ui) ≥ W (1, θ, e, ui) ,

since Pr
{

(u−i)(B) < ui

}
≤ 1 andE

[
exp

{
max

{
(u−i)(B) , e

}}∣∣∣∣ (u−i)(B) < ui

]
≥ exp {e}.

For B > 1, note first that

Pr
{

(u−i)(B) < ui

}
= Ψ (ui)

B
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is decreasing in B, where Ψ (x) is the cumulative distribution function of a Type 1 extreme

value distribution, so Pr
{
u(B) < ui

}
is decreasing in B. Second, note that

(u−i)(B) = max {u1, u2, u3, ..., ui−1, ui+1, ..., uB−1, uB} ≥
max {u1, u2, u3, ..., ui−1, ui+1, ..., uB−1} = (u−i)(B−1) ,

and so

exp
{

max
{

(u−i)(B) , e
}}
≥ exp

{
max

{
(u−i)(B−1) , e

}}
.

These two observations directly imply that

W (B − 1, θ, ui) ≥ W (B, θ, ui) ,

for B > 1.

D Details on the estimation

Simulated method of moments

We describe in more detail the estimation procedure for the extension of the model,

where all parameters are estimated year-by-year. We largely follow Hennessy and Whited

(2007). For each segment, j ∈ J , we estimate the parameters, Φj = {σu, σe, ση, σθ, ē, η̄, c, θ̄},
that satisfy

Φ̄j = arg min
Φ

m̄K(Xj,Φ)W j
Nm̄K(Xj,Φ), (D.1)

where W j
N is a weighting matrix. We set it to the inverse of the covariance matrix of the

data moments, V j. The empirical variance-covariance matrix is computed by bootstrap

separately for each segment. Also,

m̄K(Xj,Φ) =
1

K

K∑
k=1

mk(Xj,Φ), (D.2)

where mk(Xj,Φ) = md
n(Xj)−ms

n(Φ), a vector of empirical moments less their simulated

counterparts. Each mk(Xj,Φ) is computed from n simulated houses, equal to the number

of houses sold in that segment. This number is typically too low for computational

purposes. Therefore, the simulation is repeated K times for the same Φ. The moment

used to compute the loss, m̄K(Xj,Φ), is the average moment of the K runs.

The model variance-covariance matrix is computed from(
1 +

1

K

)(
JTW j

NJ
)−1

JTW j
NJ
(
JTW j

NJ
)−1

(D.3)
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where J is the Jacobian matrix of m̄K(Xj,Φ) over Φ computed by central finite differ-

ences.30

For the baseline estimation, where some parameters are fixed across years within each

housing type, we estimate the parameters as follows. For each group of segments, g ∈ G,

we estimate the parameters, Φ̂g =
⋃
j∈g Φj, that satisfy Equation (D.1) and specified time

invariance constraints (e.g., σu = σju∀j ∈ G). Now,

m̄(Xg, Φ̂g) = vec

 1

Kj

Kj∑
k=1

mkj(Xj,Φj)


j∈g

 (D.4)

with mkj(·) as before. The data variance-covariance matrix used for both the weighting

matrix and for computing the model variance-covariance matrix is

V g = blockdiag
(
{V j}j∈g

)
(D.5)

where blockdiag generates a block diagonal matrix of its inputs. Note that since the off-

block diagonal entries are zero, we are assuming that there is no correlation across years.

The variance-covariance matrix is computed as in the baseline model.

Estimation algorithm

For each segment, with n sales, the parameters, Φ, are estimated as follows.

1. Make an initial guess for the parameters, Φ = Φ0.

2. Initialise K datasets, with K = arg min
k
{n×K ≥ N}. For each dataset,

(a) Draw n of µ, θ, Bp, e, η.

(b) Find the fixed-point of Eq. (15), û(θ), with Brent’s method.

(c) For each house, draw Bp of u. Compute prices according to Eq. (9). Compute

moments, mk(Xj,Φ).

3. Average moments across the K datasets and compute mK(Xj,Φ).

4. Compute loss function, mK(Xj,Φ)W j
NmK(Xj,Φ). According to the Nelder-Mead

algorithm, evaluate the innovation in the loss function and, if required, updated the

parameter guess, Φ, and repeat steps 2 through 4.31

30For parameters estimated close to or at range constraints, we compute the forward or backward finite
difference.

31For some extensions we rely on the differential evolution algorithm due to Storn and Price (1997).
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