Preference Conditions for Linear Demand Functions

Theodoros Diasakos ${ }^{1}$

EEA-ESEM 2022
${ }^{1}$ Stirling Management School, University of Stirling

Characterizations in the literature

Let $\mathcal{N}:=\{1, \ldots, n\}$ be the number of commodities. Take the nth commodity as the numeraire and $k \in \mathcal{N} \backslash\{n\}$. Let also $K:=\{1, \ldots, k\}$, $M:=\{k+1, \ldots, n\}$, and $M_{0}:=M \backslash\{n\}$.

Let B be a $k \times k$ matrix of constants and suppose that the (total) demand function $x: \mathbb{R}_{++}^{n} \supseteq Q \rightarrow X$ is such that

$$
x_{K}(q):=\alpha\left(q_{M_{0}}, w\right)+B q_{K}
$$

with $\alpha: Q_{M} \rightarrow \mathbb{R}^{k}$ a continuous function.
La France (JET 1985): B symmetric and -ve semidefinite.
(i) $\alpha\left(q_{M_{0}}, w\right)=\alpha\left(q_{M_{0}}\right) \Rightarrow$ quasi-linear/quadratic indirect utility.
(ii) $\alpha\left(q_{M_{0}}, w\right) \Rightarrow$ Leontief indirect utility.

Amir et al. (JET 2017): B symmetric, -ve definite with non-zero diagonal entries
$\alpha(\cdot)=\alpha \Rightarrow x_{K}(\cdot)$ is generated by a quasi-linear/quadratic direct utility.

Linear demand functions more generally

Let \succsim be a continuous, strictly convex, and strictly monotonic weak order on $X \subseteq \mathbb{R}_{++}^{n}$ (open and convex).

Let $\mathcal{N}:=\{1, \ldots, n\}$ be the number of commodities. Take the nth commodity as the numeraire and $k \in \mathcal{N} \backslash\{n\}$. Let also $K:=\{1, \ldots, k\}$, $M:=\{k+1, \ldots, n\}$, and $M_{0}:=M \backslash \varnothing$.

Let B be a $k \times k$ matrix of constants and suppose that \succsim generates the (total) demand function $x: \mathbb{R}_{++}^{n} \supseteq Q \rightarrow X$ where

$$
x_{K}(q):=\alpha\left(q_{M}\right)+B q_{K}
$$

with $\alpha: Q_{M} \rightarrow \mathbb{R}^{k}$ a continuous function.

Main result

Theorem

The following are equivalent:
(i). \succsim is differentiable.
(ii). Q is open in \mathbb{R}_{++}^{n}, B is non-singular, $M_{0}=\varnothing$ while $\alpha(\cdot)$ is constant.
(iii). $M_{0}=\varnothing$ and $\alpha(\cdot)$ is constant while \succsim is represented by the utility function $u: X \rightarrow \mathbb{R}$ given by

$$
u\left(x_{K}, x_{n}\right):=x_{n}-x_{K} \widetilde{B} \alpha-x_{K} \widetilde{B} x_{K} / 2
$$

where $\alpha=\alpha(\cdot)$ and \widetilde{B} is a non-singular $k \times k$ matrix of constants (specifically, $B:=B^{-1}$).
(iv). Q is open in \mathbb{R}_{++}^{n}, B is symmetric and negative definite while $M_{0}=\varnothing$ and $\alpha(\cdot)$ is constant.
(v). Q is open in $\mathbb{R}_{++}^{n}, M_{0}=\varnothing, \alpha(\cdot)$ is constant while $x_{K}(\cdot)$ satisfies the strict Law of Demand:

$$
\left(q_{K}-\widetilde{q}_{K}\right)\left(x_{K}\left(q_{K}\right)-x_{K}\left(\widetilde{q}_{K}\right)\right)<0 \quad \forall q_{K}, \widetilde{q}_{K} \in Q_{K}: q_{K} \neq \widetilde{q}_{K}
$$

Applications

Let $\mathcal{N}=\{1,2,3\}$ and take the 3rd commodity as the numeraire.
The demand function $x_{1}\left(q_{1}, q_{2}, w\right)=f(w)-2 q_{1}+q_{2}$ cannot be rationalized with (weakly) smooth preferences.

The demand function $x_{1}\left(q_{1}, q_{2}, w\right)=1-2 q_{1}+q_{2}$ can be rationalized with (weakly) smooth preferences if we also have $x_{2}\left(q_{1}, q_{2}, w\right)=\alpha_{2}+q_{1}+b_{22} q_{2}$ where

$$
B:=\left[\begin{array}{cc}
-2 & 1 \\
1 & b_{22}
\end{array}\right]
$$

is -ve definite.

Applications

Let $\mathcal{H}=\{1, \ldots, H\}$ be customers in a market, each with demand

$$
x^{h}(q)=\alpha^{h}+B^{h} q, \quad h \in \mathcal{H}
$$

These demands can be rationalized only if each B^{h} is symmetric and -ve definite. Hence, only if $B:=\sum_{h \in \mathcal{H}} B^{h}$ is also symmetric and -ve definite.

The aggregate demand function

$$
x(q)=\sum_{h \in \mathcal{H}}\left(\alpha^{h}+B^{h} q\right)
$$

is rationalizable by a single hypothetical agent with preferences given by the Theorem.

Applications

Estimation of utilities that generate demand functions (Deaton EJ1978): The form $u(x)=(x-\alpha) A(x-\alpha)$ is consistent with linear demand only if
(i) the ($n-1$)th principal minor of A is symmetric and -ve definite, and (ii). $A_{n n}=0=A_{n j+A_{j n}}$ for all $j=1, \ldots, n-1$.

Additive preferences (Houthakker ECMA1960): An additive $u(\cdot)$ is consistent with linear demand only if it is of the form $u(x)=x_{n}+\sum_{j=1}^{n-1}\left(\alpha_{j} x_{j}+b_{j} x_{j}^{2}\right)$ - i.e., B is diagonal.

Integrability of demand systems that are independent of income (Nocke and Schutz JET2017): $x(q)$ that satisfies the Law of Demand and there exists $v(\cdot)$ such that $\nabla_{q} v(q)=-x(q)$.

Differentiability and Linear Demand

Key result

Taking $k \in \mathcal{N} \backslash\{n\}$, let $K:=\{1, \ldots, k\}, M:=\{k+1, \ldots, n\}$, $M_{0}:=M \backslash\{n\}$ and B be a $k \times k$ matrix of constants. Suppose also that the continuous, strictly convex, and strictly monotonic weak order \succsim on X generates the (total) demand function $x: Q \rightarrow X$ where

$$
x_{K}(q):=\alpha\left(q_{M}\right)+B q_{K}
$$

with $\alpha: Q_{M} \rightarrow \mathbb{R}^{k}$ a continuous function. The following are equivalent:
(i). \succsim is differentiable.
(ii). Q is open in \mathbb{R}_{++}^{n}, B is non-singular, $M_{0}=\varnothing$ while $\alpha(\cdot)$ is constant.

Differentiable preferences [Rubinstein (2006)]

\succsim is differentiable at $x \in X$ if there exists $p_{x} \in \mathbb{R}^{n} \backslash\{0\}$ that makes the following sets

$$
\left\{y \in \mathbb{R}^{n}: p_{x} y>0\right\}
$$

and

$$
\left\{y \in \mathbb{R}^{n}: \exists \lambda_{x}^{*}>0 \text { such that } x+\lambda y \succ x \quad \forall \lambda \in\left(0, \lambda_{x}^{*}\right)\right\}
$$

coincide.

If it exists, p_{x} will be referred to as a preference gradient at x.

Preference gradients graphically

Figure: p, p^{*} support \mathcal{U}_{x}; neither is a preference gradient.

Figure: p is a preference gradient.

Key background result

Diasakos and Gerasimou (AEJ: Micro 2022)

The following are equivalent for a continuous weak order \succsim on X :
(i). \succsim is strictly convex, strictly monotonic, and differentiable.
(ii). There is a unique, open set $Y \subseteq \mathbb{R}_{++}^{n}$ and a unique, homeomorphic demand function $x: Y \rightarrow X$ that is generated by \succsim.

Indifference-projection functions

Consider the indifference-projection correspondence $I_{n}(\cdot \mid x): \mathcal{I}_{x}^{-n} \rightarrow \mathcal{I}_{x}^{n}$ for good n by requiring

$$
y_{n} \in I_{n}\left(y_{-n} \mid x\right) \Longleftrightarrow y \in \mathcal{I}_{x}
$$

The graph of this correspondence is the indifference set \mathcal{I}_{x}.
$I_{i}(\cdot \mid x)$ is actually a function that is locally convex and thus also continuous.
$I_{i}(\cdot \mid x)$ is differentiable at y_{-i} if and only if the local subdifferential $\partial I_{i}\left(y_{-i} \mid x\right)$ is a singleton, in which case the unique subgradient coincides with the gradient.

The indifference-projection gradient bark

Let $q_{-n}(x)$ denote the -ve of the gradient (equivalently, the unique subgradient) of the indifference-projection function $I_{n}(\cdot \mid x)$ for good n at x.

The preference gradient p_{x} coincides with $p(x)$, the inverse demand at this bundle, and is determined by

$$
\begin{aligned}
q_{-n}(x) & =-\nabla I_{n}\left(x_{-n} \mid x\right) \\
q_{n}(x) & =\frac{1}{x_{n}+q_{-n}(x) \cdot x_{-n}}, \\
p(x) & =q_{n}(x)\left(1, q_{-n}(x)\right)
\end{aligned}
$$

where $q_{-n}(x) \gg 0, q_{n}(x)>0$ and $p(x) \gg 0$.

\succsim differentiable $\Rightarrow B$ non-singular

If B is singular, there exist $v \in \mathbb{R}^{k} \backslash\left\{0^{k}\right\}: B v=0^{k}$.
Let \succsim be differentiable.
Taking $\mathrm{q} \in Q$ and $\varepsilon>0$ sufficiently small, we have $\left(\mathrm{q}_{K}+\lambda \mathrm{v}, \mathrm{q}_{M}\right) \in Q$ for any $\lambda \in(-\varepsilon, \varepsilon)$. Define the function $q_{K}:(-\varepsilon, \varepsilon) \rightarrow Q_{K}$ by $q_{K}(\lambda):=q_{K}+\lambda \mathrm{v}$. We have

$$
x_{K}\left(\mathrm{q}_{K}+\lambda \mathrm{v}, \mathrm{q}_{M}\right)=\mathrm{a}\left(\mathrm{q}_{M}\right)+B \mathrm{q}_{K}+\lambda B \mathrm{v}=x_{K}(\mathrm{q})
$$

and we can show that

$$
\begin{aligned}
x_{n}\left(q_{K}(\lambda), \mathrm{q}_{M}\right)+\mathrm{q}_{M_{0}} x_{M_{0}}\left(q_{K}(\lambda), \mathrm{q}_{M}\right) & =x_{n}(\mathrm{q})+\mathrm{q}_{M_{0}} x_{M_{0}}(\mathrm{q}) \\
& -\left(q_{K}(\lambda)-\mathrm{q}_{K}\right) x_{K}(\mathrm{q}) \\
& =x_{n}(\mathrm{q})+\mathrm{q}_{M_{0}} x_{M_{0}}(\mathrm{q}) \\
& -\lambda \mathrm{v} x_{K}(\mathrm{q})
\end{aligned}
$$

\succsim differentiable $\Rightarrow B$ non-singular

Case I: There exists $x^{0} \in X: v x_{K}^{0}=0$.
Then $q^{0} \in Q: x^{0}=x\left(q^{0}\right)$ wgives $q^{0} x\left(q^{0}+\lambda v\right)=\left(q^{0}+\lambda v\right) x^{0} . \rightarrow \mid \leftarrow$
Case II: There exists $x^{0} \in X v x_{K}^{0}=v x_{K}\left(q_{K}^{0}, q_{M_{0}}^{0}, w^{\prime}\right)$.
Letting $\lambda:=-\left(w^{\prime}-w^{0}\right) / v x^{0}$ we get that $q^{0} x\left(q_{K}^{0}+\lambda v, q_{M_{0}}^{0}, w^{0}\right)=w^{\prime}$ while $\left(q_{K}^{0}+\lambda v\right) x_{K}\left(q_{K}^{0}, q_{M_{0}}^{0}, w^{\prime}\right)+q_{M}^{0} x_{M} x\left(q_{K}^{0}, q_{M_{0}}^{0}, w^{\prime}\right)=w^{0} . \rightarrow \mid \leftarrow$.

Case III: $v x_{K}\left(q_{K}, q_{M_{0}}, w\right) \neq v x_{K}\left(q_{K}, q_{M_{0}}, w^{\prime}\right)$ for all $\left(q_{K}, q_{M_{0}}, w\right),\left(q_{K}, q_{M_{0}}, w^{\prime}\right) \in Q$.
Consider the sets

$$
\begin{aligned}
Q^{0} & :=\left\{q \in Q: x_{M}(q)=x_{M}^{0}\right\} \\
X^{0} & :=\left\{x \in X: x_{M}=x_{M}^{0}\right\} \\
X_{K}^{*} & :=\left\{x_{K} \in X_{K}^{0}: v x_{K}=v x_{K}^{0}\right\}
\end{aligned}
$$

Then income must remain constant along the hyperplane $X_{K}^{*} \cdot \rightarrow \mid \leftarrow$.
\succsim differentiable, B non-singular $\Rightarrow M_{0}=\varnothing$
Let \succsim be differentiable and $M_{0} \neq \varnothing$. For $x \in X$ and $q_{M} \in Q_{M}$ consider the sets

$$
\begin{aligned}
X^{q_{M}} & :=\left\{\tilde{x} \in X: \exists q_{K} \in Q_{K}, \tilde{x}=x\left(q_{K}, q_{M}\right)\right\} \\
Q_{M}^{x} & :=\left\{q_{M} \in Q_{M}: \exists \tilde{x} \in X^{q_{M}}, \widetilde{x} \sim x\right\}
\end{aligned}
$$

Take $x^{0} \in X$ and notice that $\mathcal{I}_{x^{0}}$ can be partitioned as $\mathcal{I}_{x^{0}}=\cup_{q_{M} \in Q_{M}^{x}} \mathcal{I}_{x^{0}} \mid q_{M}$ where $\mathcal{I}_{x^{0} \mid q_{M}}:=\mathcal{I}_{x^{0}} \cap X^{q_{M}}$. Restricting thus attention to the domain $X^{q_{M}^{0}}$, we trace $\mathcal{I}_{x^{0}} q_{M}^{0}$ as long as we obey the following system of partial differential equations

$$
\begin{aligned}
& \partial x_{n} / \partial x_{j}=-q_{j}^{0}, \quad j \in M_{0} \\
& \partial x_{n} / \partial x_{j}=\left(B^{-1}\left(\alpha\left(q_{M}^{0}\right)-x_{K}\right)\right)_{j}, \quad j \in K
\end{aligned}
$$

Integrating along $\mathcal{I}_{x^{0} \mid q_{M}^{0}}$ gives

$$
x_{n}=x_{K} B^{-1} \alpha\left(q_{M}^{0}\right)-x_{K} B^{-1} x_{K} / 2-q_{M_{0}}^{0} x_{M_{0}}+c_{0},\left.\quad x \in \mathcal{I}_{x^{0}}\right|_{M} ^{0}
$$

for some integrating constant c_{0}.
\succsim differentiable, B non-singular, $M_{0}=\varnothing \Rightarrow \alpha(\cdot)$ is constant bade

Let \succsim be differentiable. As $M_{0}=\varnothing, \alpha(\cdot)$ is a function only of income. Suppose that $\alpha(w) \neq \alpha\left(w_{0}\right)$ for all $w \in\left(w_{0}-\lambda_{0}, w_{0}+\lambda_{0}\right) \backslash\left\{w_{0}\right\}$ for sufficiently small $\lambda_{0} \in \mathbb{R}_{++}$.

Define the $\left(-\lambda_{0}, \lambda_{0}\right) \rightarrow \mathbb{R}^{K}$ function $\epsilon(\lambda):=B^{-1}\left(\alpha\left(w_{0}+\lambda\right)-\alpha\left(w_{0}\right)\right)$.
For $\lambda \in\left(-\lambda_{0}, \lambda_{0}\right)$ consider the sets
$\hat{Q}_{K}^{\lambda}:=\left\{q_{K} \in Q_{K}: x_{n}\left(q_{K}-\epsilon(\lambda), w_{0}+\lambda\right)=x_{n}\left(q_{K}^{0}-\epsilon(\lambda), w_{0}+\lambda\right)\right\}$
$\hat{X}^{\lambda}:=\left\{x \in X: x_{n}=x_{n}\left(q_{K}^{0}-\epsilon(\lambda), w_{0}+\lambda\right)\right\}$
We can show that there exist $\lambda_{1} \in\left(-\lambda_{0}, \lambda_{0}\right)$ and $\rho_{1}>0$ such that

$$
0=\epsilon\left(\lambda_{1}\right)\left(x_{K}\left(q_{K}, w_{0}\right)-x_{K}^{0}\right) \quad \forall q_{K} \in \mathcal{B}_{q_{K}^{0}}\left(\rho_{1}\right)
$$

When prices are normalized w.r.t. income

Proposition

Let \succsim be a continuous, strictly convex, and strictly monotonic weak order on X. Taking $k \in \mathcal{N} \backslash\{n\}$, let also $K:=\{1, \ldots, k\}, M:=\{k+1, \ldots, n\}$, and B be a $k \times k$ matrix of constants. Suppose finally that the generated demand function $x: Y \rightarrow X$ is such that

$$
x_{K}(p):=\alpha\left(p_{M}\right)+B p_{K}
$$

with $\alpha: Y_{M} \rightarrow R^{k}$ a continuous function. The following are equivalent.
(i). \succsim is differentiable.
(ii). Y is open in \mathbb{R}_{++}^{n}, B is non-singular and $M=\{n\}$.

When prices are normalized w.r.t. income

Theorem

Let $x: Y \rightarrow X$ be such that

$$
x_{K}(p):=\alpha+\gamma p_{n}+B p_{-n}, \quad p \in Y
$$

where $\alpha, \gamma \in \mathbb{R}^{n-1}$ are constants. The following are equivalent.
(i). \succsim is differentiable.
(ii). Y is open in \mathbb{R}_{++}^{n} and B is non-singular.
(iii). \succsim is represented by the utility function $u: X \rightarrow \mathbb{R}$ given by
$u(x):= \begin{cases}\left(x_{n}-x_{-n} \widetilde{B} \gamma\right) \exp \left(\int_{X_{K}^{0}} \frac{\widetilde{B}\left(x_{-n}-\alpha\right)}{1-x_{-n} \tilde{B}\left(x_{-n}-\alpha\right)} \mathrm{d} x_{-n}\right) & x_{-n} \in X_{-n}^{0} \\ 0 & x_{-n} \in X_{-n} \backslash X_{K}^{0}\end{cases}$
where \widetilde{B} is a non-singular $(n-1) \times(n-1)$ matrix of constants (with $\widetilde{B}^{-1}=B$) while $X_{-n}^{0}=:\left\{x_{-n} \in X_{-n}: x_{-n} B\left(x_{-n}-\alpha\right) \neq 1\right\}$.

