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Rise of New Financial Intermediaries
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• FinTech: digital lending facilitated by online platforms (e.g., P2P, ...)
• TechFin/BigTech: large tech companies lend in the credit markets (e.g., Ant

Group, WeBank, ...)

• a growing empirical literature, but theoretical implications?
1 / 16 .



Research Question: role of TechFin in macroeconomy

• Existing literature: banks

• key characteristic: collateral-based borrowing constraint (“financial frictions”)

• macro implications: aggregate productivity losses; financial accelerator mechanism

• This paper

1. what is the key difference between banks and BigTech in lending behaviors?

2. how different are these macro implications with TechFin?

• why TechFin instead of FinTech: TechFin is more bank-like (Stulz, 2019; King, 2019)
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Bank v.s. TechFin: macro perspective

• Banking sector: collateral-based borrowing constraint

• TechFin sector: earnings-based borrowing constraint

• Microfoundation of incomplete-collateralization contract: Townsend (1979);
Bernanke and Gertler (1989); ...

1. technology story: tech advantages→ reduced cost of state verification
2. intangible capital story: intangible capital→ low liquidation value

• Empirical evidence: Gambacorta et al. (2020); Beck et al. (2020)

• Other possible difference: fast data processing ability (Fuster et al., 2019); new
credit-sorting models (Gambacorta et al., 2019); ...
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Preview of Model and Results

• Key elements: Moll (2014) with two types of entrepreneurs

1. heterogeneous agent model with incomplete markets

2. two types of borrowing constraints

3. two types of economic fundamental shocks

• Main conclusions on the rise of TechFin

1. smaller aggregate productivity losses in the steady state

2. accelerator role of financial market is still there

3. amplification and propagation of both first-moment level and second-moment
uncertainty shocks
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Model

• Two types of entrepreneurs

i a continuum of entrepreneurs borrowing from the banking sector B
ii a continuum of entrepreneurs borrowing from the TechFin sector F

• Preference: 𝔼0 ∫
∞
0 𝑒−𝜌𝑡 log 𝑐 (𝑡) 𝑑𝑡

• Production function: 𝑦 = (𝑧𝑘)𝛼 𝑙1−𝛼

• Stochastic productivity process: 𝑑𝑙𝑜𝑔𝑧 = 𝜃 (𝜇 − 𝑙𝑜𝑔𝑧) + 𝜎√𝜃𝑑𝑊

• State of the economy: {𝜔𝐹 (𝑡, 𝑎, 𝑧) , 𝜔𝐵 (𝑡, 𝑎, 𝑧)}

• wealth definition: 𝑎 ≡ 𝑘 − 𝑏
• wealth changes from 𝑡 to 𝑡 + 𝑑𝑡: 𝑑𝑎𝑡 = (𝑦𝑡 − 𝑤𝑡𝑙𝑡 − 𝛿𝑘𝑡 − 𝑟𝑡𝑏𝑡 − 𝑐𝑡) 𝑑𝑡
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Two Types of Borrowing Constraints

• Banking sector: collateral-based borrowing constraint

(1 + 𝑟) 𝑏 ≤ 𝜆𝐵𝑘 ⇒ 𝑏 ≤
𝜆𝐵

1 + 𝑟 − 𝜆𝐵
𝑎

• TechFin sector: earnings-based borrowing constraint

(1 + 𝑟) 𝑏 ≤ 𝜆𝐹𝜋 = 𝜆𝐹 (𝑦 − 𝑤𝑙) ⇒ 𝑏 ≤
𝜆𝐹𝜉𝑧

1 + 𝑟 − 𝜆𝐹𝜉𝑧
𝑎

where 𝜉 = 𝛼 ( 1−𝛼𝑤 )
1−𝛼
𝛼
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Similarity and Difference

• Similarity: corporate debt capacity depends essentially on their net worth

debt capacity = 𝜙 × verifiable net worth

? “With cash flow-based lending and EBCs, we find that asset price feedback through
firms’ balance sheets could diminish significantly.”(Lian and Ma, 2021)

? “This evidence implies that a greater use of big tech credit could reduce the
importance of collateral in credit markets and potentially weaken the financial
accelerator mechanism.” (Gambacorta et al., 2020)

• Difference: productive firms get to use more leverage in TechFin
• asymmetric wealth growth rate for firms with different productivity
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Optimal Policy Functions

• Banking sector

𝑏𝐵 (𝑎, 𝑧) = {
𝜆𝐵𝑎

1+𝑟−𝜆𝐵
𝑧 ≥ 𝑧

−𝑎 𝑧 < 𝑧

𝑘𝐵 (𝑎, 𝑧) = {
(1+𝑟)𝑎
1+𝑟−𝜆𝐵

𝑧 ≥ 𝑧
0 𝑧 < 𝑧

• TechFin sector

𝑏𝐹 (𝑎, 𝑧) = {
𝜆𝐹𝜉𝑧𝑎

1+𝑟−𝜆𝐹𝜉𝑧
𝑧 ≥ 𝑧

−𝑎 𝑧 < 𝑧

𝑘𝐹 (𝑎, 𝑧) = {
(1+𝑟)𝑎

1+𝑟−𝜆𝐹𝜉𝑧
𝑧 ≥ 𝑧

0 𝑧 < 𝑧

where 𝑧 = 𝑟+𝛿
𝜉
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Wealth Dynamics
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𝑑𝑎𝐵 = {1𝑧≥𝑧 × [
(1 + 𝑟) (𝜉 𝑧 − 𝑟 − 𝛿)

1 + 𝑟 − 𝜆𝐵
+ 𝑟 − 𝜌] + 1𝑧<𝑧 × (𝑟 − 𝜌)} 𝑎𝐵𝑑𝑡 ≡ Γ𝐵 (𝑧) 𝑎𝐵𝑑𝑡

𝑑𝑎𝐹 = {1𝑧≥𝑧 × [
(1 + 𝑟) (𝜉 𝑧 − 𝑟 − 𝛿)

1 + 𝑟 − 𝜆𝐹𝜉 𝑧
+ 𝑟 − 𝜌] + 1𝑧<𝑧 × (𝑟 − 𝜌)} 𝑎𝐹𝑑𝑡 ≡ Γ𝐹 (𝑧) 𝑎𝐹𝑑𝑡
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Uncertainty and TechFin
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• positive impacts of uncertainty: Oi-Hartman-Abel effects
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Distribution Dynamics

𝜕𝜔𝑗 (𝑡, 𝑎, 𝑧)
𝜕𝑡

= −
𝜕 [Γ𝑗 (𝑧) 𝑎𝜔𝑗 (𝑡, 𝑎, 𝑧)]

𝜕𝑎
−
𝜕 [𝜃 (𝜇 − 𝑙𝑜𝑔𝑧) 𝑧𝜔𝑗 (𝑡, 𝑎, 𝑧)]

𝜕𝑧
+1
2
𝜕2 [𝜃𝜎2𝑧2𝜔𝑗 (𝑡, 𝑎, 𝑧)]

𝜕𝑧2
, 𝑗 ∈ {𝐵, 𝐹}

7 wealth share approach: Caselli and Gennaioli (2013); Moll (2014); ...

7 (adaptive) sparse grid approach: Brumm and Scheidegger (2017); ...

3 deep learning approach: Han and E (2016);
Raissi, Perdikaris and Karniadakis (2019); Fernandez-Villaverde et al. (2020); Chen,
Didisheim and Scheidegger (2021); ...
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Parametrization

Parameter Description Value Source/Reference
𝜌 rate of time preference 0.05
𝛼 capital share 0.33
𝐿 labor market size 1.0

Moll (2014)

𝛿 capital depreciation rate 0.06 BEA-FAT
𝜒 death rate 0.05 Moll (2012)
𝜇 log idiosyncratic productivity mean 0.0
𝜃 autocorrelation 𝑒−𝜃 0.16 (corr = 0.85)
𝜎 log idiosyncratic productivity s.d. 0.56

Asker, Collard-Wexler and Loecker (2014)

̄𝜙 upper boundary for corporate leverage 10.0

Experimentation Question
𝜆𝐵 tightness of constraint in banking 0 ∼ 0.8
𝜆𝐹 tightness of constraint in TechFin 0 ∼ 0.8 1. steady-state TFP
Δ𝜇 fundamental shocks to productivity ±0.1 ∼ ±0.5 2. business cycles
Δ𝜎 fundamental shocks to micro uncertainty ±0.1𝜎 ∼ ±0.5𝜎
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Productivity Losses in Steady-State
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Business Cycles: First-Moment Shocks
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Business Cycles: Second-Moment Shocks
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Conclusion

• Research question: introduce TechFin into the existing macro-finance literature

• Key take-away:

• two different credit systems ⇒ two types of borrowing constraints

• financial friction still matters

• TechFin: less misallocation but more sensitive to uncertainty shocks
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Related Literature

• Empirical FinTech/TechFin: Gambacorta et al. (2020); Tang (2019); Hau et al.
(2018); Cornelli et al. (2020); ...

• Financial frictions and macroeconomy: Kiyotaki and Moore (1997); Bernanke
and Gertler (1989); Brunnermeier and Sannikov (2014); Di Tella (2017); He and
Krishnamurthy (2013); Fernandez-Villaverde, Hurtado and Nuno (2019); ...

• Distributional macro: Moll (2014); Fernandez-Villaverde, Hurtado and Nuno
(2019); Achdou et al. (Forthcoming); ...

• Earnings-based borrowing constraint: Lian and Ma (2021); Greenwald (2019);
Drechsel (2019); ...
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