Breaking down menstrual health barriers in Bangladesh

EEA Meetings 23 August 2022

Lidwien Sol ${ }^{1}$, Eleonora Nillesen ${ }^{1}$ and Paul Smeets ${ }^{1}$
${ }^{1}$ School of Business and Economics, Maastricht University

Motivation

- Every month 2 bln women have to manage their period - often in a secretive manner
- "period poverty" in both high-income and low-income countries but..
- In addition LMICs often have restrictive norms vis-a-vis mentruation
- Around time of menarche gender-based gaps in edu in LIMC widens
- Problematic as improving girls' edu is one of the most cost-effective ways to spur development

Motivation

- Qualitative evidence that menses is a key driver for girls' absence in school
- Poor MH practises associated with lower academic achievement and adverse psychosocial outcomes like shame, anxiety and distraction (Chandra-Mouli and Patel, 2017; Chrichton et al., 2013; Miiro et al., 2018)
- Can external interventions help?

Related literature on MH interventions

- Systematic review by Hennegan and Montgomery on hardware and software MH interventions concludes a too small evidence base
- Some quantitative evidence on the provision of menstrual products and health/schooling outcomes (Das et al., 2015; Oster and Thornton, 2011; Philipps-Howard, 2016; Montgomery, 2016; Grant et al., 2013)
- Or training interventions (Haque, 2014; Fakhri et al., 2013)
- Few use rigorous evaluation designs and many arrive at mixed results

Key questions

- Does a multi-faceted MH intervention reduce school absenteeism, and improve health and psycho-social outcomes?
- Do intervention effects differ across measurement techniques and subgroups?
- Does a combined parental training + schooling program provide benefits over a schooling program alone?

Study design

- 178 mixed-gender junior high schools in Netrakona district eligible
- Children in junior high schools are between 11-14 years old
- 149 schools voluntarily enrolled (12 unwilling, 17 already working with other NGOs)
- Stratified random allocation of schools to one of two treatment arms or control group
- Stratification based on pre-intervention school attendance; upazilla (area); and pre-intervention quality of school toilet facilities

Study design

Ritu intervention

Treatment arm I - school-based

- MH - friendly toilets installed or improved in accordance with Water Sanitation and Health (WASH) criteria
- 5-day training intervention for teachers to increase knowledge on MH and teach culturally sensitive topics + 2 - day refresher training
- Launching campaign to familiarize students and staff with "Ritu" discussion sessions, essay writing and screening of a reality show on tv
- $\mathrm{MH} /$ puberty education modules embedded in the school curriculum (taught bi-weekly to girls and boys) - focussing on puberty, improving MH knowledge and practises and changing attitudes towards menstruation

Ritu intervention

Treatment arm II - household level intervention

- All parents/guardians from grade 6-8 girls were targeted
- 2-day group education sessions for fathers and mothers in the community focusing on improving knowledge, MH practises and promoting less restrictive norms towards menstruation
- Information about available subsidy to build MH proof toilet facilities at home
- MH -booklet with visual reminders of contents taught during the education sessions
- Pilot-tested with 30 out-of-sample parents prior to the intervention

Sample and data sources

- Survey data from a random sample of 28 girls (6-graders) per school
- Survey data collected during two rounds (B:M)
- Administrative monthly data from school records
- Monthly spot-check data - unannounced school visits by independent research team members to overcome self-reportingor recall bias, misaligned incentives
- FGD
- Attrition rates between B \& M are moderate at 9\% and not systematic
- We use a balanced panel of $N=1985$ post-menarche girls for our main analyses

Empirical strategy - ITT effects

$Y_{i j}=\beta_{0}+\beta_{1}$ Treatment $1_{j}+\beta_{2}$ Treatment $2_{j}+\beta_{3} X_{i j}+\varepsilon_{i j}$
For midline (post-intervention) outcomes with baseline controls

Controls include:
Socio-economic status
\# female hh members
Distance to school
Age at menarche
School size
\# MH friendly toilets at school
\& stratification variables

Key outcomes - education

School records: absence rate ${ }_{i}=\frac{\text { No.absent days }_{i}}{\text { No.open school days }}{ }_{j}$
Survey: \quad absence rate $_{i}=\frac{\text { Self reported no.absent days }}{i}$

Spot - check: \quad absence rate ${ }_{i}=\frac{\text { No.absent during spot check rounds }{ }_{i}}{\text { No.total spot check rounds }}$

School absence during menstrual period: frequency of absence (from 1=never, to $4=$ always)

School drop-out: whether a girl dropped out of school at midline

Key outcomes - socio-psycho wellbeing \& empowerment

- Mental health is a combined index of frequency of positive/negative feelings
- Subjective well-being index 0-7
- Embarrassment \& insecure during mp
- Empowerment
- Three subindices related to gender attitudes, opinions and decisions and aspirations (edu \& age of marriage)
- Binary vars for mobility restrictions (going to school, performing religious activities, cooking etc.)

Key outcomes - MH practices \& communication

- Predominant use of sanitary pads
- Frequency of changing material (general and at school)
- Drying place (1 = unhygienic indoors to 3 hygienic outdoors)
- Frequency of wearing dry materials
- Comfortable talking about MH
- Discussed with parent(s), friends, teacher

Heterogeneity

Key subgroups:

- Poor/rich households
- Presence of female role models
- Pre-program levels of empowerment

Descriptives - school absenteeism

School absence three measures 2018

MH knowledge and toilet facilities

MH KNOWLEDGE
(1)
$0.461^{* * *}$
(0.142)
$0.559^{* * *}$
(0.130)
GIRL TO TOILET
(2)
$-7.552^{* * *}$
(2.781)
$0.830^{* * *}$
(0.138)
$-6.815^{* *}$
(2.862)
6.44
0.508

p-value T1=T2^	0.508
Observations\#	2,095
School Controls^^ $^{\#}$	YES
Indiv. Controls^^	YES

School absenteeism

	School Absence Rates					
	School records		Survey		Spot-check	
	(1)	(2)	(3)	(4)	(5)	(6)
T1: School program	$\begin{gathered} -0.102^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} -0.103^{* * *} \\ (0.024) \end{gathered}$	$\begin{gathered} -0.032^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} -0.034^{* * *} \\ (0.009) \end{gathered}$	$\begin{aligned} & -0.048^{*} \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.046^{*} \\ & (0.031) \end{aligned}$
Hochberg p-value		<0.001***		<0.001***		0.134
T2: School +	-0.075**	-0.068**	-0.025*	-0.022*	-0.073**	$-0.064^{* *}$
HH program	(0.030)	(0.029)	(0.014)	(0.013)	(0.033)	(0.032)
Hochberg p-value		0.063*		0.086*		0.067*
Control Mean	0.359	0.359	0.163	0.163	0.525	0.525
p -value $\mathrm{T} 1=\mathrm{T} 2^{\wedge}$	0.388	0.242	0.603	0.336	0.464	0.587
Observations	1,985	1,957	1,985	1,957	1,985	1,957
Controls^^	NO	YES	NO	YES	NO	YES

Psychosocial wellbeing: general, and during menstrual period

	General		During menstrual period	
	Mental Health Index (1)	Subj. Wellbeing Index (2)	Embarrass. during MP (3)	Insecure during MP (4)
T1: School program	$\begin{gathered} 0.041 \\ (0.269) \end{gathered}$	$\begin{aligned} & -0.072 \\ & (0.055) \end{aligned}$	$\begin{aligned} & 0.131^{* *} \\ & (0.065) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.079) \end{gathered}$
Hochberg corrected p-value	-	-	0.091 *	0.990
T2: School + HH program	$\begin{gathered} 0.323 \\ (0.255) \end{gathered}$	$\begin{gathered} 0.040 \\ (0.050) \end{gathered}$	$\begin{gathered} 0.220^{* * *} \\ (0.059) \end{gathered}$	$\begin{gathered} 0.167^{* * *} \\ (0.059) \end{gathered}$
Hochberg corrected p-value	-	-	$<0.001{ }^{* * *}$	$0.005^{* * *}$
Control Mean	24.1	5.9	3.3	3.4
p -value $\mathrm{T} 1=\mathrm{T} 2^{\wedge}$	0.331	0.046	0.181	0.040
Observations	2,095	2,095	2,095	2,095
Controls^^	YES	YES	YES	YES

Treatment effect on likelihood of dropout

	(1)	(2)
	Dropout	Dropout
T1: School program	$-0.053^{* *}$	$-0.054^{* *}$
	(0.025)	(0.023)
T2: School + HH program	$-0.060^{* *}$	$-0.048^{* *}$
	(0.023)	(0.021)
Control mean	0.155	0.155
p-value T1=T2^		0.791
Observations	0.781	2,637
Controls^^	2,678	YOS

Empowerment outcomes

	EMPOWERMENT INDEX	GENDER ATTITUDES INDEX	OPINIONS \& DECISIONS INDEX	ASPIRATIONS INDEX
	(1)	(2)	(3)	(4)
T1: School program	$\begin{gathered} 0.013 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.109 \\ (0.222) \end{gathered}$	$\begin{gathered} 0.106 \\ (0.159) \end{gathered}$	$\begin{aligned} & -0.005 \\ & (0.041) \end{aligned}$
T2: School + HH program	$\begin{gathered} 0.047^{* * *} \\ (0.017) \end{gathered}$	$\begin{gathered} 0.513^{* *} \\ (0.214) \end{gathered}$	$\begin{gathered} 0.378^{* *} \\ (0.181) \end{gathered}$	$\begin{gathered} 0.101^{* *} \\ (0.047) \end{gathered}$
Control mean	0.54	8.55	2.44	1.42
p -value $\mathrm{T} 1=\mathrm{T} 2^{\wedge}$	0.064	0.113	0.191	0.029
Observations	1,707	2,052	1,734	2,084
Controls^^	YES	YES	YES	YES

Menstrual Health - Practices

predominant use
 sanitary pads

Home School Freq. general | At |
| :---: |
| School |\quad Drying place \quad Freq. wear dry

	(1)	(2)	(3)	(4)	(5)	(6)
T1: School program		$\begin{gathered} 0.185^{* * *} \\ (0.044) \end{gathered}$	$\begin{gathered} 0.359^{* * *} \\ (0.055) \end{gathered}$	$\begin{gathered} 0.356^{* * *} \\ (0.038) \end{gathered}$		$\begin{gathered} -0.360^{* * *} \\ (0.075) \end{gathered}$
Hochberg p-value	$0.012^{* *}$	$<0.001^{* *}$	<0.001 ${ }^{* *}$	$<0.001^{* * *}$	$<0.001^{* * *}$	<0.001 ${ }^{* *}$
T2: School + HH program	$\begin{aligned} & 0.074^{*} \\ & (0.043) \end{aligned}$	$\begin{aligned} & 0.152^{* * *} \\ & (0.046) \end{aligned}$	$\begin{gathered} 0.250^{* * *} \\ (0.065) \end{gathered}$	$\begin{gathered} 0.370^{* * *} \\ (0.039) \end{gathered}$	$\begin{gathered} 0.675^{* * *} \\ (0.064) \end{gathered}$	$\begin{gathered} -0.492^{* * *} \\ (0.069) \end{gathered}$
Hochberg p-value	0.086*	$0.001 * * *$	$<0.001^{* * *}$	$<0.001^{* * *}$	$<0.001^{* * *}$	$<0.001^{* * *}$
Control mean	0.25	0.36	2.7	0.13	2.0	1.88
p-value T1=T2^	0.551	0.506	0.103	0.769	0.051	0.092
Observations	2,061	2,032	2,095	2,042	1,470	1,470
Controls^^	YES	YES	YES	YES	YES	YES

Treatment effects on boy school absence rates

	BOYS GRADE 7 AGGREGATE
T1: School Program	$-0.101^{* * *}$
T2: School + HH program	(0.031)
	$-0.127^{* * *}$
Control Mean	(0.030)
	0.506
Observations	
Controls $\wedge \wedge$	148
p-value T1=T2^	YES
	0.486

School absence rates girls pre-menarche

School records		Survey		Spot-check		
	(1)	(2)	(3)	(4)	(5)	(6)
T1: School program	-0.040	-0.032	0.016	0.013	-0.005	-0.024
	(0.038)	(0.037)	(0.032)	(0.028)	(0.045)	(0.045)
T2: School +						
HH program	0.015	0.014	0.002	0.006	0.043	0.032
	(0.039)	(0.038)	(0.024)	(0.029)	(0.051)	(0.050)
Control Mean	0.318	0.318	0.147	0.147	0.486	0.486
Observations	333	333	333	333	333	333
Controls^	NO	YES	NO	YES	NO	YES

Heterogenous results

- We find modest evidence of impact heterogeneity
- Higher pre-program levels of gender equity attitudes has stronger treatment effects on school attendance \& psycho-social wellbeing during menses
- Girls with higher pre-program aspiration levels also experience stronger treatment effects on psycho-social well-being

Conclusion

- First evidence of impacts of a multi-faceted MH interventions reducing school absenteeism in the short to medium run
- Impact heterogeneity is modest
- Combined school \& hh intervention has additional impacts on empowerment measures
- Boys absence rates are also lowered while there is no effect on premenarche girls - FGD with boys suggest safer education environment

